15 research outputs found

    Optimal Gaussian Filtering for Polynomial Systems Applied to Association-free Multi-Target Tracking

    Get PDF
    This paper is about tracking multiple targets with the so-called Symmetric Measurement Equation (SME) filter. The SME filter uses symmetric functions, e.g., symmetric polynomials, in order to remove the data association uncertainty from the measurement equation. By this means, the data association problem is converted to a nonlinear state estimation problem. In this work, an efficient optimal Gaussian filter based on analytic moment calculation for discrete-time multi-dimensional polynomial systems corrupted with Gaussian noise is derived, and then applied to the polynomial system resulting from the SME filter. The performance of the new method is compared to an UKF implementation by means of typical multiple target tracking scenarios

    Shape Tracking of Extended Objects and Group Targets with Star-Convex RHMs

    Get PDF
    This paper is about tracking an extended object or a group target, which gives rise to a varying number of measurements from different measurement sources. For this purpose, the shape of the target is tracked in addition to its kinematics. The target extent is modeled with a new approach called Random Hypersurface Model (RHM) that assumes varying measurement sources to lie on scaled versions of the shape boundaries. In this paper, a star-convex RHM is introduced for tracking star-convex shape approximations of targets. Bayesian inference for star-convex RHM is performed by means of a Gaussian-assumed state estimator allowing for an efficient recursive closed-form measurement update. Simulations demonstrate the performance of this approach for typical extended object and group tracking scenarios

    A Generalised Labelled Multi-Bernoulli Filter for Extended Multi-target Tracking

    Get PDF
    Abstract-This paper addresses extended multi-target tracking in clutter, i.e. tracking targets that may produce more than one measurement on each scan. We propose a new algorithm for solving this problem, that is capable of initiating and maintaining labelled estimates of the target kinematics, measurement rates and extents. Our proposed technique is based on modelling the multi-target state as a generalised labelled multi-Bernoulli (GLMB), combined with the gamma Gaussian inverse Wishart (GGIW) distribution for a single extended target. Previously, probability hypothesis density (PHD) and cardinalised PHD (CPHD) filters based on GGIW mixtures have been proposed to solve the extended target tracking problem. Although these are computationally cheaper, they involve significant approximations, as well as lacking the ability to maintain target tracks over time. Here, we compare our proposed GLMB-based approach to the extended target PHD/CPHD filters, and show that the GLMB has improved performance

    Bayesian multiple extended target tracking using labelled random finite sets and splines

    Get PDF
    In this paper, we propose a technique for the joint tracking and labelling of multiple extended targets. To achieve multiple extended target tracking using this technique, models for the target measurement rate, kinematic component and target extension are defined and jointly propagated in time under the generalised labelled multi-Bernoulli (GLMB) filter framework. In particular, we developed a Poisson mixture variational Bayesian (PMVB) model to simultaneously estimate the measurement rate of multiple extended targets and extended target extension was modelled using B-splines. We evaluated our proposed method with various performance metrics. Results demonstrate the effectiveness of our approach

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Extended Object and Group Tracking with Elliptic Random Hypersurface Models

    Get PDF
    This paper provides new results and insights for tracking an extended target object modeled with an Elliptic Random Hypersurface Model (RHM). An Elliptic RHM specifies the relative squared Mahalanobis distance of a measurement source to the center of the target object by means of a one-dimensional random scaling factor. It is shown that uniformly distributed measurement sources on an ellipse lead to a uniformly distributed squared scaling factor. Furthermore, a Bayesian inference mechanisms tailored to elliptic shapes is introduced, which is also suitable for scenarios with high measurement noise. Closed-form expressions for the measurement update in case of Gaussian and uniformly distributed squared scaling factors are derived

    A phd Filter for Tracking Multiple Extended Targets Using Random Matrices

    Full text link

    On Spawning and Combination of Extended/Group Targets Modeled With Random Matrices

    Full text link

    Extended Target Tracking using a Gaussian-Mixture PHD Filter

    Full text link

    LiDAR-Based Object Tracking and Shape Estimation

    Get PDF
    Umfeldwahrnehmung stellt eine Grundvoraussetzung für den sicheren und komfortablen Betrieb automatisierter Fahrzeuge dar. Insbesondere bewegte Verkehrsteilnehmer in der unmittelbaren Fahrzeugumgebung haben dabei große Auswirkungen auf die Wahl einer angemessenen Fahrstrategie. Dies macht ein System zur Objektwahrnehmung notwendig, welches eine robuste und präzise Zustandsschätzung der Fremdfahrzeugbewegung und -geometrie zur Verfügung stellt. Im Kontext des automatisierten Fahrens hat sich das Box-Geometriemodell über die Zeit als Quasistandard durchgesetzt. Allerdings stellt die Box aufgrund der ständig steigenden Anforderungen an Wahrnehmungssysteme inzwischen häufig eine unerwünscht grobe Approximation der tatsächlichen Geometrie anderer Verkehrsteilnehmer dar. Dies motiviert einen Übergang zu genaueren Formrepräsentationen. In der vorliegenden Arbeit wird daher ein probabilistisches Verfahren zur gleichzeitigen Schätzung von starrer Objektform und -bewegung mittels Messdaten eines LiDAR-Sensors vorgestellt. Der Vergleich dreier Freiform-Geometriemodelle mit verschiedenen Detaillierungsgraden (Polygonzug, Dreiecksnetz und Surfel Map) gegenüber dem einfachen Boxmodell zeigt, dass die Reduktion von Modellierungsfehlern in der Objektgeometrie eine robustere und präzisere Parameterschätzung von Objektzuständen ermöglicht. Darüber hinaus können automatisierte Fahrfunktionen, wie beispielsweise ein Park- oder Ausweichassistent, von einem genaueren Wissen über die Fremdobjektform profitieren. Es existieren zwei Einflussgrößen, welche die Auswahl einer angemessenen Formrepräsentation maßgeblich beeinflussen sollten: Beobachtbarkeit (Welchen Detaillierungsgrad lässt die Sensorspezifikation theoretisch zu?) und Modell-Adäquatheit (Wie gut bildet das gegebene Modell die tatsächlichen Beobachtungen ab?). Auf Basis dieser Einflussgrößen wird in der vorliegenden Arbeit eine Strategie zur Modellauswahl vorgestellt, die zur Laufzeit adaptiv das am besten geeignete Formmodell bestimmt. Während die Mehrzahl der Algorithmen zur LiDAR-basierten Objektverfolgung ausschließlich auf Punktmessungen zurückgreift, werden in der vorliegenden Arbeit zwei weitere Arten von Messungen vorgeschlagen: Information über den vermessenen Freiraum wird verwendet, um über Bereiche zu schlussfolgern, welche nicht von Objektgeometrie belegt sein können. Des Weiteren werden LiDAR-Intensitäten einbezogen, um markante Merkmale wie Nummernschilder und Retroreflektoren zu detektieren und über die Zeit zu verfolgen. Eine ausführliche Auswertung auf über 1,5 Stunden von aufgezeichneten Fremdfahrzeugtrajektorien im urbanen Bereich und auf der Autobahn zeigen, dass eine präzise Modellierung der Objektoberfläche die Bewegungsschätzung um bis zu 30%-40% verbessern kann. Darüber hinaus wird gezeigt, dass die vorgestellten Methoden konsistente und hochpräzise Rekonstruktionen von Objektgeometrien generieren können, welche die häufig signifikante Überapproximation durch das einfache Boxmodell vermeiden
    corecore