258 research outputs found

    Enhancing Expressiveness of Speech through Animated Avatars for Instant Messaging and Mobile Phones

    Get PDF
    This thesis aims to create a chat program that allows users to communicate via an animated avatar that provides believable lip-synchronization and expressive emotion. Currently many avatars do not attempt to do lip-synchronization. Those that do are not well synchronized and have little or no emotional expression. Most avatars with lip synch use realistic looking 3D models or stylized rendering of complex models. This work utilizes images rendered in a cartoon style and lip-synchronization rules based on traditional animation. The cartoon style, as opposed to a more realistic look, makes the mouth motion more believable and the characters more appealing. The cartoon look and image-based animation (as opposed to a graphic model animated through manipulation of a skeleton or wireframe) also allows for fewer key frames resulting in faster speed with more room for expressiveness. When text is entered into the program, the Festival Text-to-Speech engine creates a speech file and extracts phoneme and phoneme duration data. Believable and fluid lip-synchronization is then achieved by means of a number of phoneme-to-image rules. Alternatively, phoneme and phoneme duration data can be obtained for speech dictated into a microphone using Microsoft SAPI and the CSLU Toolkit. Once lip synchronization has been completed, rules for non-verbal animation are added. Emotions are appended to the animation of speech in two ways: automatically, by recognition of key words and punctuation, or deliberately, by user-defined tags. Additionally, rules are defined for idle-time animation. Preliminary results indicate that the animated avatar program offers an improvement over currently available software. It aids in the understandability of speech, combines easily recognizable and expressive emotions with speech, and successfully enhances overall enjoyment of the chat experience. Applications for the program include use in cell phones for the deaf or hearing impaired, instant messaging, video conferencing, instructional software, and speech and animation synthesis

    HCI for the deaf community: developing human-like avatars for sign language synthesis

    Get PDF
    With ever increasing computing power and advances in 3D animation technologies it is no surprise that 3D avatars for sign language (SL) generation are advancing too. Traditionally these avatars have been driven by somewhat expensive and inflexible motion capture technologies and perhaps this is the reason avatars do not feature in all but a few user interfaces (UIs). SL synthesis is a competing technology that is less costly, more versatile and may prove to be the answer to the current lack of access for the Deaf in HCI. This paper outlines the current state of the art in SL synthesis for HCI and how we propose to advance this by improving avatar quality and realism with a view to ameliorating communication and computer interaction for the Deaf community as part of a wider localisation project

    The influence of dynamics and speech on understanding humanoid facial expressions

    Get PDF
    Human communication relies mostly on nonverbal signals expressed through body language. Facial expressions, in particular, convey emotional information that allows people involved in social interactions to mutually judge the emotional states and to adjust its behavior appropriately. First studies aimed at investigating the recognition of facial expressions were based on static stimuli. However, facial expressions are rarely static, especially in everyday social interactions. Therefore, it has been hypothesized that the dynamics inherent in a facial expression could be fundamental in understanding its meaning. In addition, it has been demonstrated that nonlinguistic and linguistic information can contribute to reinforce the meaning of a facial expression making it easier to be recognized. Nevertheless, few studies have been performed on realistic humanoid robots. This experimental work aimed at demonstrating the human-like expressive capability of a humanoid robot by examining whether the effect of motion and vocal content influenced the perception of its facial expressions. The first part of the experiment aimed at studying the recognition capability of two kinds of stimuli related to the six basic expressions (i.e. anger, disgust, fear, happiness, sadness, and surprise): static stimuli, that is, photographs, and dynamic stimuli, that is, video recordings. The second and third parts were focused on comparing the same six basic expressions performed by a virtual avatar and by a physical robot under three different conditions: (1) muted facial expressions, (2) facial expressions with nonlinguistic vocalizations, and (3) facial expressions with an emotionally neutral verbal sentence. The results show that static stimuli performed by a human being and by the robot were more ambiguous than the corresponding dynamic stimuli on which motion and vocalization were associated. This hypothesis has been also investigated with a 3-dimensional replica of the physical robot demonstrating that even in case of a virtual avatar, dynamic and vocalization improve the emotional conveying capability

    RRL: A Rich Representation Language for the Description of Agent Behaviour in NECA

    Get PDF
    In this paper, we describe the Rich Representation Language (RRL) which is used in the NECA system. The NECA system generates interactions between two or more animated characters. The RRL is a formal framework for representing the information that is exchanged at the interfaces between the various NECA system modules

    A framework for human-like behavior in an immersive virtual world

    Get PDF
    Just as readers feel immersed when the story-line adheres to their experiences, users will more easily feel immersed in a virtual environment if the behavior of the characters in that environment adheres to their expectations, based on their life-long observations in the real world. This paper introduces a framework that allows authors to establish natural, human-like behavior, physical interaction and emotional engagement of characters living in a virtual environment. Represented by realistic virtual characters, this framework allows people to feel immersed in an Internet based virtual world in which they can meet and share experiences in a natural way as they can meet and share experiences in real life. Rather than just being visualized in a 3D space, the virtual characters (autonomous agents as well as avatars representing users) in the immersive environment facilitate social interaction and multi-party collaboration, mixing virtual with real

    Life-Sized Audiovisual Spatial Social Scenes with Multiple Characters: MARC & SMART-I²

    No full text
    International audienceWith the increasing use of virtual characters in virtual and mixed reality settings, the coordination of realism in audiovisual rendering and expressive virtual characters becomes a key issue. In this paper we introduce a new system combining two systems for tackling the issue of realism and high quality in audiovisual rendering and life-sized expressive characters. The goal of the resulting SMART-MARC platform is to investigate the impact of realism on multiple levels: spatial audiovisual rendering of a scene, appearance and expressive behaviors of virtual characters. Potential interactive applications include mediated communication in virtual worlds, therapy, game, arts and elearning. Future experimental studies will focus on 3D audio/visual coherence, social perception and ecologically valid interaction scenes

    Growing the use of Virtual Worlds in education : an OpenSim perspective

    Get PDF
    The growth in the range of disciplines that Virtual Worlds support for educational purposes is evidenced by recent applications in the fields of cultural heritage, humanitarian aid, space exploration, virtual laboratories in the physical sciences, archaeology, computer science and coastal geography. This growth is due in part to the flexibility of OpenSim, the open source virtual world platform which by adopting Second Life protocols and norms has created a de facto standard for open virtual worlds that is supported by a growing number of third party open source viewers. Yet while this diversity of use-cases is impressive and Virtual Worlds for open learning are highly popular with lecturers and learners alike immersive education remains an essentially niche activity. This paper identifies functional challenges in terms of Management, Network Infrastructure, the Immersive 3D Web and Programmability that must be addressed to enable the wider adoption of Open Virtual Worlds as a routine learning technology platform. We refer to specific use-cases based on OpenSim and abstract generic requirements which should be met to enable the growth in use of Open Virtual Worlds as a mainstream educational facility. A case study of a deployment to support a formal education curriculum and associated informal learning is used to illustrate key points.Postprin
    corecore