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Abstract—This paper is about tracking an extended object or
a group target, which gives rise to a varying number of measure-
ments from different measurement sources. For this purpose, the
shape of the target is tracked in addition to its kinematics. The
target extent is modeled with a new approach called Random
Hypersurface Model (RHM) that assumes varying measurement
sources to lie on scaled versions of the shape boundaries. In
this paper, a star-convex RHM is introduced for tracking star-
convex shape approximations of targets. Bayesian inference for
star-convex RHMs is performed by means of a Gaussian-assumed
state estimator allowing for an efficient recursive closed-form
measurement update. Simulations demonstrate the performance
of this approach for typical extended object and group tracking
scenarios.
Keywords: Target tracking, shape tracking, extended ob-
jects, group targets.

I. INTRODUCTION

A typical modeling assumption in target tracking is that the
target is a mathematical point without an extent. However, in
real-world tracking systems, there are essentially two major
scenarios in which this standard assumption is not suitable.

First, the resolution of modern sensor devices (such as
radar devices) is often higher than the spatial extent of a
target object (see Fig. 1). As a consequence, several unknown
points, i.e., measurement sources, on the target object may
be resolved during a single scan. These measurement sources
may vary from scan to scan and their locations depend on the
shape of the target but also on more complex target-dependent
properties (such as the nature of the surface) or even the target-
to-sensor geometry.

Second, a collectively moving group of point targets can be
considered as a single entity as there is high interdependency
between the individual group members that is specified by the
group behavior. Also, in this case the measurement sources
vary from scan to scan and their locations highly depend on
the properties of the group (such as the inter-group geometry).

In this sense, an extended object can be defined as a set
of measurement sources that share a common property, e.g.,
dynamic behavior or a state variable. If the set consists of a
finite set of measurement sources, we call it a group target [1].
However, in case of a continuous set of measurement sources,
it is called an extended object. According to this definition,
extended object and group tracking consists of tracking the
set of measurement sources forming the target.

=  Measurement source =  Measurement

Figure 1: Extended object (left) and group target (right).

The traditional approach to extended object and group target
tracking models an extended target explicitly as a discrete
set of measurement sources with a common bulk component
[2]–[5]. The tracking problem then consists of estimating the
locations of the measurement sources together with the bulk
component. Such an explicit target model is suitable if proper
models for the measurement sources are available and the
sensor resolution is high enough to resolve the measurement
sources.

In this work, an alternative approach to the problem of
extended object and group tracking is pursued. The basic idea
is to track the shape of the target rather than the location
of the measurement sources [6]–[8]. For instance, in the
first scenario, the measurement sources on the airplane may
depend on several unpredictable factors, e.g., the target surface
or the sensor-to-target geometry, so that explicit models for
the measurement sources are not available. In the second
scenario, resolution conflicts and a high number of closely-
spaced targets may render it hard or even impossible to track
individual point targets. Hence, in both cases it is suitable to
track the shape of the target.

This non-standard target tracking problem raises new chal-
lenges: First, in general, less information about the location
and number of the measurement sources on the modeled shape
is available. This results form the fact that the true shape
and its properties are typically unknown. Occlusions and a
specific sensor-to-target geometry can further influence the
measurement sources. Even when only a single measurement
per time step from a target is received, it must be possible to
estimate the shape. Furthermore, in case of a group target,
only a discrete set of measurement sources is possible at
all. Hence, a big challenge is that the assumptions made on
the measurement sources are justified and the target extent
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model has to be robust to modeling errors. Second, a re-
cursive Bayesian state estimator for extended object tracking
requires the description of uncertain geometric shapes and
leads to a hierarchical nonlinear model that first specifies the
generation of measurement sources and then the generation
of measurements. As a consequence, sophisticated nonlinear
state estimation techniques are required for dealing with this
non-standard high-dimensional estimation problem.

Existing extended object tracking methods employ basic
shapes such as ellipses [7], [8], sticks [6], [9], rectangles
or (known) Gaussian mixtures [6] for modeling the target.
Basic shapes such as ellipses are suitable in case of high mea-
surement noise and a few available measurements. However,
in case of rather low measurement noise (compared to the
target extent), it may be possible to extract more detailed
shape information from the measurements. Detailed shape
information is highly relevant for the entire tracking system,
because it can be used for

• target classification, e.g., type of airplane or formation,
• improving the motion model,
• track management, e.g., splitting and merging of groups,
• data association, and
• sensor management and planning algorithms.

A. Contributions

The main contribution of this paper is a Bayesian method for
tracking star-convex shape approximations of extended objects
and group targets based on noisy position measurements.
For this purpose, a so-called Random Hypersurface Model
is employed for modeling the target extent, and a Gaussian-
assumed Bayesian state estimator is derived for an efficient
recursive measurement update.

To the best of our knowledge, this is the first extended
object tracking method allowing for explicitly estimating such
detailed geometric shape information.

B. Related Work

A recent approach to modeling extended targets uses so-
called spatial distribution models [6], [10], where each mea-
surement source is assumed to be a random draw from a
known object-dependent probability distribution. In [6], [9],
[10], stick targets and (known) Gaussian mixtures have been
used as a spatial distribution. In general, it would be pos-
sible, but computationally challenging, to employ a spatial
distribution for estimating the parameters of complex geo-
metric shapes. Spatial distributions also have been employed
within PHD filters for tracking multiple extended objects in
a cluttered environment [11], [12]. An approach for extended
object tracking based on spatial cluster processes is introduced
in [13].

In [7], [14], the uncertainty about an elliptic extent is
expressed by means of a random symmetric positive definite
matrix. The original approach [7], [14] does not incorporate
measurement noise. However, an extension, which is also
able to deal with measurement noise was developed in [15].
Furthermore, an extension to multiple extended objects based

on the PMHT [16] has been developed in [17]. A detailed
comparison of the random matrix approach and RHMs for
ellipses is given in [18].

Related problems to extended object tracking can also be
found in computer vision. For instance, curve fitting [19]–
[21] deals with fitting a curve to noisy data points. However,
there it is assumed that the data points, i.e., the measurements,
only stem from the boundary of the shape. In a similar way,
in [22], polynomials are fitted to noisy measurements from
a radar device in order to track road lanes. Active contour
models developed in [23] are used for tracking the contour of
an object in an image. There, feature detection algorithms are
employed in order to detect boundary points. Based on these
features, an aggregated observation for updating the prior is
constructed.

The tracking of contaminant clouds is considered in [24]
and extended object tracking based on down-range extent
measurements is treated in [25].

C. Overview

The remainder of this paper is structured as follows: In
Section II, a general model for extended target tracking
within a Bayesian framework is introduced. Subsequently, in
Section III, a particular target extent model for star-convex
shapes based on a Random Hypersurface Model is presented.
Based on this model, a Bayesian state estimator for star-convex
target shapes is derived in Section IV. The resulting estimator
is evaluated in Section V by typical extended target and group
target tracking examples. Finally, this paper is concluded in
Section VI.

II. MODELING EXTENDED TARGETS

As we aim at developing a recursive Bayesian state estima-
tor for extended objects, a probabilistic model of the target
is required. For this purpose, the state to be estimated, a
measurement model specifying the measurement generation
process, and a dynamic model for the temporal evolution of
the state have to be specified.

In this work, the target shape is represented with a parameter
vector p

k
, where k is the time index. The target shape itself

is then denoted by the set S(p
k
).

Example 1 (Circle). A circular shape in two-dimensional
space can be represented by p

k
=
[
mT

k , rk
]T

, where mk is
the center and rk the radius. The target shape is given by
S(p

k
) = {z | z ∈ R2 and ||z −mk||2 ≤ rk}.

The entire state vector of the extended target at time step k
to be tracked is a random vector xk =

[
pT
k
, . . .

]T
that consists

of the shape vector and possible further state variables, e.g.,
the velocity.

A. Measurement Model

At each time step k, a set of nk position measurements
{ŷ

k,l
}nk

l=1 becomes available. Here, we assume that the mea-
surements are generated independently. This allows us to esti-
mate the shape of a target even if only a single measurement
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Figure 2: Measurement model for extended objects.

per time step is available. Several measurements per time
step can be treated sequentially. Hence, for given S(p

k
), the

measurement model specifies how a single measurement ŷ
k,l

is obtained. The measurement model consists of two parts, the
target extent model and the sensor model (see Fig. 2).

Target Extent Model: For a given shape S(p
k
), the target

extent model specifies the location of the measurement source
zk,l (see Fig. 2). Note that we do not want to estimate
the locations of the measurement sources explicitly. Such an
implicit model also avoids the explicit treatment of resolution
conflicts (see also [6], [14]). In this work, we employ a
so-called Random Hypersurface Model for the target extent,
which is introduced in the following Section III.

Sensor Model: Given a measurement source zk,l, the sen-
sor model gives the measurement ŷ

k,l
, where it is assumed that

measurements are generated independently. Here in this work,
we focus on Cartesian measurements corrupted with Gaussian
noise, i.e., the measurement ŷ

k,l
is a noisy observation of the

measurement source zk,l according to

ŷ
k,l

= zk,l + vk,l , (1)

where the noise term vk,l is zero-mean white Gaussian noise
with covariance matrix Σv

k,l. Note that most relevant sensors
can be formalized within this model. For instance, angle-
distance measurements can be transformed to Cartesian mea-
surements [26].

Extensions of the Model: The above introduced model
can easily be extended to incorporate more information, e.g.,
the number of measurements received per time step may
depend on the object extension.

B. Dynamic Model

The dynamic model is a probabilistic model for the temporal
evolution of the target state xk. In contrast to a point target,
also the temporal evolution of the shape has to be modeled, as
the shape vector is part of the state vector. Here in this work,
no restrictions on the dynamic model are imposed. A general
dynamic model may be characterized by means of a system
equation

xk+1 = ak(xk, uk,wk) , (2)

where ak(·) is the system function, uk is the system input,
and wk the system noise.

C. Bayesian State Estimator

Based on the measurement and system model, a recursive
Bayesian state estimator for the state xk can be developed.
As several measurements per time step may be received, the
standard notation for a Bayesian state estimator has to be
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Figure 3: Random Hypersurface Model for an ellipse.

slightly extended. In the following, we denote the probability
density for the state vector xk after the incorporation of all
measurements up to time step k − 1 and the measurements
ŷ
k,1
, . . . , ŷ

k,l
with fk,l(xk).

Time Update: The state vector evolves according to
a Markov model characterized by the conditional density
function f(xk|xk−1) derived from the system equation (2).
The prediction fk,0(xk) for time step k thus results from the
Chapman-Kolomogorov equation

fk,0(xk) =

∫
f(xk|xk−1) · fk−1,nk−1

(xk−1)dxk−1 .

Measurement Update: The prediction fk,0(xk) is updated
with the set of measurements {ŷ

k,l
}nk

l=1 according to Bayes’
rule. Because the measurement generation process is assumed
to be independent for consecutive measurements, they can be
incorporated recursively according to

fk,l(xk) = αk,l · fL(ŷ
k,l
|xk) · fk,l−1(xk) ,

where fL(ŷ
k,l
|xk) is a single measurement likelihood function

and αk,l is a normalization factor.
Gaussian Assumption: In this work, all probability densi-

ties are approximated with Gaussian densities, i.e., fk,l(xk) ≈
N (xk − µx

k,l
,Σx

k,l), leading to a so-called Gaussian-assumed
estimator.

III. RANDOM HYPERSURFACE MODEL (RHM)

A Random Hypersurface Model [8], [27] is a target extent
model that specifies the location of a single measurement
source for a given target shape. In this work, we use a
particular RHM for star-convex shapes.

Definition 1 (Star-Convex). A set S ⊂ RN is star-convex
with center m iff each line segment from m to any point in
S is contained in S.

Given a star-convex shape, a measurement source is as-
sumed to be an element of a randomly scaled version of the
shape boundary (see Fig. 3). Hence, the process of generating
a single measurement source is modeled as follows: Given a
star-convex shape, first a scaled version of the shape boundary
is generated, while leaving the center unchanged. Second,
the measurement source is selected from the scaled boundary
according to an arbitrary, unknown rule.

The scaling factor is specified by an independent random
draw from a one-dimensional probability density function (see
the green-colored function in Fig. 3). This probability density



has to be specified in advance. It is part of the target extent
model and it can be assumed to be independent of the target
shape. A formal definition of a Random Hypersurface Model
is given in the following:

Definition 2 (Random Hypersurface Model). Given is a star-
convex shape S(p

k
) with parameter vector p

k
and center mk.

If s̃k,l is a random draw from the one-dimensional random
variable sk,l, the measurement source zk,l is an element of
the scaled boundary

mk + s̃k,l ·
(
S̄(p

k
)−mk

)
,

where S̄(p
k
) denotes the bound of S(p

k
).1

Remark 1. The restriction to star-convex shapes ensures that
zk,l ∈ S(p

k
), i.e., the shape is contractible. Scaling the object

boundaries can also be interpreted as a homotopy from a point
(the object center) to the object boundary.
Remark 2. For fixed scaling factor, e.g., s̃k,l = 1, each
measurement source lies on the boundary of the shape, i.e.,
zk,l ∈ S̄(p

k
). Actually, for a static extended object, the model

is then equivalent to the well-known functional model for
fitting curves to noisy data [21]. In this sense, a Random
Hypersurface Model encompasses curve fitting. Furthermore,
it is interesting to note that an RHM becomes a spatial
distribution model [6], [10] if the measurement source is
assumed to be drawn randomly from the scaled boundary.
Hence, one can say that an RHM encompasses many spatial
distributions.

An RHM as described above is just a forward model, which
together with the sensor model gives a rule for mapping the
hidden state (the shape parameters) to the observed measure-
ment. In order to use an RHM for extended object tracking,
the following steps have to be performed:

• A particular geometric shape S(p
k
) with suitable

parametrization p
k

has to be chosen. The set S(p
k
) can

be represented for instance as the solution of an implicit
equation [8] or in parametric form (see Section IV).

• A particular one-dimensional probability distribution for
the random scaling factor sk,l must be chosen.

• In order to perform backward inference, i.e., infer the
hidden state from the observed measurements, a Bayesian
state estimator has to be designed.

Random Hypersurface Models have already been used for
tracking elliptic target shapes in [8]. In the following Sec-
tion IV, a particular extended object tracking algorithm for
star-convex shapes based on an RHM is presented.

A. Advantages
The main advantages of Random Hypersurface Models

compared to other state-of-the art extended object tracking
methods are the following:

• The target shape can be modeled as a basic shape like
an ellipse [8], but also as general star-convex shape (see
Section IV).

1 Set operations are defined element-wise.
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Figure 4: Example for representing the shape of star-convex
extended objects.

• Bayesian inference for RHMs is computationally tractable
even for complex star-convex shapes. By means of a
Gaussian-assumed Bayesian state estimator based on
analytic moment calculation, a closed-form recursive
measurement update can be performed. As the state
of the extended object is represented with a Gaussian
distributed random vector, RHMs lend themselves to be
embedded into other Bayesian tracking algorithms, e.g.,
data association algorithms.

• The uncertainty of the estimated shape is directly avail-
able due to the Gaussian state representation.

• RHMs are robust target models (see the simulations in
Section V and [8]). Precise shape approximations are
obtained even if the modeled shape does not coincide
exactly with the true shape. The only required target-
dependent information is the probability distribution of
the one-dimensional scaling factor.

IV. RHM FOR STAR-CONVEX SHAPES

In the following, a Random Hypersurface Model for track-
ing a full star-convex extended object is presented. For this
purpose, a star-convex shape is represented with a radial
function that specifies the distance from the center to the
boundary point for a given angle. By means of parameterizing
the radial function with Fourier coefficients [28], an efficient
Gaussian-assumed Bayesian state estimator that recursively
estimates the radial function and the center of the extended
object can be derived. For the sake of simplicity, we restrict our
discussion to two-dimensional space, generalization to higher
dimensions is straightforward.

A. Parametric Representation of Star-Convex Shapes

A star-shaped extended object S(p
k
) is represented in para-

metric form with the help of a so-called shape signature, which
is a one-dimensional function representing the shape bounds
[28]. In particular, a radial function r(φ) [28], [29], which
gives the distance from the center to a contour point depending
on the angle φ, is employed to get a polar representation of the
contour (see Fig. 4). This representation is suitable for RHMs
as it is restricted to star-convex shapes and the incorporation



of the scaling factor is easy (scaling the shape corresponds to
scaling the radial function).

If the radial function r(φ) is characterized by a parameter
vector bk and the center of the object is denoted with mk, the
complete shape parameter vector becomes p

k
=
[
bTk ,m

T
k

]T
and the extended object is given by

S(p
k
) = {s · r(bk, φ) · e(φ) +mk |

φ ∈ [0, 2π] and s ∈ [0, 1]} , (3)

where e(φ) :=

[
cos(φ)
sin(φ)

]
is the unit vector with angle φ. In this

work, the radial function [28] is expanded as Fourier series in
φ. However, in general other representations such as splines
[23] are also suitable. Assuming r(bk, φ) to be periodic in φ
with period [0, 2π], the Fourier series expansion of degree NF

becomes

r(bk, φ) =
a
(0)
k

2
+

∑
j=1...NF

a
(j)
k cos(jφ) + b

(j)
k sin(jφ) , (4)

where the parameter vector bk is given by

bk =
[
a
(0)
k , a

(1)
k , b

(1)
k , . . . a

(NF )
k , b

(NF )
k

]T
.

Note that (4) becomes linear in bk for fixed φ, i.e.,

r(bk, φ) = R(φ) · bk ,

where

R(φ) = [1, cos(φ), sin(φ), . . . , cos(NFφ), sin(NFφ)] .

Fourier coefficients with lower indices encode information
about the coarse features of the shape, while Fourier coeffi-
cients with higher indices give information about finer details.

Remark 3. As the uncertainty about the Fourier coefficients
is represented with a Gaussian distribution, a full uncertainty
description of the shape is available, e.g., it is easy to derive
sigma bounds for a shape estimate.

B. Bayesian State Estimator

Having defined a particular representation for a star-convex
extended object, the next step is to derive a recursive Bayesian
state estimator. With (1) and (3), the measurement equation
h(·, ·, ·) becomes

ŷ
k,l

= zk,l + vk,l

= sk,l · r(bk, φk,l) · e(φk,l) + mk + vk,l (5)
:= h(xk,vk,l, sk,l) ,

which maps the state xk, the measurement noise vk,l, and
the scaling factor sk,l to the measurement ŷ

k,l
. The term

φk,l denotes the (unknown) angle between the vector from
the center to the measurement source zk,l and the x-axis. If
r(bk, φk,l) becomes linear for given φk,l as in the case of
Fourier descriptors, the measurement equation turns out to be

ŷ
k,l

= sk,l ·R(φk,l) · bk · e(φk,l) + mk + vk,l . (6)

Unfortunately, the angle φk,l is unknown in (6). However, we
can substitute the unknown value of φk,l by a proper point
estimate. In general, a proper point estimate is given by the
most likely angle φk,l. In case of isotropic measurement noise,
a proper point estimate φk,l is given by the angle between the
vector from the current shape center estimate µm

k,l−1
to the

measurement ŷ
k,l

and the x-axis

φ̂k,l := ∠
(
ŷ
k,l
− µm

k,l−1
, ex

)
.

For a given measurement ŷ
k,l

, (6) can be seen as a constraint
on the values of xk, vk,l and sk,l, so that we can perform
algebraic manipulations on (6). Algebraic manipulations on
(6) can be used for reducing the influence of φ̂k,l on xk as
follows

ŷ
k,l
−mk = sk,l · e(φ̂k,l) ·R(φ̂k,l) · bk + vk,l ,

||ŷ
k,l
−mk||2 = s2k,l · ||R(φ̂k,l) · bk||2 + (7)

2sk,lR(φ̂k,l)bke(φ̂k,l)
Tvk,l + ||vk,l||2 .

Based on (7), the following new measurement equation
h∗(·, ·, ·, ·) is obtained

0 = h∗(xk,vk,l, sk,l, ŷk,l) (8)

= s2k,l · ||R(φ̂k,l) · bk||2 +

2sk,lR(φ̂k,l)bke(φ̂k,l)
Tvk,l + ||vk,l||2 −

||ŷ
k,l
−mk||2 ,

which maps the state xk, the measurement noise vk,l, the
scaling factor sk,l, and the measurement ŷ

k,l
to a pseudo-

measurement 0.
The obtained final measurement equation (8) only involves

quadratic terms and thus, is easy to handle with standard
filtering techniques: Given the density fk,l−1(xk) = N (xk −
µx
k,l−1

,Σx
k,l−1), the posterior density fk,l(xk) ≈ N (xk −

µx
k,l
,Σx

k,l) having received the measurement ŷ
k,l

can be cal-
culated by means of a Gaussian state estimator such as the
EKF [30] or the UKF [30]. A measurement update can even
be performed by means of analytic moment calculation as
described in [31] in order to obtain an optimal closed-form
measurement update. Naturally, also non-Gaussian estimators
could be used for performing Bayesian inference based on the
measurement equation (8). Note that the likelihood function
fL(ŷ

k,l
|xk) results from the measurement equation (8).

V. EVALUATION

An evaluation of RHMs for star-convex shapes is performed
in two scenarios: In the first scenario the shape of a fixed non-
moving extended object and a group is estimated. The second
scenario demonstrates the practicability of RHMs by means
of an extended object moving according to a constant velocity
model.
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Figure 5: Targets in the example.

A. Static Extended Object

In the following, a single target with a fixed position and
shape is considered, where 300 measurements are sequentially
received from the target. Simulations are performed with low
measurement noise level Σv

k,1 = diag(0.2, 0.2), medium noise
level Σv

k,1 = diag(0.4, 0.4), and high noise level Σv
k,1 =

diag(0.6, 0.6). Furthermore, an extended object of an aircraft-
like shape and a group target as depicted in Fig. 5 are used
in the simulations. The measurement sources are uniformly
drawn from the target surface in Fig. 5a and uniformly drawn
from the group members in Fig. 5b.

The shape of the targets is estimated with an RHM for star-
convex shapes implemented according to the procedure intro-
duced in Section IV-B and a UKF [30]. Herein, the radial func-
tion is represented with 15 Fourier descriptors and the scaling
factor is assumed to be Gaussian distributed with mean 0.7 and
variance 0.02 for both targets. The parameters of the shape are
a priori set to a Gaussian with mean

[
0.5, 0.5, 2, 0, . . . , 0

]T
and covariance matrix diag(0.4, 0.4, 0.3, 0.3, . . . , 0.3), i.e., an
uncertain circle with radius 2 and center

[
0.5, 0.5

]T
.

The parameters of the estimated shape are averaged over
20 Monte-Carlo runs. The resulting point estimates for the
target shapes are depicted in Fig. 6. Note that the uncertainty
of shapes has not been plotted. For getting an impression of
the magnitude of the measurement noise, the measurements
of a particular run are also given in Fig. 6. It is important
to note that this is just done for visualization. The estimator
incorporates the measurements recursively, because in practi-
cal applications the target state evolves over time. It can be
seen that for both targets the shape is estimated precisely with
an RHM. With increasing measurement noise, the details of
the shape slightly vanish. This is an intuitive result as with
low sensor resolution, details are harder to resolve and more
measurements are required. Hence, these examples show that
detailed object information can be extracted with RHMs for
star-convex shapes and that they are a robust target model.

B. Tracking a Moving Extended Object

In the second scenario, an extended object is tracked by
means of an RHM for star-convex objects and a constant
velocity model for the target motion. The extended object

moves along the trajectory depicted in Fig. 7. The number of
measurements received from the target is Poisson distributed
with mean 6 and the measurement noise is zero-mean Gaussian
with covariance matrix Σv

k,l = diag(0.2, 0.2).

The state to be tracked is xk =
[
pT
k
,xv

k,y
v
k

]T
, where[

xv
k,y

v
k

]T
is the velocity vector and p

k
are the shape param-

eters given by 15 Fourier descriptors and the center. As the
extended object is assumed to evolve according to a constant
velocity model, the system equation is xk+1 = Akxk + wk,

where Ak = diag(I15,A
cv
k ) with Acv

k =

[
1 0 T 0
0 1 0 T

]
and I15 is the identity matrix of dimension 15. The system
noise is zero-mean Gaussian noise with covariance matrix

Cw
k = diag(0.03 ·I15,Ccv

k ) with Ccv
k = q

[
T 3

3 I2
T 2

2 I2
T 2

2 I2 T I2

]
and

q = 0.3. Hence, the center of the object evolves according
to a constant velocity model and the shape parameters are
just made more uncertain over time in order to capture shape
changes. Again, the shape of the target is tracked with an
RHM for star-convex extended objects and a UKF [30] for
the measurement update according to (8). The scaling factor
is Gaussian distributed with mean 0.7 and variance 0.02. The
estimated shape (averaged over 20 time steps) is depicted
in Fig. 7 for two snippets of the trajectory. It can be seen
that the shape of the extended object is tracked well, even
when the shape changes its orientation. In Fig. 7, the example
measurements show that naı̈ve approaches for estimating a
shape would be bound to fail, e.g., directly computing an
enclosing shape of the measurements is infeasible as the mea-
surements are noise-corrupted, and only a few measurements
may be available per time step. It is even possible that only
one measurement per time step is available. Altogether, this
scenario demonstrates that RHMs are suitable for tracking the
star-convex shape of a moving extended object by means of
constant velocity model.

VI. CONCLUSIONS AND FUTURE WORK

This work presented a Bayesian tracking algorithm for star-
convex shapes of extended targets based on an RHM. The
approach allows for tracking detailed shape information while
being computationally tractable at the same time. Simulation
results have shown the practicability of the approach.

The capability of estimating detailed shape information
paves the way for new possibilities concerning entire tracking
systems: For instance, a mechanism for adapting the complex-
ity of the used shape description is required. In case of high
measurement noise and high kinematic noise, only a rather
coarse description of the target can be inferred. Furthermore,
only the size and orientation of a target can be tracked if the
shape is known. Finally, detailed shape information are useful
for, e.g., target classification and track management. RHMs
can also be embedded into multi-target tracking algorithms in
order to track multi-extended objects.
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Figure 6: Example measurements for a particular run and point estimates for the shape (averaged over 20 runs).
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