8,659 research outputs found

    An Object-Oriented Model for Extensible Concurrent Systems: the Composition-Filters Approach

    Get PDF
    Applying the object-oriented paradigm for the development of large and complex software systems offers several advantages, of which increased extensibility and reusability are the most prominent ones. The object-oriented model is also quite suitable for modeling concurrent systems. However, it appears that extensibility and reusability of concurrent applications is far from trivial. The problems that arise, the so-called inheritance anomalies are analyzed and presented in this paper. A set of requirements for extensible concurrent languages is formulated. As a solution to the identified problems, an extension to the object-oriented model is presented; composition filters. Composition filters capture messages and can express certain constraints and operations on these messages, for example buffering. In this paper we explain the composition filters approach, demonstrate its expressive power through a number of examples and show that composition filters do not suffer from the inheritance anomalies and fulfill the requirements that were established

    A flexible framework for defeasible logics

    Get PDF
    Logics for knowledge representation suffer from over-specialization: while each logic may provide an ideal representation formalism for some problems, it is less than optimal for others. A solution to this problem is to choose from several logics and, when necessary, combine the representations. In general, such an approach results in a very difficult problem of combination. However, if we can choose the logics from a uniform framework then the problem of combining them is greatly simplified. In this paper, we develop such a framework for defeasible logics. It supports all defeasible logics that satisfy a strong negation principle. We use logic meta-programs as the basis for the framework.Comment: Proceedings of 8th International Workshop on Non-Monotonic Reasoning, April 9-11, 2000, Breckenridge, Colorad

    Active artefact management for distributed software engineering

    Get PDF
    We describe a software artefact repository that provides its contents with some awareness of their own creation. "Active" artefacts are distinguished from their passive counterparts by their enriched meta-data model which reflects the work-flow process that created them, the actors responsible, the actions taken to change the artefact, and various other pieces of organisational knowledge. This enriched view of an artefact is intended to support re-use of both software and the expertise gained when creating the software. Unlike other organisational knowledge systems, the meta-data is intrinsically part of the artefact and may be populated automatically from sources including existing data-format specific information, user supplied data and records of communication. Such a system is of increased importance in the world of "virtual teams" where transmission of vital organisational knowledge, at best difficult, is further constrained by the lack of direct contact between engineers and differing development cultures
    corecore