526 research outputs found

    Coding gain in paraunitary analysis/synthesis systems

    Get PDF
    A formal proof that bit allocation results hold for the entire class of paraunitary subband coders is presented. The problem of finding an optimal paraunitary subband coder, so as to maximize the coding gain of the system, is discussed. The bit allocation problem is analyzed for the case of the paraunitary tree-structured filter banks, such as those used for generating orthonormal wavelets. The even more general case of nonuniform filter banks is also considered. In all cases it is shown that under optimal bit allocation, the variances of the errors introduced by each of the quantizers have to be equal. Expressions for coding gains for these systems are derived

    A class of M-Channel linear-phase biorthogonal filter banks and their applications to subband coding

    Get PDF
    This correspondence presents a new factorization for linearphase biorthogonal perfect reconstruction (PR) FIR filter banks. Using this factorization, we propose a new family of lapped transform called the generalized lapped transform (GLT). Since the analysis and synthesis filters of the GLT are not restricted to be the time reverses of each other, they can offer more freedom to avoid blocking artifacts and improve coding gain in subband coding applications. The GLT is found to have higher coding gain and smoother synthesis basis functions than the lapped orthogonal transform (LOT). Simulation results also demonstrated that the GLT has significantly less blocking artifacts, higher peak signal-tonoise ratio (PSNR), and better visual quality than the LOT in image coding. Simplified GLT with different complexity/performance tradeoff is also studied. © 1999 IEEE.published_or_final_versio

    Linear phase paraunitary filter banks: theory, factorizations and designs

    Get PDF
    M channel maximally decimated filter banks have been used in the past to decompose signals into subbands. The theory of perfect-reconstruction filter banks has also been studied extensively. Nonparaunitary systems with linear phase filters have also been designed. In this paper, we study paraunitary systems in which each individual filter in the analysis synthesis banks has linear phase. Specific instances of this problem have been addressed by other authors, and linear phase paraunitary systems have been shown to exist. This property is often desirable for several applications, particularly in image processing. We begin by answering several theoretical questions pertaining to linear phase paraunitary systems. Next, we develop a minimal factorizdion for a large class of such systems. This factorization will be proved to be complete for even M. Further, we structurally impose the additional condition that the filters satisfy pairwise mirror-image symmetry in the frequency domain. This significantly reduces the number of parameters to be optimized in the design process. We then demonstrate the use of these filter banks in the generation of M-band orthonormal wavelets. Several design examples are also given to validate the theory

    Coding gain in paraunitary analysis/synthesis systems

    Full text link

    Scalable and perceptual audio compression

    Get PDF
    This thesis deals with scalable perceptual audio compression. Two scalable perceptual solutions as well as a scalable to lossless solution are proposed and investigated. One of the scalable perceptual solutions is built around sinusoidal modelling of the audio signal whilst the other is built on a transform coding paradigm. The scalable coders are shown to scale both in a waveform matching manner as well as a psychoacoustic manner. In order to measure the psychoacoustic scalability of the systems investigated in this thesis, the similarity between the original signal\u27s psychoacoustic parameters and that of the synthesized signal are compared. The psychoacoustic parameters used are loudness, sharpness, tonahty and roughness. This analysis technique is a novel method used in this thesis and it allows an insight into the perceptual distortion that has been introduced by any coder analyzed in this manner

    Cyclic LTI systems in digital signal processing

    Get PDF
    Cyclic signal processing refers to situations where all the time indices are interpreted modulo some integer L. In such cases, the frequency domain is defined as a uniform discrete grid (as in L-point DFT). This offers more freedom in theoretical as well as design aspects. While circular convolution has been the centerpiece of many algorithms in signal processing for decades, such freedom, especially from the viewpoint of linear system theory, has not been studied in the past. In this paper, we introduce the fundamentals of cyclic multirate systems and filter banks, presenting several important differences between the cyclic and noncyclic cases. Cyclic systems with allpass and paraunitary properties are studied. The paraunitary interpolation problem is introduced, and it is shown that the interpolation does not always succeed. State-space descriptions of cyclic LTI systems are introduced, and the notions of reachability and observability of state equations are revisited. It is shown that unlike in traditional linear systems, these two notions are not related to the system minimality in a simple way. Throughout the paper, a number of open problems are pointed out from the perspective of the signal processor as well as the system theorist

    Unified Theory for Biorthogonal Modulated Filter Banks

    Get PDF
    Modulated filter banks (MFBs) are practical signal decomposition tools for M -channel multirate systems. They combine high subfilter selectivity with efficient realization based on polyphase filters and block transforms. Consequently, the O(M 2 ) burden of computations in a general filter bank (FB) is reduced to O(M log2 M ) - the latter being a complexity order comparable with the FFT-like transforms.Often hiding from the plain sight, these versatile digital signal processing tools have important role in various professional and everyday life applications of information and communications technology, including audiovisual communications and media storage (e.g., audio codecs for low-energy music playback in portable devices, as well as communication waveform processing and channelization). The algorithmic efficiency implies low cost, small size, and extended battery life, bringing the devices close to our skins.The main objective of this thesis is to formulate a generalized and unified approach to the MFBs, which includes, in addition to the deep theoretical background behind these banks, both their design by using appropriate optimization techniques and efficient algorithmic realizations. The FBs discussed in this thesis are discrete-time time-frequency decomposition/reconstruction, or equivalently, analysis-synthesis systems, where the subfilters are generated through modulation from either a single or two prototype filters. The perfect reconstruction (PR) property is a particularly important characteristics of the MFBs and this is the core theme of this thesis. In the presented biorthogonal arbitrary-delay exponentially modulated filter bank (EMFB), the PR property can be maintained also for complex-valued signals.The EMFB concept is quite flexible, since it may respond to the various requirements given to a subband processing system: low-delay PR prototype design, subfilters having symmetric impulse responses, efficient algorithms, and the definition covers odd and even-stacked cosine-modulated FBs as special cases. Oversampling schemes for the subsignals prove out to be advantageous in subband processing problems requiring phase information about the localized frequency components. In addition, the MFBs have strong connections with the lapped transform (LT) theory, especially with the class of LTs grounded in parametric window functions.<br/
    • …
    corecore