2,974 research outputs found

    Extended Topological Metrics for the Analysis of Power Grid Vulnerability

    No full text
    Vulnerability analysis in power systems is a key issue in modern society and many efforts have contributed to the analysis. Recently, complex networks metrics, applied to assess the topological vulnerability of networked systems, have been used in power grids, such as the betweenness centrality. These metrics may be useful for analyzing the topological vulnerability of power systems because of a close link between their topological structure and physical behavior. However, a pure topological approach fails to capture the electrical specificity of power grids. For this reason, an extended topological method has been proposed by incorporating several electrical features, such as electrical distance, power transfer distribution, and line flow limits, into the pure topological metrics. Starting from the purely topological concept of complex networks, this paper defines an extended betweenness centrality which considers the characteristics of power grids and can measure the local importance of the elements in power grids. The line extended betweenness is compared with the topological betweenness and with the averaged power flow on each line over various operational states in the Italian power grid. The results show that the extended betweenness is superior to topological betweenness in the identification of critical components in power grids and at the same time could be a complementary tool to efficiently enhance vulnerability analysis based on electrical engineering method

    Structural Vulnerability Analysis of Electric Power Distribution Grids

    Full text link
    Power grid outages cause huge economical and societal costs. Disruptions in the power distribution grid are responsible for a significant fraction of electric power unavailability to customers. The impact of extreme weather conditions, continuously increasing demand, and the over-ageing of assets in the grid, deteriorates the safety of electric power delivery in the near future. It is this dependence on electric power that necessitates further research in the power distribution grid security assessment. Thus measures to analyze the robustness characteristics and to identify vulnerabilities as they exist in the grid are of utmost importance. This research investigates exactly those concepts- the vulnerability and robustness of power distribution grids from a topological point of view, and proposes a metric to quantify them with respect to assets in a distribution grid. Real-world data is used to demonstrate the applicability of the proposed metric as a tool to assess the criticality of assets in a distribution grid

    Adjacent Graph Based Vulnerability Assessment for Electrical Networks Considering Fault Adjacent Relationships Among Branches

    Get PDF
    Security issues related to vulnerability assessment in electrical networks are necessary for operators to identify the critical branches. At present, using complex network theory to assess the structural vulnerability of the electrical network is a popular method. However, the complex network theory cannot be comprehensively applicable to the operational vulnerability assessment of the electrical network because the network operation is closely dependent on the physical rules not only on the topological structure. To overcome the problem, an adjacent graph (AG) considering the topological, physical, and operational features of the electrical network is constructed to replace the original network. Through the AG, a branch importance index that considers both the importance of a branch and the fault adjacent relationships among branches is constructed to evaluate the electrical network vulnerability. The IEEE 118-bus system and the French grid are employed to validate the effectiveness of the proposed method.National Natural Science Foundation of China under Grant U1734202National Key Research and Development Plan of China under Grant 2017YFB1200802-12National Natural Science Foundation of China under Grant 51877181National Natural Science Foundation of China under Grant 61703345Chinese Academy of Sciences, under Grant 2018-2019-0

    Network hierarchy evolution and system vulnerability in power grids

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The seldom addressed network hierarchy property and its relationship with vulnerability analysis for power transmission grids from a complex-systems point of view are given in this paper. We analyze and compare the evolution of network hierarchy for the dynamic vulnerability evaluation of four different power transmission grids of real cases. Several meaningful results suggest that the vulnerability of power grids can be assessed by means of a network hierarchy evolution analysis. First, the network hierarchy evolution may be used as a novel measurement to quantify the robustness of power grids. Second, an antipyramidal structure appears in the most robust network when quantifying cascading failures by the proposed hierarchy metric. Furthermore, the analysis results are also validated and proved by empirical reliability data. We show that our proposed hierarchy evolution analysis methodology could be used to assess the vulnerability of power grids or even other networks from a complex-systems point of view.Peer ReviewedPostprint (author's final draft

    Spatial and performance optimality in power distribution networks

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Complex network theory has been widely used in vulnerability analysis of power networks, especially for power transmission ones. With the development of the smart grid concept, power distribution networks are becoming increasingly relevant. In this paper, we model power distribution systems as spatial networks. Topological and spatial properties of 14 European power distribution networks are analyzed, together with the relationship between geographical constraints and performance optimization, taking into account economic and vulnerability issues. Supported by empirical reliability data, our results suggest that power distribution networks are influenced by spatial constraints which clearly affect their overall performance.Peer ReviewedPostprint (author's final draft

    A Topological Investigation of Phase Transitions of Cascading Failures in Power Grids

    Full text link
    Cascading failures are one of the main reasons for blackouts in electric power transmission grids. The economic cost of such failures is in the order of tens of billion dollars annually. The loading level of power system is a key aspect to determine the amount of the damage caused by cascading failures. Existing studies show that the blackout size exhibits phase transitions as the loading level increases. This paper investigates the impact of the topology of a power grid on phase transitions in its robustness. Three spectral graph metrics are considered: spectral radius, effective graph resistance and algebraic connectivity. Experimental results from a model of cascading failures in power grids on the IEEE power systems demonstrate the applicability of these metrics to design/optimize a power grid topology for an enhanced phase transition behavior of the system
    • …
    corecore