9,626 research outputs found

    A Cyclic Proof System for Full Computation Tree Logic

    Get PDF
    Full Computation Tree Logic, commonly denoted CTL*, is the extension of Linear Temporal Logic LTL by path quantification for reasoning about branching time. In contrast to traditional Computation Tree Logic CTL, the path quantifiers are not bound to specific linear modalities, resulting in a more expressive language. We present a sound and complete hypersequent calculus for CTL*. The proof system is cyclic in the sense that proofs are finite derivation trees with back-edges. A syntactic success condition on non-axiomatic leaves guarantees soundness. Completeness is established by relating cyclic proofs to a natural ill-founded sequent calculus for the logic

    Hybrid Branching-Time Logics

    Full text link
    Hybrid branching-time logics are introduced as extensions of CTL-like logics with state variables and the downarrow-binder. Following recent work in the linear framework, only logics with a single variable are considered. The expressive power and the complexity of satisfiability of the resulting logics is investigated. As main result, the satisfiability problem for the hybrid versions of several branching-time logics is proved to be 2EXPTIME-complete. These branching-time logics range from strict fragments of CTL to extensions of CTL that can talk about the past and express fairness-properties. The complexity gap relative to CTL is explained by a corresponding succinctness result. To prove the upper bound, the automata-theoretic approach to branching-time logics is extended to hybrid logics, showing that non-emptiness of alternating one-pebble Buchi tree automata is 2EXPTIME-complete.Comment: An extended abstract of this paper was presented at the International Workshop on Hybrid Logics (HyLo 2007

    First-Order and Temporal Logics for Nested Words

    Get PDF
    Nested words are a structured model of execution paths in procedural programs, reflecting their call and return nesting structure. Finite nested words also capture the structure of parse trees and other tree-structured data, such as XML. We provide new temporal logics for finite and infinite nested words, which are natural extensions of LTL, and prove that these logics are first-order expressively-complete. One of them is based on adding a "within" modality, evaluating a formula on a subword, to a logic CaRet previously studied in the context of verifying properties of recursive state machines (RSMs). The other logic, NWTL, is based on the notion of a summary path that uses both the linear and nesting structures. For NWTL we show that satisfiability is EXPTIME-complete, and that model-checking can be done in time polynomial in the size of the RSM model and exponential in the size of the NWTL formula (and is also EXPTIME-complete). Finally, we prove that first-order logic over nested words has the three-variable property, and we present a temporal logic for nested words which is complete for the two-variable fragment of first-order.Comment: revised and corrected version of Mar 03, 201

    Modal mu-calculi

    Get PDF

    Model Checking Dynamic-Epistemic Spatial Logic

    Get PDF
    In this paper we focus on Dynamic Spatial Logic, the extension of Hennessy-Milner logic with the parallel operator. We develop a sound complete Hilbert-style axiomatic system for it comprehending the behavior of spatial operators in relation with dynamic/temporal ones. Underpining on a new congruence we define over the class of processes - the structural bisimulation - we prove the finite model property for this logic that provides the decidability for satisfiability, validity and model checking against process semantics. Eventualy we propose algorithms for validity, satisfiability and model checking

    Two-Way Unary Temporal Logic over Trees

    Full text link
    We consider a temporal logic EF+F^-1 for unranked, unordered finite trees. The logic has two operators: EF\phi, which says "in some proper descendant \phi holds", and F^-1\phi, which says "in some proper ancestor \phi holds". We present an algorithm for deciding if a regular language of unranked finite trees can be expressed in EF+F^-1. The algorithm uses a characterization expressed in terms of forest algebras.Comment: 29 pages. Journal version of a LICS 07 pape

    Expressiveness of the modal mu-calculus on monotone neighborhood structures

    Full text link
    We characterize the expressive power of the modal mu-calculus on monotone neighborhood structures, in the style of the Janin-Walukiewicz theorem for the standard modal mu-calculus. For this purpose we consider a monadic second-order logic for monotone neighborhood structures. Our main result shows that the monotone modal mu-calculus corresponds exactly to the fragment of this second-order language that is invariant for neighborhood bisimulations

    In the Maze of Data Languages

    Full text link
    In data languages the positions of strings and trees carry a label from a finite alphabet and a data value from an infinite alphabet. Extensions of automata and logics over finite alphabets have been defined to recognize data languages, both in the string and tree cases. In this paper we describe and compare the complexity and expressiveness of such models to understand which ones are better candidates as regular models
    corecore