2,870 research outputs found

    Measuring Semantic Similarity: Representations and Methods

    Get PDF
    This dissertation investigates and proposes ways to quantify and measure semantic similarity between texts. The general approach is to rely on linguistic information at various levels, including lexical, lexico-semantic, and syntactic. The approach starts by mapping texts onto structured representations that include lexical, lexico-semantic, and syntactic information. The representation is then used as input to methods designed to measure the semantic similarity between texts based on the available linguistic information.While world knowledge is needed to properly assess semantic similarity of texts, in our approach world knowledge is not used, which is a weakness of it.We limit ourselves to answering the question of how successfully one can measure the semantic similarity of texts using just linguistic information.The lexical information in the original texts is retained by using the words in the corresponding representations of the texts. Syntactic information is encoded using dependency relations trees, which represent explicitly the syntactic relations between words. Word-level semantic information is relatively encoded through the use of semantic similarity measures like WordNet Similarity or explicitly encoded using vectorial representations such as Latent Semantic Analysis (LSA). Several methods are being studied to compare the representations, ranging from simple lexical overlap, to more complex methods such as comparing semantic representations in vector spaces as well as syntactic structures. Furthermore, a few powerful kernel models are proposed to use in combination with Support Vector Machine (SVM) classifiers for the case in which the semantic similarity problem is modeled as a classification task

    Knowledge Base Population using Semantic Label Propagation

    Get PDF
    A crucial aspect of a knowledge base population system that extracts new facts from text corpora, is the generation of training data for its relation extractors. In this paper, we present a method that maximizes the effectiveness of newly trained relation extractors at a minimal annotation cost. Manual labeling can be significantly reduced by Distant Supervision, which is a method to construct training data automatically by aligning a large text corpus with an existing knowledge base of known facts. For example, all sentences mentioning both 'Barack Obama' and 'US' may serve as positive training instances for the relation born_in(subject,object). However, distant supervision typically results in a highly noisy training set: many training sentences do not really express the intended relation. We propose to combine distant supervision with minimal manual supervision in a technique called feature labeling, to eliminate noise from the large and noisy initial training set, resulting in a significant increase of precision. We further improve on this approach by introducing the Semantic Label Propagation method, which uses the similarity between low-dimensional representations of candidate training instances, to extend the training set in order to increase recall while maintaining high precision. Our proposed strategy for generating training data is studied and evaluated on an established test collection designed for knowledge base population tasks. The experimental results show that the Semantic Label Propagation strategy leads to substantial performance gains when compared to existing approaches, while requiring an almost negligible manual annotation effort.Comment: Submitted to Knowledge Based Systems, special issue on Knowledge Bases for Natural Language Processin

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Using Artificial Neural Networks to Determine Ontologies Most Relevant to Scientific Texts

    Full text link
    This paper provides an insight into the possibility of how to find ontologies most relevant to scientific texts using artificial neural networks. The basic idea of the presented approach is to select a representative paragraph from a source text file, embed it to a vector space by a pre-trained fine-tuned transformer, and classify the embedded vector according to its relevance to a target ontology. We have considered different classifiers to categorize the output from the transformer, in particular random forest, support vector machine, multilayer perceptron, k-nearest neighbors, and Gaussian process classifiers. Their suitability has been evaluated in a use case with ontologies and scientific texts concerning catalysis research. From results we can say the worst results have random forest. The best results in this task brought support vector machine classifier
    corecore