74,083 research outputs found

    Continuum EoS for QCD with Nf=2+1 flavors

    Get PDF
    We report on a continuum extrapolated result [arXiv:1309.5258] for the equation of state (EoS) of QCD with Nf=2+1N_f=2+1 dynamical quark flavors. In this study, all systematics are controlled, quark masses are set to their physical values, and the continuum limit is taken using at least three lattice spacings corresponding to temporal extents up to Nt=16N_t=16. A Symanzik improved gauge and stout-link improved staggered fermion action is used. Our results are available online [ancillary file to arXiv:1309.5258].Comment: Conference proceedings, 7 pages, 4 figures. Talk presented at 31st International Symposium on Lattice Field Theory (LATTICE 2013), July 29 - August 3, 2013, Mainz, German

    The light bound states of supersymmetric SU(2) Yang-Mills theory

    Get PDF
    Supersymmetry provides a well-established theoretical framework for extensions of the standard model of particle physics and the general understanding of quantum field theories. We summarise here our investigations of N=1 supersymmetric Yang-Mills theory with SU(2) gauge symmetry using the non-perturbative first-principles method of numerical lattice simulations. The strong interactions of gluons and their superpartners, the gluinos, lead to confinement, and a spectrum of bound states including glueballs, mesons, and gluino-glueballs emerges at low energies. For unbroken supersymmetry these particles have to be arranged in supermultiplets of equal masses. In lattice simulations supersymmetry can only be recovered in the continuum limit since it is explicitly broken by the discretisation. We present the first continuum extrapolation of the mass spectrum of supersymmetric Yang-Mills theory. The results are consistent with the formation of supermultiplets and the absence of non-perturbative sources of supersymmetry breaking. Our investigations also indicate that numerical lattice simulations can be applied to non-trivial supersymmetric theories.Comment: 19 pages, 6 figure

    Recent results on the Equation of State of QCD

    Get PDF
    We report on a continuum extrapolated result (arXiv:1309.5258) for the equation of state (EoS) of QCD with Nf=2+1N_f=2+1 dynamical quark flavors and discuss preliminary results obtained with an additional dynamical charm quark (Nf=2+1+1N_f=2+1+1). For all our final results, the systematics are controlled, quark masses are set to their physical values, and the continuum limit is taken using at least three lattice spacings corresponding to temporal extents up to Nt=16N_t=16.Comment: Conference proceedings: The 32nd International Symposium on Lattice Field Theory - Lattice 2014, June 23-28, 2014, Columbia University, New York, New Yor

    Extended investigation of the twelve-flavor β\beta-function

    Full text link
    We report new results from high precision analysis of an important BSM gauge theory with twelve massless fermion flavors in the fundamental representation of the SU(3) color gauge group. The range of the renormalized gauge coupling is extended from our earlier work {Fodor:2016zil} to probe the existence of an infrared fixed point (IRFP) in the β\beta-function reported at two different locations, originally in {Cheng:2014jba} and at a new location in {Hasenfratz:2016dou}. We find no evidence for the IRFP of the β\beta-function in the extended range of the renormalized gauge coupling, in disagreement with {Cheng:2014jba,Hasenfratz:2016dou}. New arguments to guard the existence of the IRFP remain unconvincing {Hasenfratz:2017mdh}, including recent claims of an IRFP with ten massless fermion flavors {Chiu:2016uui,Chiu:2017kza} which we also rule out. Predictions of the recently completed 5-loop QCD β\beta-function for general flavor number are discussed in this context.Comment: 7 pages, 9 figure

    Critical exponents for the long-range Ising chain using a transfer matrix approach

    Full text link
    The critical behavior of the Ising chain with long-range ferromagnetic interactions decaying with distance rαr^\alpha, 1<α<21<\alpha<2, is investigated using a numerically efficient transfer matrix (TM) method. Finite size approximations to the infinite chain are considered, in which both the number of spins and the number of interaction constants can be independently increased. Systems with interactions between spins up to 18 sites apart and up to 2500 spins in the chain are considered. We obtain data for the critical exponents ν\nu associated with the correlation length based on the Finite Range Scaling (FRS) hypothesis. FRS expressions require the evaluation of derivatives of the thermodynamical properties, which are obtained with the help of analytical recurrence expressions obtained within the TM framework. The Van den Broeck extrapolation procedure is applied in order to estimate the convergence of the exponents. The TM procedure reduces the dimension of the matrices and circumvents several numerical matrix operations.Comment: 10 pages, 2 figures, Conference NEXT Sigma Ph

    Quark mass dependence of the nucleon axial-vector coupling constant

    Full text link
    We study the quark mass expansion of the axial-vector coupling constant g_A of the nucleon. The aim is to explore the feasibility of chiral effective field theory methods for extrapolation of lattice QCD results - so far determined at relatively large quark masses corresponding to pion masses larger than 0.6 GeV - down to the physical value of the pion mass. We compare two versions of non-relativistic chiral effective field theory: One scheme restricted to pion and nucleon degrees of freedom only, and an alternative approach which incorporates explicit Delta(1230) resonance degrees of freedom. It turns out that, in order to approach the physical value of g_A in a leading-one-loop calculation, the inclusion of the explicit Delta(1230) degrees of freedom is crucial. With information on important higher order couplings constrained from analyses of inelastic pion production processes, a chiral extrapolation function for g_A is obtained, which works well from the chiral limit across the physical point into the region of present lattice data. The resulting enhancement of our extrapolation function near the physical pion mass is found to arise from an interplay between long- and short- distance physics.Comment: 21 pages, LaTeX, 7 figure
    corecore