837 research outputs found

    Complexity of Bradley-Manna-Sipma Lexicographic Ranking Functions

    Get PDF
    In this paper we turn the spotlight on a class of lexicographic ranking functions introduced by Bradley, Manna and Sipma in a seminal CAV 2005 paper, and establish for the first time the complexity of some problems involving the inference of such functions for linear-constraint loops (without precondition). We show that finding such a function, if one exists, can be done in polynomial time in a way which is sound and complete when the variables range over the rationals (or reals). We show that when variables range over the integers, the problem is harder -- deciding the existence of a ranking function is coNP-complete. Next, we study the problem of minimizing the number of components in the ranking function (a.k.a. the dimension). This number is interesting in contexts like computing iteration bounds and loop parallelization. Surprisingly, and unlike the situation for some other classes of lexicographic ranking functions, we find that even deciding whether a two-component ranking function exists is harder than the unrestricted problem: NP-complete over the rationals and Σ2P\Sigma^P_2-complete over the integers.Comment: Technical report for a corresponding CAV'15 pape

    On the Decidability of Connectedness Constraints in 2D and 3D Euclidean Spaces

    Get PDF
    We investigate (quantifier-free) spatial constraint languages with equality, contact and connectedness predicates as well as Boolean operations on regions, interpreted over low-dimensional Euclidean spaces. We show that the complexity of reasoning varies dramatically depending on the dimension of the space and on the type of regions considered. For example, the logic with the interior-connectedness predicate (and without contact) is undecidable over polygons or regular closed sets in the Euclidean plane, NP-complete over regular closed sets in three-dimensional Euclidean space, and ExpTime-complete over polyhedra in three-dimensional Euclidean space.Comment: Accepted for publication in the IJCAI 2011 proceeding

    A Survey of Satisfiability Modulo Theory

    Full text link
    Satisfiability modulo theory (SMT) consists in testing the satisfiability of first-order formulas over linear integer or real arithmetic, or other theories. In this survey, we explain the combination of propositional satisfiability and decision procedures for conjunctions known as DPLL(T), and the alternative "natural domain" approaches. We also cover quantifiers, Craig interpolants, polynomial arithmetic, and how SMT solvers are used in automated software analysis.Comment: Computer Algebra in Scientific Computing, Sep 2016, Bucharest, Romania. 201

    Transfer Function Synthesis without Quantifier Elimination

    Get PDF
    Traditionally, transfer functions have been designed manually for each operation in a program, instruction by instruction. In such a setting, a transfer function describes the semantics of a single instruction, detailing how a given abstract input state is mapped to an abstract output state. The net effect of a sequence of instructions, a basic block, can then be calculated by composing the transfer functions of the constituent instructions. However, precision can be improved by applying a single transfer function that captures the semantics of the block as a whole. Since blocks are program-dependent, this approach necessitates automation. There has thus been growing interest in computing transfer functions automatically, most notably using techniques based on quantifier elimination. Although conceptually elegant, quantifier elimination inevitably induces a computational bottleneck, which limits the applicability of these methods to small blocks. This paper contributes a method for calculating transfer functions that finesses quantifier elimination altogether, and can thus be seen as a response to this problem. The practicality of the method is demonstrated by generating transfer functions for input and output states that are described by linear template constraints, which include intervals and octagons.Comment: 37 pages, extended version of ESOP 2011 pape

    Branch-and-Prune Search Strategies for Numerical Constraint Solving

    Get PDF
    When solving numerical constraints such as nonlinear equations and inequalities, solvers often exploit pruning techniques, which remove redundant value combinations from the domains of variables, at pruning steps. To find the complete solution set, most of these solvers alternate the pruning steps with branching steps, which split each problem into subproblems. This forms the so-called branch-and-prune framework, well known among the approaches for solving numerical constraints. The basic branch-and-prune search strategy that uses domain bisections in place of the branching steps is called the bisection search. In general, the bisection search works well in case (i) the solutions are isolated, but it can be improved further in case (ii) there are continuums of solutions (this often occurs when inequalities are involved). In this paper, we propose a new branch-and-prune search strategy along with several variants, which not only allow yielding better branching decisions in the latter case, but also work as well as the bisection search does in the former case. These new search algorithms enable us to employ various pruning techniques in the construction of inner and outer approximations of the solution set. Our experiments show that these algorithms speed up the solving process often by one order of magnitude or more when solving problems with continuums of solutions, while keeping the same performance as the bisection search when the solutions are isolated.Comment: 43 pages, 11 figure

    Applying abstract acceleration to (co-)reachability analysis of reactive programs

    Get PDF
    Acceleration methods are commonly used for computing precisely the effects of loops in the reachability analysis of counter machine models. Applying these methods on synchronous data-flow programs, e.g. Lustre programs, requires to deal with the non-deterministic transformations due to numerical input variables. In this article, we address this problem by extending the concept of abstract acceleration of Gonnord et al. to numerical input variables. Moreover, we describe the dual analysis for co-reachability. We compare our method with some alternative techniques based on abstract interpretation pointing out its advantages and limitations. At last, we give some experimental results
    corecore