31 research outputs found

    Exponentially fitted and trigonometrically fitted explicit modified Runge-Kutta type methods for solving y’’’ (x)=f (x,y,y’)

    Get PDF
    Exponentially fitted and trigonometrically fitted explicit modified Runge-Kutta type (MRKT) methods for solving y’’’ (x)=f (x,y,y’) are derived in this paper. These methods are constructed which exactly integrate initial value problems whose solutions are linear combinations of the set functions ewx and e-wx for exponentially fitted sin(wx) and cos (wx) for trigonometrically fitted with w ᗴ r being the principal frequency of the problem and the frequency will be used to raise the accuracy of the methods. The new four-stage fifth-order exponentially fitted and trigonometrically fitted explicit MRKT methods are called EFMRKT5 and TFMRKT5, respectively, for solving initial value problems whose solutions involve exponential or trigonometric functions. The numerical results indicate that the new exponentially fitted and trigonometrically fitted explicit modified Runge-Kutta type methods are more efficient than existing methods in the literature

    Phase-Fitted and Amplification-Fitted Higher Order Two-Derivative Runge-Kutta Method for the Numerical Solution of Orbital and Related Periodical IVPs

    Get PDF
    A phase-fitted and amplification-fitted two-derivative Runge-Kutta (PFAFTDRK) method of high algebraic order for the numerical solution of first-order Initial Value Problems (IVPs) which possesses oscillatory solutions is derived. We present a sixth-order four-stage two-derivative Runge-Kutta (TDRK) method designed using the phase-fitted and amplification-fitted property. The stability of the new method is analyzed. The numerical experiments are carried out to show the efficiency of the derived methods in comparison with other existing Runge-Kutta (RK) methods

    A class of explicit high-order exponentially-fitted two-step methods for solving oscillatory IVPs

    Get PDF
    The derivation of new exponentially fitted (EF) modified two-step hybrid (MTSH) methods for the numerical integration of oscillatory second-order IVPs is analyzed. These methods are modifications of classical two-step hybrid methods so that they integrate exactly differential systems whose solutions can be expressed as linear combinations of the set of functions {exp(¿t), exp(-¿t)}, ¿¿C, or equivalently {sin(¿t), cos(¿t)} when ¿=i¿, ¿¿R, where ¿ represents an approximation of the main frequency of the problem. The EF conditions and the conditions for this class of EF schemes to have algebraic order p (with p=8) are derived. With the help of these conditions we construct explicit EFMTSH methods with algebraic orders seven and eight which require five and six function evaluation per step, respectively. These new EFMTSH schemes are optimal among the two-step hybrid methods in the sense that they reach a certain order of accuracy with minimal computational cost per step. In order to show the efficiency of the new high order explicit EFMTSH methods in comparison to other EF and standard two-step hybrid codes from the literature some numerical experiments with several orbital and oscillatory problems are presented

    High Order Multistep Methods with Improved Phase-Lag Characteristics for the Integration of the Schr\"odinger Equation

    Full text link
    In this work we introduce a new family of twelve-step linear multistep methods for the integration of the Schr\"odinger equation. The new methods are constructed by adopting a new methodology which improves the phase lag characteristics by vanishing both the phase lag function and its first derivatives at a specific frequency. This results in decreasing the sensitivity of the integration method on the estimated frequency of the problem. The efficiency of the new family of methods is proved via error analysis and numerical applications.Comment: 36 pages, 6 figure
    corecore