361 research outputs found

    A Type System for a Stochastic CLS

    Full text link
    The Stochastic Calculus of Looping Sequences is suitable to describe the evolution of microbiological systems, taking into account the speed of the described activities. We propose a type system for this calculus that models how the presence of positive and negative catalysers can modify these speeds. We claim that types are the right abstraction in order to represent the interaction between elements without specifying exactly the element positions. Our claim is supported through an example modelling the lactose operon

    A Calculus of Looping Sequences with Local Rules

    Get PDF
    In this paper we present a variant of the Calculus of Looping Sequences (CLS for short) with global and local rewrite rules. While global rules, as in CLS, are applied anywhere in a given term, local rules can only be applied in the compartment on which they are defined. Local rules are dynamic: they can be added, moved and erased. We enrich the new calculus with a parallel semantics where a reduction step is lead by any number of global and local rules that could be performed in parallel. A type system is developed to enforce the property that a compartment must contain only local rules with specific features. As a running example we model some interactions happening in a cell starting from its nucleus and moving towards its mitochondria.Comment: In Proceedings DCM 2011, arXiv:1207.682

    Types for BioAmbients

    Get PDF
    The BioAmbients calculus is a process algebra suitable for representing compartmentalization, molecular localization and movements between compartments. In this paper we enrich this calculus with a static type system classifying each ambient with group types specifying the kind of compartments in which the ambient can stay. The type system ensures that, in a well-typed process, ambients cannot be nested in a way that violates the type hierarchy. Exploiting the information given by the group types, we also extend the operational semantics of BioAmbients with rules signalling errors that may derive from undesired ambients' moves (i.e. merging incompatible tissues). Thus, the signal of errors can help the modeller to detect and locate unwanted situations that may arise in a biological system, and give practical hints on how to avoid the undesired behaviour

    A Process Calculus for Molecular Interaction Maps

    Full text link
    We present the MIM calculus, a modeling formalism with a strong biological basis, which provides biologically-meaningful operators for representing the interaction capabilities of molecular species. The operators of the calculus are inspired by the reaction symbols used in Molecular Interaction Maps (MIMs), a diagrammatic notation used by biologists. Models of the calculus can be easily derived from MIM diagrams, for which an unambiguous and executable interpretation is thus obtained. We give a formal definition of the syntax and semantics of the MIM calculus, and we study properties of the formalism. A case study is also presented to show the use of the calculus for modeling biomolecular networks.Comment: 15 pages; 8 figures; To be published on EPTCS, proceedings of MeCBIC 200

    Type Directed Semantics for the Calculus of Looping Sequences

    Get PDF
    The calculus of looping sequences is a formalism for describing the evolution of biological systems by means of term rewriting rules. Here we enrich this calculus with a type discipline which preserves some biological properties deriving from the requirement of certain elements, and the repellency of others. In particular, the type system guarantees the soundness of the application of reduction rules with respect to the elements which are required (all requirements must be satisfied) and to the elements which are excluded (two elements which repel each other cannot occur in the same compartment). As an example, we model the possible interactions (and compatibility) of different blood types with different antigens. The type system does not allow transfusion with incompatible blood types

    QUALITATIVE AND QUANTITATIVE FORMAL MODELING OF BIOLOGICAL SYSTEMS

    Get PDF
    Nella tesi si sviluppa un formalismo basato su riscrittura di termini e lo si propone come strumento per la descrizione di sistemi biologici. Tale formalismo, chiamato calculus of looping sequences (cls) consente di descrivere proteine, dna e membrane come termini, e interazioni tra questi elementi come regole di riscrittura. Diverse varianti di cls sono studiate al fine di descrivere diversi aspetti dei sistemi biologici, inoltre vengono definite equivalenze sul comportamento dei sistemi (bisimulazioni) e una versione stocastica del formalismo che consente di sviluppare strumenti di simulazione

    A formal semantics for Molecular Interaction Maps

    Get PDF
    In the present work, we describe a possible formal semantics for Molecular Interaction Maps (MIMs), which are standard diagrams, used by biologists to depict interactions at molecular level within a cell environment. First we describe MIM notation in details, then we describe the Calculi of Looping Sequences (CLS), a family of formal languages which models biological systems, whose semantics is a transition systems. Finally, we give a possible formal semantics in CLS for MIMs

    PORGY: Strategy-Driven Interactive Transformation of Graphs

    Get PDF
    This paper investigates the use of graph rewriting systems as a modelling tool, and advocates the embedding of such systems in an interactive environment. One important application domain is the modelling of biochemical systems, where states are represented by port graphs and the dynamics is driven by rules and strategies. A graph rewriting tool's capability to interactively explore the features of the rewriting system provides useful insights into possible behaviours of the model and its properties. We describe PORGY, a visual and interactive tool we have developed to model complex systems using port graphs and port graph rewrite rules guided by strategies, and to navigate in the derivation history. We demonstrate via examples some functionalities provided by PORGY.Comment: In Proceedings TERMGRAPH 2011, arXiv:1102.226

    Modelling Biological Systems From Molecular Interactions to Population Dynamics

    Get PDF
    Biological systems are examples of complex systems, which consist of several interacting components. Understanding the behaviour of such systems requires a multidisciplinary approach that encompasses biology, mathematics, computer science, physiscs and chemistry. New research areas are emerging as the result of this multidisciplinarity, such as bioinformatics, systems biology and computational biology. Computer science plays an important role in the newly emerging research areas by offerring techniques, algorithms, languages and software to solve research problems efficiently. On the other hand, the efforts to solve these research problems stimulate the development of new and better computer science techniques, algorithms, languages and software. This thesis describes our approach in modelling biological systems as a way to better understand their complex behaviours. Our approach is based on the Calculi of Looping Sequences, a class of formalisms originally developed to model biological systems involving cells and their membrane-based structures. We choose Stochastic CLS and Spatial CLS, two variants of the calculi that support quantitative analysis of the model, and define an approach that support simulation, statistical model-checking and visualisation as analysis techniques. Moreover, we found out that this class of formalisms can be easily extended to model population dynamics of animals, a kind of biological systems that does not involve membrane-based structures
    • …
    corecore