3 research outputs found

    A novel approach for Face Recognition using Local Binary Pattern

    Get PDF
    This paper presents Local Binary pattern (LBP) as an approach for face recognition with the use of some global features also. Face recognition has received quite a lot of attention from researchers in biometrics, pattern recognition, and computer vision communities. The idea behind using the LBP features is that the face images can be seen as composition of micro-patterns which are invariant with respect to monotonic grey scale transformations and robust to factors like ageing. Combining these micro-patterns, a global description of the face image is obtained. Efficiency and the simplicity of the proposed method allows for very fast feature extraction giving better accuracy than the other algorithms. The proposed method is tested and evaluated on ORL datasets combined with other university dataset to give a good recognition rate and 89% classification accuracy using LBP only and 98% when global features are combined with LBP. The method is also tested for real images to give good accuracy and recognition rate. The experimental results show that the method is valid and feasible

    Cross-Modality 2D-3D Face Recognition via Multiview Smooth Discriminant Analysis Based on ELM

    Get PDF
    In recent years, 3D face recognition has attracted increasing attention from worldwide researchers. Rather than homogeneous face data, more and more applications require flexible input face data nowadays. In this paper, we propose a new approach for cross-modality 2D-3D face recognition (FR), which is called Multiview Smooth Discriminant Analysis (MSDA) based on Extreme Learning Machines (ELM). Adding the Laplacian penalty constrain for the multiview feature learning, the proposed MSDA is first proposed to extract the cross-modality 2D-3D face features. The MSDA aims at finding a multiview learning based common discriminative feature space and it can then fully utilize the underlying relationship of features from different views. To speed up the learning phase of the classifier, the recent popular algorithm named Extreme Learning Machine (ELM) is adopted to train the single hidden layer feedforward neural networks (SLFNs). To evaluate the effectiveness of our proposed FR framework, experimental results on a benchmark face recognition dataset are presented. Simulations show that our new proposed method generally outperforms several recent approaches with a fast training speed
    corecore