35 research outputs found

    Exposing The Cancer Genome Atlas (TCGA) as a SPARQL endpoint

    Get PDF
    Automated discovery of candidate biomarkers from multiple databases has been the central challenge in the Life Sciences in general and in the study of systemic processes such as those documented by The Cancer Genome Atlas (TCGA) in particular. 

The maturation of Semantic Web technologies offers solutions to those problems by allowing the query to be defined by navigating a normally represented domains of discourse instantiated by the data. 

We address the systems challenge of The Cancer 
Genome Atlas initiative (http://cancergenome.nih.gov/), which generates a large scale repository of high throughput molecular biology data generated and processed at 5 academic facilities across the USA

    Development of Integrative Bioinformatics Applications using Cloud Computing resources and Knowledge Organization Systems (KOS).

    Get PDF
    Use of semantic web abstractions, in particular of domain neural Knowledge Organization Systems (KOS), to manage distributed, cloud based, integrative bioinformatics infrastructure. This presentation derives from recent publication:

Almeida JS, Deus HF, Maass W. (2010) S3DB core: a framework for RDF generation and management in bioinformatics infrastructures. BMC Bioinformatics. 2010 Jul 20;11(1):387. [PMID 20646315].

These PowerPoint slides were presented at Semantic Web Applications and Tools for Life Sciences December 10th, 2010, Berlin, Germany (http://www.swat4ls.org/2010/progr.php), keynote 9-10 am

    Development of Integrative Bioinformatics Applications using Cloud Computing resources and Knowledge Organization Systems (KOS).

    Get PDF
    Use of semantic web abstractions, in particular of domain neural Knowledge Organization Systems (KOS), to manage distributed, cloud based, integrative bioinformatics infrastructure. This presentation derives from recent publication:

Almeida JS, Deus HF, Maass W. (2010) S3DB core: a framework for RDF generation and management in bioinformatics infrastructures. BMC Bioinformatics. 2010 Jul 20;11(1):387. [PMID 20646315].

These PowerPoint slides were presented at Semantic Web Applications and Tools for Life Sciences December 10th, 2010, Berlin, Germany (http://www.swat4ls.org/2010/progr.php), keynote 9-10 am

    Towards linked open gene mutations data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework.</p> <p>In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data.</p> <p>Methods</p> <p>A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest.</p> <p>Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite.</p> <p>Results</p> <p>We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application.</p> <p>Conclusions</p> <p>This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development.</p> <p>The publication of variation information as Linked Data opens new perspectives: the exploitation of SPARQL searches on mutation data and other biological databases may support data retrieval which is presently not possible. Moreover, reasoning on integrated variation data may support discoveries towards personalized medicine.</p

    TopFed: TCGA Tailored Federated Query Processing and Linking to LOD

    Full text link

    AGUIA: autonomous graphical user interface assembly for clinical trials semantic data services

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>AGUIA is a front-end web application originally developed to manage clinical, demographic and biomolecular patient data collected during clinical trials at MD Anderson Cancer Center. The diversity of methods involved in patient screening and sample processing generates a variety of data types that require a resource-oriented architecture to capture the associations between the heterogeneous data elements. AGUIA uses a semantic web formalism, resource description framework (RDF), and a bottom-up design of knowledge bases that employ the S3DB tool as the starting point for the client's interface assembly.</p> <p>Methods</p> <p>The data web service, S3DB, meets the necessary requirements of generating the RDF and of explicitly distinguishing the description of the domain from its instantiation, while allowing for continuous editing of both. Furthermore, it uses an HTTP-REST protocol, has a SPARQL endpoint, and has open source availability in the public domain, which facilitates the development and dissemination of this application. However, S3DB alone does not address the issue of representing content in a form that makes sense for domain experts.</p> <p>Results</p> <p>We identified an autonomous set of descriptors, the GBox, that provides user and domain specifications for the graphical user interface. This was achieved by identifying a formalism that makes use of an RDF schema to enable the automatic assembly of graphical user interfaces in a meaningful manner while using only resources native to the client web browser (JavaScript interpreter, document object model). We defined a generalized RDF model such that changes in the graphic descriptors are automatically and immediately (locally) reflected into the configuration of the client's interface application.</p> <p>Conclusions</p> <p>The design patterns identified for the GBox benefit from and reflect the specific requirements of interacting with data generated by clinical trials, and they contain clues for a general purpose solution to the challenge of having interfaces automatically assembled for multiple and volatile views of a domain. By coding AGUIA in JavaScript, for which all browsers include a native interpreter, a solution was found that assembles interfaces that are meaningful to the particular user, and which are also ubiquitous and lightweight, allowing the computational load to be carried by the client's machine.</p

    Accessing scientific data through knowledge graphs with Ontop.

    Get PDF
    In this tutorial, we learn how to set up and exploit the virtual knowledge graph (VKG) approach to access data stored in relational legacy systems and to enrich such data with domain knowledge coming from different heterogeneous (biomedical) resources. The VKG approach is based on an ontology that describes a domain of interest in terms of a vocabulary familiar to the user and exposes a high-level conceptual view of the data. Users can access the data by exploiting the conceptual view, and in this way they do not need to be aware of low-level storage details. They can easily integrate ontologies coming from different sources and can obtain richer answers thanks to the interaction between data and domain knowledge

    Enabling Complex Semantic Queries to Bioinformatics Databases through Intuitive Search Over Data

    Get PDF
    Data integration promises to be one of the main catalysts in enabling new insights to be drawn from the wealth of biological data already available publicly. However, the heterogene- ity of the existing data sources still poses significant challenges for achieving interoperability among biological databases. Furthermore, merely solving the technical challenges of data in- tegration, for example through the use of common data representation formats, leaves open the larger problem. Namely, the steep learning curve required for understanding the data models of each public source, as well as the technical language through which the sources can be queried and joined. As a consequence, most of the available biological data remain practically unexplored today. In this thesis, we address these problems jointly, by first introducing an ontology-based data integration solution in order to mitigate the data source heterogeneity problem. We illustrate through the concrete example of Bgee, a gene expression data source, how relational databases can be exposed as virtual Resource Description Framework (RDF) graphs, through relational-to-RDF mappings. This has the important advantage that the original data source can remain unmodified, while still becoming interoperable with external RDF sources. We complement our methods with applied case studies designed to guide domain experts in formulating expressive federated queries targeting the integrated data across the domains of evolutionary relationships and gene expression. More precisely, we introduce two com- parative analyses, first within the same domain (using orthology data from multiple, inter- operable, data sources) and second across domains, in order to study the relation between expression change and evolution rate following a duplication event. Finally, in order to bridge the semantic gap between users and data, we design and im- plement Bio-SODA, a question answering system over domain knowledge graphs, that does not require training data for translating user questions to SPARQL. Bio-SODA uses a novel ranking approach that combines syntactic and semantic similarity, while also incorporating node centrality metrics to rank candidate matches for a given user question. Our results in testing Bio-SODA across several real-world databases that span multiple domains (both within and outside bioinformatics) show that it can answer complex, multi-fact queries, be- yond the current state-of-the-art in the more well-studied open-domain question answering. -- L’intĂ©gration des donnĂ©es promet d’ĂȘtre l’un des principaux catalyseurs permettant d’extraire des nouveaux aperçus de la richesse des donnĂ©es biologiques dĂ©jĂ  disponibles publiquement. Cependant, l’hĂ©tĂ©rogĂ©nĂ©itĂ© des sources de donnĂ©es existantes pose encore des dĂ©fis importants pour parvenir Ă  l’interopĂ©rabilitĂ© des bases de donnĂ©es biologiques. De plus, en surmontant seulement les dĂ©fis techniques de l’intĂ©gration des donnĂ©es, par exemple grĂące Ă  l’utilisation de formats standard de reprĂ©sentation de donnĂ©es, on laisse ouvert un problĂšme encore plus grand. À savoir, la courbe d’apprentissage abrupte nĂ©cessaire pour comprendre la modĂ©li- sation des donnĂ©es choisie par chaque source publique, ainsi que le langage technique par lequel les sources peuvent ĂȘtre interrogĂ©s et jointes. Par consĂ©quent, la plupart des donnĂ©es biologiques publiquement disponibles restent pratiquement inexplorĂ©s aujourd’hui. Dans cette thĂšse, nous abordons l’ensemble des deux problĂšmes, en introduisant d’abord une solution d’intĂ©gration de donnĂ©es basĂ©e sur ontologies, afin d’attĂ©nuer le problĂšme d’hĂ©tĂ©- rogĂ©nĂ©itĂ© des sources de donnĂ©es. Nous montrons, Ă  travers l’exemple de Bgee, une base de donnĂ©es d’expression de gĂšnes, une approche permettant les bases de donnĂ©es relationnelles d’ĂȘtre publiĂ©s sous forme de graphes RDF (Resource Description Framework) virtuels, via des correspondances relationnel-vers-RDF (« relational-to-RDF mappings »). Cela prĂ©sente l’important avantage que la source de donnĂ©es d’origine peut rester inchangĂ©, tout en de- venant interopĂ©rable avec les sources RDF externes. Nous complĂ©tons nos mĂ©thodes avec des Ă©tudes de cas appliquĂ©es, conçues pour guider les experts du domaine dans la formulation de requĂȘtes fĂ©dĂ©rĂ©es expressives, ciblant les don- nĂ©es intĂ©grĂ©es dans les domaines des relations Ă©volutionnaires et de l’expression des gĂšnes. Plus prĂ©cisĂ©ment, nous introduisons deux analyses comparatives, d’abord dans le mĂȘme do- maine (en utilisant des donnĂ©es d’orthologie provenant de plusieurs sources de donnĂ©es in- teropĂ©rables) et ensuite Ă  travers des domaines interconnectĂ©s, afin d’étudier la relation entre le changement d’expression et le taux d’évolution suite Ă  une duplication de gĂšne. Enfin, afin de mitiger le dĂ©calage sĂ©mantique entre les utilisateurs et les donnĂ©es, nous concevons et implĂ©mentons Bio-SODA, un systĂšme de rĂ©ponse aux questions sur des graphes de connaissances domaine-spĂ©cifique, qui ne nĂ©cessite pas de donnĂ©es de formation pour traduire les questions des utilisateurs vers SPARQL. Bio-SODA utilise une nouvelle ap- proche de classement qui combine la similaritĂ© syntactique et sĂ©mantique, tout en incorporant des mĂ©triques de centralitĂ© des nƓuds, pour classer les possibles candidats en rĂ©ponse Ă  une question utilisateur donnĂ©e. Nos rĂ©sultats suite aux tests effectuĂ©s en utilisant Bio-SODA sur plusieurs bases de donnĂ©es Ă  travers plusieurs domaines (tantĂŽt liĂ©s Ă  la bioinformatique qu’extĂ©rieurs) montrent que Bio-SODA rĂ©ussit Ă  rĂ©pondre Ă  des questions complexes, en- gendrant multiples entitĂ©s, au-delĂ  de l’état actuel de la technique en matiĂšre de systĂšmes de rĂ©ponses aux questions sur les donnĂ©es structures, en particulier graphes de connaissances

    QMachine: commodity supercomputing in web browsers

    Get PDF
    corecore