118 research outputs found

    Extending ACL2 with SMT Solvers

    Full text link
    We present our extension of ACL2 with Satisfiability Modulo Theories (SMT) solvers using ACL2's trusted clause processor mechanism. We are particularly interested in the verification of physical systems including Analog and Mixed-Signal (AMS) designs. ACL2 offers strong induction abilities for reasoning about sequences and SMT complements deduction methods like ACL2 with fast nonlinear arithmetic solving procedures. While SAT solvers have been integrated into ACL2 in previous work, SMT methods raise new issues because of their support for a broader range of domains including real numbers and uninterpreted functions. This paper presents Smtlink, our clause processor for integrating SMT solvers into ACL2. We describe key design and implementation issues and describe our experience with its use.Comment: In Proceedings ACL2 2015, arXiv:1509.0552

    Extending SMTCoq, a Certified Checker for SMT (Extended Abstract)

    Full text link
    This extended abstract reports on current progress of SMTCoq, a communication tool between the Coq proof assistant and external SAT and SMT solvers. Based on a checker for generic first-order certificates implemented and proved correct in Coq, SMTCoq offers facilities both to check external SAT and SMT answers and to improve Coq's automation using such solvers, in a safe way. Currently supporting the SAT solver zChaff, and the SMT solver veriT for the combination of the theories of congruence closure and linear integer arithmetic, SMTCoq is meant to be extendable with a reasonable amount of effort: we present work in progress to support the SMT solver CVC4 and the theory of bit vectors.Comment: In Proceedings HaTT 2016, arXiv:1606.0542

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Size-Change Termination as a Contract

    Full text link
    Termination is an important but undecidable program property, which has led to a large body of work on static methods for conservatively predicting or enforcing termination. One such method is the size-change termination approach of Lee, Jones, and Ben-Amram, which operates in two phases: (1) abstract programs into "size-change graphs," and (2) check these graphs for the size-change property: the existence of paths that lead to infinite decreasing sequences. We transpose these two phases with an operational semantics that accounts for the run-time enforcement of the size-change property, postponing (or entirely avoiding) program abstraction. This choice has two key consequences: (1) size-change termination can be checked at run-time and (2) termination can be rephrased as a safety property analyzed using existing methods for systematic abstraction. We formulate run-time size-change checks as contracts in the style of Findler and Felleisen. The result compliments existing contracts that enforce partial correctness specifications to obtain contracts for total correctness. Our approach combines the robustness of the size-change principle for termination with the precise information available at run-time. It has tunable overhead and can check for nontermination without the conservativeness necessary in static checking. To obtain a sound and computable termination analysis, we apply existing abstract interpretation techniques directly to the operational semantics, avoiding the need for custom abstractions for termination. The resulting analyzer is competitive with with existing, purpose-built analyzers

    The Dafny Integrated Development Environment

    Full text link
    In recent years, program verifiers and interactive theorem provers have become more powerful and more suitable for verifying large programs or proofs. This has demonstrated the need for improving the user experience of these tools to increase productivity and to make them more accessible to non-experts. This paper presents an integrated development environment for Dafny-a programming language, verifier, and proof assistant-that addresses issues present in most state-of-the-art verifiers: low responsiveness and lack of support for understanding non-obvious verification failures. The paper demonstrates several new features that move the state-of-the-art closer towards a verification environment that can provide verification feedback as the user types and can present more helpful information about the program or failed verifications in a demand-driven and unobtrusive way.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    Extending Nunchaku to Dependent Type Theory

    Get PDF
    Nunchaku is a new higher-order counterexample generator based on a sequence of transformations from polymorphic higher-order logic to first-order logic. Unlike its predecessor Nitpick for Isabelle, it is designed as a stand-alone tool, with frontends for various proof assistants. In this short paper, we present some ideas to extend Nunchaku with partial support for dependent types and type classes, to make frontends for Coq and other systems based on dependent type theory more useful.Comment: In Proceedings HaTT 2016, arXiv:1606.0542
    corecore