466 research outputs found

    Dimensional verification and correction of five-axis numerically controlled milling tool paths

    Get PDF
    A system of algorithms is presented for material removal simulation, automatic dimensional verification and integrated error correction of numerically controlled (NC) milling tool paths. Several different approaches to these problems have been proposed including direct solid modeling, discrete vector intersection, and spatial partitioning. However, each of these methods suffer inherent restrictions that limit their practical application. This dissertation presents a discrete dexel NC verification algorithm based on a spatial partitioning technique (dexel representation) which incorporates the advantages of the discrete vector intersection approach. Hence, real-time animated five-axis milling simulation is supported by efficient regularized Boolean set operations, and dimensional milling errors are verified simultaneously with the simulation process. Based on intermediate dimensional verification results, a reduction of intersection volume algorithm is developed to eliminate detected gouges on the part surface. In addition, a technique for detection and elimination of unexpected collisions between the tool assembly and the workpiece is developed. These combined algorithms automatically correct tool paths to avoid gouges and collisions resulting in tool paths that are ready for immediate industrial application. A major disadvantage of dexel-based spatial partitioning, as originally proposed, is view dependency, i.e., dexels are constructed along a specific viewing vector so reconstruction of dexels is required for each new viewing direction. To overcome this problem, a contour display method is developed to transform dexel-based objects into a set of parallel planar contours thus enabling dynamic viewing transformations. In summary, this dissertation describes a unique hybrid approach to NC milling verification which provides for efficient, accurate and automatic assessment and correction of five-axis milling tool paths

    NC Milling Error Assessment and Tool Path Correction

    Get PDF
    A system of algorithms is presented for material removal simulation, dimensional error assessment and automated correction of Þve-axis numerically controlled (NC) milling tool paths. The methods are based on a spatial partitioning technique which incorporates incremental proximity calculations between milled and design surfaces. Hence, in addition to real-time animated Þve-axis milling simulation, milling errors are measured and displayed simultaneously. Using intermediate error assessment results, a reduction of intersection volume algorithm is developed to eliminate gouges on the workpiece via tool path correction. Finally, the view dependency typical of previous spatial partitioning-based NC simulation methods is overcome by a contour display technique which generates parallel planar contours to represent the workpiece, thus enabling dynamic viewing transformations without reconstruction of the entire data structure

    Development of an Atlas-Based Segmentation of Cranial Nerves Using Shape-Aware Discrete Deformable Models for Neurosurgical Planning and Simulation

    Get PDF
    Twelve pairs of cranial nerves arise from the brain or brainstem and control our sensory functions such as vision, hearing, smell and taste as well as several motor functions to the head and neck including facial expressions and eye movement. Often, these cranial nerves are difficult to detect in MRI data, and thus represent problems in neurosurgery planning and simulation, due to their thin anatomical structure, in the face of low imaging resolution as well as image artifacts. As a result, they may be at risk in neurosurgical procedures around the skull base, which might have dire consequences such as the loss of eyesight or hearing and facial paralysis. Consequently, it is of great importance to clearly delineate cranial nerves in medical images for avoidance in the planning of neurosurgical procedures and for targeting in the treatment of cranial nerve disorders. In this research, we propose to develop a digital atlas methodology that will be used to segment the cranial nerves from patient image data. The atlas will be created from high-resolution MRI data based on a discrete deformable contour model called 1-Simplex mesh. Each of the cranial nerves will be modeled using its centerline and radius information where the centerline is estimated in a semi-automatic approach by finding a shortest path between two user-defined end points. The cranial nerve atlas is then made more robust by integrating a Statistical Shape Model so that the atlas can identify and segment nerves from images characterized by artifacts or low resolution. To the best of our knowledge, no such digital atlas methodology exists for segmenting nerves cranial nerves from MRI data. Therefore, our proposed system has important benefits to the neurosurgical community

    Modeling of the Turbine Rotor Journal Restoration on Horizontal Balancing Machines

    Get PDF
    AbstractDuring the normal operational life of a turbine, its rotor journal seating surfaces are wearing and therefore, repair operations, including turning and grinding of such surfaces and next rotor balancing on the balancing machines, are carried out. Traditional turbine rotors machining is provided by fixing them through the centers and demands the corresponding large size machine tools and the strategy «machine tool to rotor» is often used. To minimize mobilization and transportation cost, the problem of the turbine rotor restoration by using centerless grinding technique on the lightweight horizontal balancing machines is resolved. A computer simulation model of such grinding with workpieces located on their machining surfaces is presented. To validate the approaches, a proposed computer simulation was carried out. Theoretical and computational investigations demonstrate that the deviation from the roundness of a workpiece may be reduced from the initial value of half a millimeter to a final value of 10 micrometers by using a special location of cutting tools

    Haptics-based Modeling and Simulation of Micro-Implants Surgery

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Automated CNC Tool Path Planning and Machining Simulation on Highly Parallel Computing Architectures

    Get PDF
    This work has created a completely new geometry representation for the CAD/CAM area that was initially designed for highly parallel scalable environment. A methodology was also created for designing highly parallel and scalable algorithms that can use the developed geometry representation. The approach used in this work is to move parallel algorithm design complexity from an algorithm level to a data representation level. As a result the developed methodology allows an easy algorithm design without worrying too much about the underlying hardware. However, the developed algorithms are still highly parallel because the underlying geometry model is highly parallel. For validation purposes, the developed methodology and geometry representation were used for designing CNC machine simulation and tool path planning algorithms. Then these algorithms were implemented and tested on a multi-GPU system. Performance evaluation of developed algorithms has shown great parallelizability and scalability; and that main algorithm properties are required for modern highly parallel environment. It was also proved that GPUs are capable of performing work an order of magnitude faster than traditional central processors. The last part of the work demonstrates how high performance that comes with highly parallel hardware can be used for development of a next level of automated CNC tool path planning systems. As a proof of concept, a fully automated tool path planning system capable of generating valid G-code programs for 5-axis CNC milling machines was developed. For validation purposes, the developed system was used for generating tool paths for some parts and results were used for machining simulation and experimental machining. Experimental results have proved from one side that the developed system works. And from another side, that highly parallel hardware brings computational resources for algorithms that were not even considered before due to computational requirements, but can provide the next level of automation for modern manufacturing systems

    Modeling and rendering for development of a virtual bone surgery system

    Get PDF
    A virtual bone surgery system is developed to provide the potential of a realistic, safe, and controllable environment for surgical education. It can be used for training in orthopedic surgery, as well as for planning and rehearsal of bone surgery procedures...Using the developed system, the user can perform virtual bone surgery by simultaneously seeing bone material removal through a graphic display device, feeling the force via a haptic deice, and hearing the sound of tool-bone interaction --Abstract, page iii
    corecore