4 research outputs found

    Investigating Selection above a Multitouch Surface

    Get PDF
    Above-surface interaction is a new and exciting topic in the field of human-computer interaction (HCI). It focuses on the design and evaluation of systems that humans can operate by moving their hands in the space above or in front of interactive displays. While many technologies emerge that make such systems possible, much research is still needed to make this interaction as natural and effortless as possible. First this thesis presents a set of guidelines for designing above-surface interactions, a collection of widgets that were designed based on these guidelines, and a system that can approximate the height of hands above a diffused surface illumination (DSI) device without any additional sensors. Then the thesis focuses on interaction techniques for activating graphical widgets located in this above-surface space. Finally, it presents a pair of studies that were conducted to investigate item selection in the space above a multitouch surface. The first study was conducted to elicit a set of gestures for above-table widget activation from a group of users. Several gestures were proposed by the designers to be compared with the user-generated gestures. The follow-up study was conducted to evaluate and compare these gestures based on their performance. The findings of these studies showed that there was no clear agreement on what gestures should be used to select objects in mid-air, and that performance was better when using gestures that were chosen less frequently, but predicted to be better by the designers, as opposed to those most frequently suggested by participants

    Multilayer haptic feedback for pen-based tablet interaction

    Get PDF
    We present a novel, multilayer interaction approach that enables state transitions between spatially above-screen and 2D on-screen feedback layers. This approach supports the exploration of haptic features that are hard to simulate using rigid 2D screens. We accomplish this by adding a haptic layer above the screen that can be actuated and interacted with (pressed on) while the user interacts with on-screen content using pen input. The haptic layer provides variable firmness and contour feedback, while its membrane functionality affords additional tactile cues like texture feedback. Through two user studies, we look at how users can use the layer in haptic exploration tasks, showing that users can discriminate well between different firmness levels, and can perceive object contour characteristics. Demonstrated also through an art application, the results show the potential of multilayer feedback to extend on-screen feedback with additional widget, tool and surface properties, and for user guidance

    tCAD: a 3D modeling application on a depth enhanced tabletop computer

    Get PDF
    Tabletop computers featuring multi-touch input and object tracking are a common platform for research on Tangible User Interfaces (also known as Tangible Interaction). However, such systems are confined to sensing activity on the tabletop surface, disregarding the rich and relatively unexplored interaction canvas above the tabletop. This dissertation contributes with tCAD, a 3D modeling tool combining fiducial marker tracking, finger tracking and depth sensing in a single system. This dissertation presents the technical details of how these features were integrated, attesting to its viability through the design, development and early evaluation of the tCAD application. A key aspect of this work is a description of the interaction techniques enabled by merging tracked objects with direct user input on and above a table surface.Universidade da Madeir
    corecore