
Active Artefact Management for Distributed Software Engineering

Cornelia Boldyreff David Nutter
Research Institue for Software Evolution

Department of Computer Science
University Of Durham, UK�

cornelia.boldyreff,david.nutter,stephen.rank �
@durham.ac.uk

Stephen Rank

Abstract

We describe a software artefact repository that pro-
vides its contents with some awareness of their own cre-
ation. “Active” artefacts are distinguished from their pas-
sive counterparts by their enriched meta-data model which
reflects the work-flow process that created them, the actors
responsible, the actions taken to change the artefact, and
various other pieces of organisational knowledge. This en-
riched view of an artefact is intended to support re-use of
both software and the expertise gained when creating the
software. Unlike other organisational knowledge systems,
the meta-data is intrinsically part of the artefact and may
be populated automatically from sources including existing
data-format specific information, user supplied data and
records of communication.

Such a system is of increased importance in the world of
“virtual teams” where transmission of vital organisational
knowledge, at best difficult, is further constrained by the
lack of direct contact between engineers and differing de-
velopment cultures.

1 Introduction

The GENESIS environment is intended to support dis-
tributed software engineering by providing a lightweight
process-agnostic tool-set incorporating work-flow descrip-
tion and enactment, agent-based interaction between clients
and an artefact management system, OSCAR [16]. The en-
vironment shall be released as Open Source Software at the
end of the first development cycle.

In this paper we discuss only the artefact management
subsystem in GENESIS. This paper considers the notion of
active software artefacts in Section 2 and in Section 3 pro-
poses an architecture for the distributed repository system
that shall be developed to manage them. As GENESIS is

in the early stages of development only high-level require-
ments and goals are considered.

2 Introducing the Active Artefact

OSCAR active artefacts consist of two major compo-
nents: the meta-data that describes their properties and the
artefact data which contains the full data (source code etc.)
described. Software artefacts naturally consist of more than
just software code; they include items produced in all parts
of the software process, both informal and formal and much
conceptual information that aids comprehension [10]. A
similar notion for software code alone is the concept of Lit-
erate Programming [15] which aims to combine software
code with its documentation and other useful information
to ensure that documentation is updated alongside the soft-
ware. The change in practice required when employing lit-
erate programming is large and therefore active artefacts
aim to provide some of the benefits (traceability, rationale
capture etc.) without additional overhead.

Alongside such traditional software engineering support
processes as configuration management and version con-
trol, the active artefact is intended to facilitate re-use and
transmission of organisational knowledge between engi-
neers working with the artefact and consequently greater
productivity through collaborative learning [17]. To this
end the artefact shall record and present process informa-
tion including the actors responsible for changes and, if de-
sired, the rationale associated with those changes. Other
presence information shall be stored with the intention of
encouraging encounters between engineers interested in the
same artefact; a similar goal to that described by Boyer et
al [5]. This information will be largely retrospective as it
shall be gathered by monitoring user activities.

The relationships between artefacts and between the
tools used to manipulate them shall be recorded to allow a
consistent approach to working with the artefact. Any dis-

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cussion or informal communication about artefacts shall be
recorded as annotations

The artefact structure may be extended to add or spe-
cialise properties and add additional structural information.
An open data format such as XML shall be used when
exposing the artefacts to the outside world, allowing easy
transformation of artefacts to other data types. To this end
artefact properties should be extensible and inheritable. All
artefacts shall be specialised from an abstract base type de-
scribing various general properties that all artefacts have.
Artefacts may also be defined recursively (one artefact con-
taining several sub-artefacts) allowing inheritance of prop-
erties from the parent artefact. Active artefacts should be
largely independent of their underlying storage mechanism;
in particular export/import of data from existing systems
should be possible albeit with the risk of losing some of
the artefact’s functionality. Finally, artefacts may be manip-
ulated by both human and machine actors within GENESIS.
This requirement obviously places some constraints on the
structuring of the artefact to ensure they are comprehensible
to both.

2.1 Example

To illustrate how we envisage active artefacts behaving,
consider the example of a software component providing a
GUI widget. Below the properties of the component when
encoded in each of the two artefact forms are compared:

A passive artefact merely contains the software code,
change information and documentation including simple
usage examples and may be spread over several distinct
files. In addition to this the active artefact records logs
of who and what has accessed the artefact and (if possible)
their purpose in doing so, any informal notes they added
during the access and any metrics output related to the arte-
fact.

Active artefacts also possess links to process information
and related artefacts in the manner of the Debian Project’s
software packages [12]. In a search situation, similar arte-
facts will also be indicated.

When a user wishes to deploy the component, they will
first retrieve the artefact via a search. In the case of the pas-
sive artefact, search terms are limited to terms in the source
and documentation while in the case of the active artefact
search terms can also include things such as quality require-
ments (from metrics), presence related information etc. Im-
mediately this gives users a richer set of search terms to
describe the properties of the artefact they require.

Once the component has been retrieved and deemed suit-
able for use, the next step is to integrate it with the rest of
the project. In the case of the passive artefact all the infor-
mation provided is the formal documentation, which may
be incomplete, inaccurate or simply inapplicable to the cur-

rent problem domain. In the case of the active artefact the
experiences of previous users will have been recorded and
consequently the developer may discover whether previous
users were interested in that artefact, their reactions to it
and any case studies or examples that they have annotated
the artefact with.

Thus, the potential re-user may find out what has hap-
pened to the artefact recently. If for example the artefact
is of reasonable quality but hasn’t been updated for some
time this may indicate that the component it encapsulates
is moribund and hence a poor re-use candidate. If however
the quality is low but significant effort is being expended
to solve the problems (and the rate of improvement is com-
mensurate to that effort) the artefact is likely to be a better
long term choice. Open source and similar loosely collabo-
rative projects have similar problems; in particular it can be
difficult to ascertain whether a project is effectively dead or
merely moribund.

These records provide the developer with additional
technical and organisational information about the software
artefact. As the developer works with the artefact such
meta-data shall be augmented with details of that devel-
oper’s activities and if desired the developer may add their
own items of data to increase artefact’s value to other users.
In a non-invasive environment such as GENESIS this type
of data-collection cannot be mandatory. Instead opportunis-
tic or automated data collection and reliance on the good-
will of users to improve “their” artefacts becomes neces-
sary, potentially leading to a slight bias towards older arte-
facts which will naturally have accrued more information
about themselves than newer artefacts.

Such activities are common in the everyday work of our
industrial partners. For example, the enterprise resource
planning software vendor LogicDIS has provided several
use cases which they hope to automate with the GENE-
SIS platform. In particular, the use case describing produc-
tion of project deliverables incorporates a stage where pre-
viously created artefacts are examined by the developers.
These artefacts may have been prepared within the current
iteration of the software process, or in a previous iteration
of the process, or as part of a completely different process or
even through activities outside a GENESIS-defined process.
In the latter two cases, additional organisational knowledge
is essential for the effective re-use of the artefacts, for with-
out it developers will be unable to fully understand the ca-
pabilities and original goals of the artefact.

2.2 Related Work

Though software repositories in environments such as
Oz [13] are common in many software projects, there has
been little application of such systems in the Open Source
world. Additionally, none of the existing repositories are

suitable for active artefacts though some work, notably the
KAPTUR project [1], implements the rationale-recording
aspect of active artefacts. Most of these repositories rely
on significant user involvement in the management process,
precluding their use within GENESIS.

Nevertheless the case for collaborative environments in
open hypermedia development [11] has been convincingly
argued. Therefore a clear need exists for a repository to pro-
vide the benefits of distributed artefact management to the
GENESIS environment. Such environments are often based
on some form of database [14, 2, 3] or structured file set like
the ProcessWEAVER [8] tool and process management sys-
tem.

Integrating databases into software engineering support
environments has many advantages including a structured
query system, ACID 1 properties for changes and open APIs
so external programs may easily access the data. Unfortu-
nately retrieving data from the database so unintegrated file-
based tools may operate on it is inefficient as files must be
reconstructed, operated on by the tool and re-inserted into
the database. The storage of large quantities of unstruc-
tured, or at least unparsed, data in the database is likewise
inefficient in space and access time. The inflexibility of the
database schema ensures that such operations become nec-
essary as unforeseen data formats are added to the system.

The Process-centred Software Engineering environ-
ments MARVEL, its successor Oz and OzWeb and the
SPADE system all referenced above utilise database-type
systems only. SPADE and OzWeb choose to employ third-
party object oriented databases while the older MARVEL
environment relies on a relational-style database built over
flat files. The ADELE [4] software engineering envi-
ronment kernel and work-flow system takes a similarly
strict approach (extending the Entity Relationship Attribute
model) but does not employ a database system directly.

Ordinary files provide a significant speed advantage over
any database management system and remove all the prob-
lems associated with the storage of unstructured formats.
The ProcessWEAVER tool system takes this approach, with
the obvious disadvantage of the loss of the query and trans-
action services provided by database systems.

In summary, databases are excellent choices where the
data stored is highly structured, that structure is fairly static,
and any interaction with that data will be performed by
a known set of tools fully integrated with the database.
SPADE in particular takes this approach by forcing the inte-
gration of system tools with the FUSE tool service. Though
SPADE/FUSE permits the invocation of arbitrary tools (via
the notion of “black transitions” in the process model) the
intention is clearly to force tight integration of tools into the
environment.

1The OMG’s transaction specification: Atomicity Consistency
Independence and Dependability

GENESIS intends to provide a different notion of soft-
ware artefacts than that found in process-centred environ-
ments such as those described above. Instead of providing
an object-oriented view of artefacts by default as SPADE,
Oz etc. do, OSCAR shall provide a document-oriented view
of the artefacts it stores. While a structured document is not
a “plain file” it is closer to that than to an object and can be
manipulated in much the same way.

Since the document is already structured, building ob-
jects or other high-level data structures above the document
is easier than building comparable structures above a plain
file. This approach is intended to provide a middle ground
between the heavyweight, powerful and expressive but in-
flexible object-oriented SEEs and the lightweight, flexible,
but less powerful file based systems.

3 OSCAR

data store
Metadata abstractArtefact abstract

data store

Artefact
Dispatcher

Indexing and
Search Engine

DBMS and
transactions

Metrics Engine

METRIC

METRIC

METRIC

....

Search Interface

Transformation
(E.G. XSLT)

Disk Storage

Metadata Extractor

STORAGE

INDEXING

ARTEFACTS

PRESENTATION LAYER

The outside world

METRICS

Figure 1. OSCAR Architecture

Figure 1 proposes an architecture2 for a distributed
repository system to manage the active artefacts described
earlier. The four key modules within this architecture are
described below.

The presentation layer is responsible for presenting
artefacts in an applicable form for the various clients of
the system and providing higher level interfaces to OSCAR
functionality such as search and artefact modification. Ad-
ditionally the presentation layer shall allow the exposure

2Reproduced from our requirements paper referenced earlier.

of different interfaces depending on the deployment of OS-
CAR. For example, while access via WebDAV [9, 6] might
be convenient for distributed workers, tighter access meth-
ods such as RPC may be more appropriate for workers on a
single LAN.

Within the indexing layer artefacts have their meta-data
extracted to allow the fulfilment of search requests received
from the presentation layer.

The storage layer handles the decomposition of arte-
facts into meta-data and artefact data and consignment of
this data to separate data stores which suit their particular
storage requirements. At this level most of the distribution
is expected to take place and consequently transaction ser-
vices are localised within this layer.

Several storage solutions have been examined for OS-
CAR and while WebDAV may seem attractive as a com-
bined storage and access solution it should be noted that the
DAV protocol provides only limited services for configura-
tion management and version control at the present time.
The GENESIS platform requires more flexibility than per-
mitted in the DAV specification at the present time; in par-
ticular the rigid check-in/check-out model of version con-
trol is not necessarily the best solution for a non-invasive
environment as it enforces a very particular style of work-
ing.

The current lack of widely deployed and tested DAV
solutions is also a barrier to fully adopting such soft-
ware in GENESIS, though projects such as the Jakarta
“Slide”system and the addition of DAV to existing Open
Source content management systems indicate that the sit-
uation is improving. The modular architecture of OSCAR
shall permit the integration of any required WebDAV mod-
ules at a later date.

Finally the metrics engine shall enact user-defined met-
rics in the background to study activity within the repository
and will augment the artefacts studied with the results.

OSCAR will be responsible for managing the software
artefacts produced by users of the GENESIS system leading
to the following specific high-level requirements. Firstly,
every artefact will possess a unique identifier in a name-
space associated with a particular GENESIS deployment.
Visibility of an artefact within this name-space depends on
both the role permissions of the artefact and the permissions
of the user. One global name-space will exist per network
of OSCAR repositories.

Secondly, alongside a standard keyword search mecha-
nism, OSCAR shall provide a similarity matching system
for artefacts. Both systems shall operate on the artefacts’
meta-data to retrieve details of candidate artefacts. Once
the client has selected an artefact it may be retrieved di-
rectly from the repository where it is stored without further
reference to the meta-data.

Thirdly, within OSCAR everything shall appear as an

artefact, even superficially different entities such as actors
or software tools that OSCAR employs. This approach has
much precedent (UNIX etc.) and provides benefits such as a
consistent method for manipulating and accessing all items
in the repository.

Fourthly, though the meta-data will undergo continuous
modification, artefact data will be altered rarely (though of-
ten read). Consequently, when artefact data is written the
current state of the meta-data should be replicated within
the artefact data, allowing the meta-data service to be re-
built in the event of failure.

Fifthly, every GENESIS client may optionally instantiate
OSCAR to store artefacts locally, connect to a remote OS-
CAR or both. Since the OSCAR system is formed of two
separate physical data stores, OSCAR networks may follow
several distribution models, including:

� Centralised meta-data and artefact data store (star
topology).

� Multiple artefact stores and single meta-data store.

� Fully distributed: multiple artefact and meta-data
stores with replication.

Obviously there is a tradeoff here: consistency of in-
formation against the dependability of the repository net-
work as highly distributed and redundant networks will be
resilient to nodes failing but will incur a high overhead in
keeping all nodes up to date. The centralised model will
have no consistency problems but possesses a single point
of failure.

The storage requirements for the meta-data and arte-
fact data differ. The former requires fast random access
read/write/query operations but little space, the latter re-
quires plenty of space and fast sequential read/write oper-
ations only. Consequently two physical repositories of data
must be maintained and presented as one virtual repository.

The requirement for a non-invasive system suggests per-
forming consistency updates on a “best effort” basis as
the difficulty of maintaining multiple synchronous system
views without a centralised system has been noted [7]. Con-
sequently the view of OSCAR for certain clients may often
be somewhat outdated; however whenever a critical change
must be made the clients concerned should synchronise
their view of the repository to ensure no unintended changes
are made. Due to this requirement OSCAR must collect
any information about user activities passively without de-
manding user for input. OSCAR must integrate easily with
existing software tools in the organisation where it is de-
ployed. A distinction shall be made here between tools that
are invoked by OSCAR itself to perform a task and systems
that act upon the repository from outside. The latter may
be considered a type of actor while the former requires a
specialised artefact type to represent it. The location where

tools are invoked is important too; tools invoked on a client
machine can gather user input while tools invoked remotely
cannot.

OSCAR shall also provide a set of predefined artefacts
that will be useful in most situations. These shall include
Software which represents any intended output from a soft-
ware development effort, not just source code; Annotation
which encapsulates supplementary information added by
users; Tools to represent external programs; Actors which
store skill, security and role information for repository
users; Process Elements and Process Instances which repre-
sent reusable process segments and executed processes re-
spectively.

3.1 Simple Example Artefact

Figure 2 illustrates the different artefact representations
in our initial OSCAR design and prototype implementation.
For clarity and brevity the UML, XML document and en-
tity relationship diagrams are all incomplete and concen-
trate only on certain key features of the artefact.

At the highest level, a set of classes with various oper-
ations and attributes exist, mirroring the relationships be-
tween artefacts and their contents and providing methods
to manipulate the properties of the artefact. The first class,
Artefact, contains the basic artefact structure and its data,
acting as a fly-weight for the other artefact-related classes.
Secondly, the Property class represents a simple property
of the artefact, in this case a string, though there are other
property types available.

For certain specialised properties custom classes are es-
sential. The Version class contains the version information
for an artefact. A single instance of an artefact will have one
version as shown by the UML; however, an artefact within
the system will exist in multiple versions.

Finally the Relationship class expresses a relationship
between one or more artefact instances. The class shown
is a simplified representation of that used to encode simple
links (analogous to a hyper-link) between artefacts. More
complex link types similar to advanced XLink links shall
be present in the final version of OSCAR. Properties of re-
lations between artefacts include the version of the artefact
referred to (not shown), the link type (a type of depends is
“stronger” than a type of related for example) and the ex-
pected behaviour of OSCAR clients when they encounter
the link.

The fly-weight Artefact class shall maintain internally
a structured document similar to that shown in the figure’s
mid-part. The parts of the document directly related to the
UML above are labelled, as are the places where document
extension may take place.

Also visible is a location for artefact data such as soft-
ware code; a property omitted from the UML. While a

1.
.1

1.
.∗

1.. ∗

VERSION

........

........

........

<version version="1.2" />
........

</data>

<data filename="widget.java">

 </contents>

<contents>

</metadata>

</rdf:Description>

<dc:Relation xlink:href="uniqueid:Tool−javac−12"

reltype="depends"
 <dc:Relation xlink:href="uniqueid:Software−5678"

<dc:Relation xlink:href="uniqueid:Annotation−1234"

 <dc:Identifier uniqueid="

<rdf:Description>
<rdf:RDF>

<metadata>

..XML DOCUMENT ENDS...

...SOME SOURCE CODE ...

...FURTHER METADATA MODELS...

...FURTHER RDF INFORMATION...

...XML DOCUMENT PREAMBLE...

<dc:Ttitle>Artefact Customisation Widget </dc:Title>

</rdf:RDF>

 </dc:Relation>

 </dc:Relation> xlink:title="Some example programs">

 xlink:title="Requirements Information ">

 xlink:title="Compile using Javac"> </dc:Relation>
 reltype="consumedby"

SIMPLE PROPERTIES

RELATIONSHIPS

 <subordinate xlink:href="uniqueid:Software−7654321" xlink:show="embed"
 xlink:title="Widget API Documentation">API Documentation</subordinate>

...FURTHER CONTENTS...
RELATIONSHIPS

<dc:Creator>John Smith</dc:Creator>
Software−2830" />

...

cVersionNumber: String
...

+create(....)
+getProperty(pName:String):Property
+ relate(Relation pRel)
+ isRelated(Artefact pArtefact)

cDocument: XMLDocument
cCreator: String
cCurrentVersion: Version
cRelations: Hashtable

+getVersion() : String
+create(pVersion:String)
........

+setProp(pVal: String)
+getProp() : String

cValue: String
cName: String

Artefact

Property

....

+create(pTo,pFrom: Artefact)
+getMultiplicity() : int
+getTo(): Artefact

 {value=related|depends|...}
cType: String
cTo: Artefact:
cFrom: Artefact
Relationship

Version

Identifier

Creator

Title

Filename

Data Filename

Attributes

URI

Title

Type

ARTEFACT

VERSION

RELATIONSHIP

REFERS TO
HAS

HAS

 Version Number

Figure 2. Example artefact

structured document such as XML lacks the powerful ca-
pabilities of objects such as strong typing, task-domain spe-
cific APIs, true inheritance and so forth it does have suf-
ficient structure for those capabilities to be built upon it
and possesses flexibility; whilst modifying the behaviour
of non-trivial objects requires significant effort, modifying
the structure and content of an XML document is relatively
easy assuming one does not break any validity constraints.
The Document Type Definitions (DTDs) within OSCAR are
sufficiently modular and flexible to permit content model
modification for almost all elements.

Greater interoperability is also useful; objects are usu-
ally tied to a specific language (e.g. Java) or platform (e.g.
CORBA) but XML is intended as an interchange format be-

tween disparate tools. Consequently our structured docu-
ment is easier to transform into other formats than the rel-
atively heavyweight objects built upon it, allowing systems
not completely integrated with GENESIS to participate in
projects where GENESIS is in use.

Below the XML document the artefact is further decom-
posed into the entity relationship (ER) model with a view to
inserting it into a relational database. Obviously at this point
some enforced constraints are reintroduced by the DBMS
which are not present in the XML document, however, as-
suming the document is valid against the artefact DTD, the
information should not conflict. The entities and attributes
illustrated by this ER diagram correspond to the highlighted
sections in the XML document.

Due to the two-tier storage model adopted by OSCAR
and in light of the related work, only properties with a clear
correspondence to the relation model need be stored in the
database. The rest (and a backup copy of the database in-
formation) shall be stored as files under revision control.

4 Conclusions and Further Work

We have presented the notion of active software artefacts
aware to a certain extent of the changes they undergo and
their position within a set of artefacts. Additionally we have
proposed an architecture for a distributed software reposi-
tory capable of supporting these artefacts within a process
aware software engineering environment.

Within the context of the GENESIS project OSCAR
will provide support for the software process alongside nor-
mal software engineering activities. GENESIS itself shall
have two development cycles, resulting in two official open-
source releases of OSCAR by the end of the project. It is
intended that the second cycle of development shall be in
the open to nurture interest in the open source community
about GENESIS. To this end we intend to produce a de-
scription language and meta-data vocabulary specialised for
active artefacts and to design and implement the OSCAR
system to support their use.

Acknowledgements

The research described here has been carried out with
the support of the European Commission under the GEN-
ESIS project. The collaborators in this project are Univer-
sity of Salerno (CRMPA), University of Sannio (RCOST),
University of Rome (UNIROMA), University of Durham
(RISE), LogicDIS, Mathematical Models and Applications
(MOMA) and SchlumbergerSEMA. We acknowledge con-
tributions from our colleagues in all of these organisations.

References

[1] S. C. Bailin, J. M. Moore, R. Bentz, and M. Bewtra. KAP-
TUR: knowledge acquisition for preservation of tradeoffs
and underlying rationales. In Proceedings of the 5th Annual
Knowledge-Based Software Assistant Conference, CTA In-
corporated, September 1990. Rome Laboratories.

[2] S. Bandinelli, A. Fugetta, and C. Ghezzi. Software pro-
cess model evolution in the SPADE environment. Technical
report, CEFRIEL- Politecnico di Milano, December 1993.
GOODSTEP ESPRIT-III Project 6115.

[3] S. Bandinelli, M. Fugetta, A. Fugetta, and L. Lavazza. The
architecture of the SPADE-1 process-centered see. Techni-
cal report, CEFRIEL- Politecnico di Milano, February 1994.
GOODSTEP ESPRIT-III Project 6115.

[4] N. Belkhatir, J. Estublier, and W. L. Melo. Cooperative work
in large scale software systems. Journal of Software Main-
tenance: Research and Practice, 1993.

[5] D. G. Boyer, M. Cortes, J. Herbsleb, and M. J. Handel. Vir-
tual community presence awareness. ACM SIGGROUP Bul-
letin, 19(3):11–14, 1998.

[6] G. Clemm, J. Amsden, C. K. T. Ellison, and J. Whitehead.
Versioning extensions to WebDAV. IETF, 2002.

[7] J. Estublier. Objects control for software configuration man-
agement. In Proceedings of CAISE2001, Interluken, Suisse,
June 2001.

[8] C. Fernstrom. Processweaver: Adding process support to
unix. In 2nd International Conference on the Software Pro-
cess, pages 12–26, Berlin, Germany, February 1993. IEEE
CS Press.

[9] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen.
HTTP extensions for distributed authoring WebDAV. IETF,
1999.

[10] T. Green and D.Benyon. The skull beneath the skin: entity-
relationship models of information artifacts. Internation
Journal Of Human-Computer Studies, 44(6):801–828, 1996.

[11] J. M. Haake. Openess in shared hypermedia workspaces:
The case for collaborative open hypermedia systems. ACM
SigWEB Newsletter, 8(3):33–45, October 1999.

[12] I. Jackson and C. Schwarz. The Debian policy
manual. http://www.uk.debian.org/doc/debian-policy/ch-
relationships.html, 1998.

[13] G. E. Kaiser. WWW based collaboration environments with
distributed tool services. World Wide Web Journal, 1(1):3–
25, 1998.

[14] G. E. Kaiser, N. S. Barghouti, P. H. Feiler, and R. W.
Schwanke. Database support for knowledge-based software
engineering. IEEE Intelligent Systems and Their Applica-
tions, 3(2):18–23, 26–32, 1988.

[15] D. E. Knuth. Literate programming. The Computer Journal,
27(2), 1984.

[16] D. Nutter, S. Rank, and C. Boldyreff. Architectural require-
ments for an Open Source Component and Artefact Repos-
itory System within GENESIS. In Proceedings of the Open
Source Software Development Workshop, pages 176–196.
University Of Newcastle, February 2002.

[17] P. Sachs. Transforming work: Collaboration, learning,
and design. Communications Of The ACM, 38(9):36–44,
September 1995.

