12 research outputs found

    A Salad of Block Ciphers

    Get PDF
    This book is a survey on the state of the art in block cipher design and analysis. It is work in progress, and it has been for the good part of the last three years -- sadly, for various reasons no significant change has been made during the last twelve months. However, it is also in a self-contained, useable, and relatively polished state, and for this reason I have decided to release this \textit{snapshot} onto the public as a service to the cryptographic community, both in order to obtain feedback, and also as a means to give something back to the community from which I have learned much. At some point I will produce a final version -- whatever being a ``final version\u27\u27 means in the constantly evolving field of block cipher design -- and I will publish it. In the meantime I hope the material contained here will be useful to other people

    On generalized Feistel networks

    Get PDF
    We prove beyond-birthday-bound security for the well-known types of generalized Feistel networks, including: (1) unbalanced Feistel networks, where the nn-bit to mm-bit round functions may have n≠mn\ne m; (2) alternating Feistel networks, where the round functions alternate between contracting and expanding; (3) type-1, type-2, and type-3 Feistel networks, where nn-bit to nn-bit round functions are used to encipher knkn-bit strings for some k≥2k\ge2; and (4) numeric variants of any of the above, where one enciphers numbers in some given range rather than strings of some given size. Using a unified analytic framework we show that, in any of these settings, for any ε>0\varepsilon>0, with enough rounds, the subject scheme can tolerate CCA attacks of up to q∼N1−εq\sim N^{1-\varepsilon} adversarial queries, where NN is the size of the round functions\u27 domain (the size of the larger domain for alternating Feistel). This is asymptotically optimal. Prior analyses for generalized Feistel networks established security to only q∼N0.5q\sim N^{0.5} adversarial queries

    D.STVL.9 - Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report gives a brief summary of some of the research trends in symmetric cryptography at the time of writing (2008). The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report is a deliverable for the ECRYPT European network of excellence in cryptology. It gives a brief summary of some of the research trends in symmetric cryptography at the time of writing. The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the recently proposed algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    Block Cipher Doubling for a Post-Quantum World

    Get PDF
    In order to maintain a similar security level in a post-quantum setting, many symmetric primitives should have to double their keys and increase their state sizes. So far, no generic way for doing this is known that would provide convincing quantum security guarantees. In this paper we propose a new generic construction, QuEME, that allows to double the key and the state size of a block cipher. The QuEME design is inspired by the ECB-Mix-ECB (EME) construction, but is defined for a different choice of mixing function that withstands our new quantum superposition attack that exhibits a periodic property found in collisions and that breaks EME and a large class of variants of it. We prove that QuEME achieves nn-bit security in the classical setting, where nn is the block size of the underlying block cipher, and at least n/6n/6-bit security in the quantum setting. We propose a concrete instantiation of this construction, called Double-AES, that is built with variants of AES-128

    Impossibility of Indifferentiable Iterated Blockciphers from 3 or Less Primitive Calls

    Get PDF
    Virtually all modern blockciphers are iterated. In this paper, we ask: to construct a secure iterated blockcipher non-trivially , how many calls to random functions and permutations are necessary? When security means indistinguishability from a random permutation, optimality is achieved by the Even-Mansour scheme using 1 call to a public permutation. We seek for the arguably strongest security indifferentiability from an ideal cipher, a notion introduced by Maurer et al. (TCC 2004) and popularized by Coron et al. (JoC, 2014). We provide the first generic negative result/lower bounds: when the key is not too short, no iterated blockcipher making 3 calls is (statistically) indifferentiable. This proves optimality for a 4-call positive result of Guo et al. (Eprint 2016). Furthermore, using 1 or 2 calls, even indifferentiable iterated blockciphers with polynomial keyspace are impossible. To prove this, we develop an abstraction of idealized iterated blockciphers and establish various basic properties, and apply Extremal Graph Theory results to prove the existence of certain (generalized) non-random properties such as the boomerang and yoyo

    Towards a Theory of Symmetric Encryption

    Get PDF
    Motivée par le commerce et l'industrie, la recherche publique dans le domaine du chiffrement symétrique s'est considérablement développée depuis vingt cinq ans si bien qu'il est maintenant possible d'en faire le bilan. La recherche a tout d'abord progressé de manière empirique. De nombreux algorithmes de chiffrement fondés sur la notion de réseau de substitutions et de permutations ont été proposés, suivis d'attaques dédiées contre eux. Cela a permis de définir des stratégies générales: les méthodes d'attaques différentielles, linéaires et statistiques, et les méthodes génériques fondées sur la notion de boîte noire. En modélisant ces attaques on a trouvé en retour des règles utiles dans la conception d'algorithmes sûrs: la notion combinatoire de multipermutation pour les fonctions élémentaires, le contrôle de la diffusion par des critères géométriques de réseau de calcul, l'étude algébrique de la non-linéarité, ... Enfin, on montre que la sécurité face à un grand nombre de classes d'attaques classiques est assurée grâce à la notion de décorrélation par une preuve formelle. Ces principes sont à l'origine de deux algorithmes particuliers: la fonction CS-Cipher qui permet un chiffrement à haut débit et une sécurité heuristique, et le candidat DFC au processus de standardisation AES, prototype d'algorithme fondé sur la notion de décorrélation

    Scalable symmetric block ciphers based on group bases

    Get PDF
    Neben der Sicherheit und Effizienz werden Skalierbarkeit und Einstellbarkeit als besonders wichtige Eigenschaften einer Blockchiffre betrachtet. Einer der möglichen Ansätze zur Konstruktion von skalierbaren und einstellbaren Blockchiffren basiert auf Gruppenbasen. Dieser Ansatz ist aus mathematischer Sicht sehr direkt und einfach, und die resultierende Chiffren besitzen mehrere wünschenswerten Eigenschaften, wie z.B. eine skalierbare Block- und Schlüssellänge und einen extrem großen Schlüsselraum. In dieser Arbeit werden einige bisher unbeantwortete Fragen bezüglich Sicherheit, Effizienz und Implementierungstauglichkeit dieser Kryptosysteme - insbesondere des neuesten Repräsentanten TST - untersucht und zwei neue verbesserte Chiffren-Designs präsentiert. Im ersten Teil der Arbeit wird das Kryptosystem TST analysiert. Dabei werden zwei möglichen Permutationsdarstellungen verglichen, eine effiziente Implementierung der Schlüsselgenerierung diskutiert, und die wichtigsten Charakteristiken wie Durchsatz, Speicherbedarf und Initialisierungsverzögerung gemessen. Außerdem wird eine Sicherheitsanalyse durchgeführt, bei der die statistischen Eigenschaften des Kryptosystems untersucht werden und ein kryptographischer Angriff konstruiert wird. Die Ergebnisse dieser Analyse zeigen, dass die Effizienz und Sicherheit von TST nicht zufriedenstellend sind. Eine mögliche Lösung dieser bei TST auftretenden Probleme wird in dem zweiten Teil der Arbeit präsentiert. Mit Hilfe erweiterter Gruppenbasen kann die Diffusion von TST deutlich verbessert werden, was durch statistische Tests belegt wird. Aufgrund den besseren Diffusionseigenschaften kann auch eine einfachere Trägergruppe eingesetzt werden, mit der der Speicherbedarf reduziert und der Durchsatz erhöht werden kann. In dem letzten Teil der Arbeit wird eine iterative Version von TST vorgestellt. Der elementare Baustein dieses Designs entspricht einem Faktorisierungsschritt in einer Gruppenbasis, statt einer echten Faktorisierung wird jedoch eine konstante Funktion mehrmals iterativ angewandt. Die wesentlichen Vorteile dieses Ansatzes gegenüber TST sind ein deutlich reduzierter Speicherbedarf, erhöhter Durchsatz und verbesserte Flexibilität. Die Block- und Schlüssellänge sind, genau wie bei TST, frei wählbar. Zusätzlich ermöglicht das neue Kryptosystem eine freie Einstellung der Sicherheit, der Geschwindigkeit und des Speicherbedarfs. Mit der entsprechenden Anzahl von Runden bietet die neue Chiffre eine hervorragende Sicherheit, was sowohl unsere Kryptanalyse, als auch die statistischen Tests bestätigt haben
    corecore