1,498 research outputs found

    Structure-Preserving Discretization of Fractional Vector Calculus using Discrete Exterior Calculus

    Full text link
    Fractional vector calculus is the building block of the fractional partial differential equations that model non-local or long-range phenomena, e.g., anomalous diffusion, fractional electromagnetism, and fractional advection-dispersion. In this work, we reformulate a type of fractional vector calculus that uses Caputo fractional partial derivatives and discretize this reformulation using discrete exterior calculus on a cubical complex in the structure-preserving way, meaning that the continuous-level properties curlαgradα=0\operatorname{curl}^\alpha \operatorname{grad}^\alpha = \mathbf{0} and divαcurlα=0\operatorname{div}^\alpha \operatorname{curl}^\alpha = 0 hold exactly on the discrete level. We discuss important properties of our fractional discrete exterior derivatives and verify their second-order convergence in the root mean square error numerically. Our proposed discretization has the potential to provide accurate and stable numerical solutions to fractional partial differential equations and exactly preserve fundamental physics laws on the discrete level regardless of the mesh size.Comment: 25 pages, 4 figure

    Subdivision Directional Fields

    Full text link
    We present a novel linear subdivision scheme for face-based tangent directional fields on triangle meshes. Our subdivision scheme is based on a novel coordinate-free representation of directional fields as halfedge-based scalar quantities, bridging the finite-element representation with discrete exterior calculus. By commuting with differential operators, our subdivision is structure-preserving: it reproduces curl-free fields precisely, and reproduces divergence-free fields in the weak sense. Moreover, our subdivision scheme directly extends to directional fields with several vectors per face by working on the branched covering space. Finally, we demonstrate how our scheme can be applied to directional-field design, advection, and robust earth mover's distance computation, for efficient and robust computation

    On the stability of linear fractional difference systems

    Get PDF
    A fractional linear system is defined by differential or difference equations of non-integer order. A well-known result about the stability of fractional differential systems will be extended to discrete-time systems defined by fractional difference equations. This will be accomplished using time scales, which permit to unify continuous and discrete-time systems

    Fractional Loop Group and Twisted K-Theory

    Full text link
    We study the structure of abelian extensions of the group LqGL_qG of qq-differentiable loops (in the Sobolev sense), generalizing from the case of central extension of the smooth loop group. This is motivated by the aim of understanding the problems with current algebras in higher dimensions. Highest weight modules are constructed for the Lie algebra. The construction is extended to the current algebra of supersymmetric Wess-Zumino-Witten model. An application to the twisted K-theory on GG is discussed.Comment: Final version in Commun. Math. Phy
    corecore