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Kurzfassung

Die Sicherheit und die Effizienz einer Blockchiffre sind zweifellos die wichtigsten Kri-
terien für Beurteilung ihrer Qualität. Außer diesen elementaren Eigenschaften wer-
den aber auch Skalierbarkeit und Einstellbarkeit als besonders wichtig und wünschens-
wert betrachtet, nicht nur weil sie es ermöglichen, daß die Chiffre auf verschiedensten
Plattformen optimal betrieben wird, sonder auch, weil sie die nötige Sicherheitsre-
serve für ihre zukünftige Benutzung garantieren. Einer der möglichen Ansätze zur
Konstruktion von skalierbaren und einstellbaren Blockchiffren basiert auf den Grup-
penbasen.

Eine Gruppenbasis ist ein mathematisches Objekt das es ermöglicht, eine Per-
mutation aus einer bestimmten Gruppe in einen eindeutigen Koordinatenvektor zu
zerlegen. Das Verschlüsselungsprinzip der untersuchten Chiffren besteht in “Über-
setzung” einer Permutation zwischen zwei zufällig gewählten Gruppenbasen β1 und
β2. Solche Bijektion auf der Menge der Permutationen kann als eine Verschlüsselungs-
funktion eingesetzt werden, weil sie durch β1 und β2 eindeutig bestimmt ist, und
weil sie ohne diese Basen nicht wiederhergestellt werden kann. Das Gruppenbasen-
paar (β1, β2) spielt also die Rolle eines geheimen Schlüssels. Dieser Ansatz ist
aus mathematischer Sicht sehr direkt und einfach, und die resultierende Chiffren
besitzen mehrere wünschenswerten Eigenschaften, wie z.B. einen außergewöhnlich
großen Schlüsselraum, skalierbare Block- und Schlussellänge, usw. Einige bisher un-
beantwortete Fragen bezüglich Sicherheit, Effizienz und Implementationstauglichkeit
dieser Kryptosysteme - insbesondere des neuesten Repräsentanten tst - stellen ein
interessantes Forschungsthema dar.

Diese Dissertation untersucht die verfügbaren auf den Gruppenbasen basieren-
den Kryptosysteme und präsentiert zwei neue verbesserten Designs. Nach einer
allgemeinen Einführung in die Problematik und einem Überblick der wichtigen the-
oretischen Grundlagen folgt der Kern dieser Arbeit, in dem die neuen Ergebnisse in
drei logischen Teilen präsentiert werden.

Im ersten Teil wird das neueste auf den Gruppenbasen basierende Kryptosys-
tem tst im Detail analysiert. Dabei wird die Effizienz der zwei möglichen Per-
mutationsdarstellungen - der sogenannten kompakten und der kartesischen Darstel-
lung - verglichen, eine effiziente Implementierung der Schlüsselgenerierung disku-
tiert, und die substantiellen Charakteristiken wie Durchsatz, Speicherbedarf und
Initialisierungsverzögerung gemessen. Außerdem wird eine Sicherheitsanalyse durch-
geführt, bei der die statistischen Eigenschaften des Kryptosystems untersucht wer-
den und ein kryptographischer Angriff konstruiert wird. Die Ergebnisse unserer
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Analyse zeigen, dass eine Softwareimplementierung von tst in allen Aspekten über
wesentlich weniger Leistungsfähigkeit verfügt als die anderen modernen Blockchiffren.
Obendrein weist tst beträchtliche statistische Defekte auf, und die vereinfachten
tst Versionen können sogar mit einer effizienten kryptanalytischen Attacke voll-
ständig entschlüsselt werden.

Eine mögliche Lösung dieser bei tst auftretenden Probleme wird in dem zweiten
Teil dieser Arbeit präsentiert. Mit Hilfe einer Erweiterung der Gruppenbasen kann
eine starke Diffusion der Faktorisierungs- und Kompositionsoperationen garantiert
werden. Hierbei wird vor jedem Faktorisierungsschritt eine einfache Transformation
durchgeführt, die jede Permutationskoordinate von allen Bits der zu faktorisierenden
Permutation abhängig macht. Unsere Tests haben bestätigt, daß die statistischen
Eigenschaften dieser erweiterten tst Version beträchtlich besser sind. Dank den
besseren Diffusionseigenschaften kann sogar eine einfachere Trägergruppe eingesetzt
werden, mit der der Speicherbedarf reduziert und der Durchsatz erhöht werden
kann. Das bedeutet, daß nicht nur die Sicherheit sondern auch die Effizienz des
neuen Kryptosystems verbessert wurden.

In dem letzten Teil dieser Arbeit wird eine iterative Version von tst vorgestellt.
Der elementare Baustein dieses Chiffrendesigns entspricht einem Faktorisierungss-
chritt in einer Gruppenbasis, statt einer echten Faktorisierung wird jedoch eine
konstante Funktion mehrmals iterativ angewandt. Die wesentlichen Vorteile dieses
Ansatzes gegenüber tst sind deutlich reduzierter Speicherbedarf, erhöhter Durch-
satz, und verbesserte Flexibilität. Die Block- und Schlüssellänge sind, genau wie bei
tst, frei wählbar, außerdem ermöglicht das neue Kryptosystem eine freie Justierung
zwischen der Sicherheit, der Geschwindigkeit und dem Speicherbedarf. Mit der
entsprechenden Anzahl von Runden kann die Chiffre hervorragende Sicherheit bi-
eten, was sowohl unsere Kryptanalyse, als auch die statistischen Tests bestätigt
haben.
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Chapter 1

Introduction

People always tried to protect their secrets. Two parties that wanted to exchange
private messages in the past centuries had either to meet in person or to trust a
messenger. As long as the carrier behaved nicely, everything went fine. But once
he got curious or corrupt, nobody could stop him breaking the seal and reading the
message. People were aware of that threat and started very soon using simple forms
of steganography and cryptography to ensure the confidentiality of their messages.
Steganography is the art of communicating in a way which hides the existence of the
communication. Typical example of such a communication is usage of an invisible
ink, or creation of miniature dots under those letters of an innocent looking text
which belong to the actual message. When steganography is used, an unauthorized
person should not even recognize that there is a secret message being sent. On the
other hand, cryptography is the art of protecting information by transforming it into
an unreadable format. The presence of a secret is not hidden anymore, but without
knowing the secret key nobody can understand the message. A simple cryptographic
protection is, for example, usage of a secret alphabet (e.g. hieroglyphs), so that a
person not knowing the alphabet does not understand the message. Such a trans-
formation of the information is called encryption and the inverse transformation is
said to be the decryption. Cryptography is principally stronger than steganography,
because the complete security of steganography resides in the fact that an adversary
does not know that (or how) a secret information is hidden. In cryptography the
complete security resides in the key, so even if an adversary knows the exact method
used, he is not able to recover the message without knowing the key.

The classical simple data protection methods became insufficient with the ad-
vancing technological progress. Nowadays, in the age of computers, networks, and
wireless communication, the volume and the worth of the confidential information
is higher than ever. The technical possibilities of an adversary increased dramati-
cally as well. Large amounts of information can be reproduced, stored, transmitted
(and therefore abused) in just few seconds, so the protection of sensitive data from
unauthorized access becomes extremely important. To protect the kind of infor-
mation whose abuse might cause immense financial losses to a company or whose
confidentiality guarantees the national security of a state one needs cryptography

1



2 1. INTRODUCTION

Encrypt Decrypt

ciphertextplaintext key key

Sender ReceiverAdversary

1p
plaintext

. . .
mp 1p. . .

mp1c. . .
mc

K K

Figure 1.1: Symmetric encryption

which is founded on the most recent scientific knowledge. Beside the protection of
top secret information, there are many everyday applications involving cryptogra-
phy. When we use a mobile phone or a teller machine, when we surf the Internet,
watch pay-tv, or open our car remotely, there is always a cryptographic applica-
tion in the background. In addition to the confidentiality, cryptography provides
for several other information security objectives, like integrity, authenticity, non-
repudiation, etc. Modern cryptography as a public scientific discipline is still rather
young. The complete cryptographic research was held secret for many years, and
the first scientific papers dealing with information security appeared in the late for-
ties. An intensive and systematic (public) cryptographic research started only in the
early seventies. Cryptography is nowadays a very dynamic and rapidly developing
scientific discipline.

According to the principle of work, cryptography can be divided into two major
areas - symmetric cryptography (also called secret-key cryptography), and public-
key cryptography. In symmetric cryptography both communicating parties know the
same secret key which enables them to encrypt and decrypt the messages. When us-
ing public-key cryptography, all communicating parties possess two different keys - a
so-called public key, and a private key. The first one can only be used for encrypting
a message, and the second one only for decrypting it. Figure 1.1 displays a secure
communication by means of symmetric cryptography. Both parties had agreed on a
secret key K beforehand. The sender, who wants to deliver a confidential message
to the receiver, uses K as an input parameter of a symmetric encryption algorithm
which transforms the readable message (plaintext) into an unreadable format (ci-
phertext). The encrypted message is transmitted over an insecure channel (e.g. a
telephone line or a computer network) and is received by the second party. The
receiver transforms the ciphertext into the original message by using the decryption
algorithm and providing K as the input parameter. An adversary who is listening
on the channel is able to eavesdrop the ciphertext, but because he does not know
the secret value K, he is not able to perform the decryption and, hence, can not
understand the message. The sender and receiver can securely exchange an arbitrary
number of messages in this way. The set consisting of an encryption algorithm, the
corresponding decryption algorithm, and the rules regarding formats of plaintexts,
ciphertexts, and keys is said to be a symmetric cryptosystem or a symmetric cipher.
Depending on the way a symmetric cipher processes the message we distinguish block
ciphers, which split a message into blocks of equal length and encrypt each block
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separately, and stream ciphers which encrypt the complete plaintext in one piece.
In this work we will focus our attention on symmetric block ciphers.

There are several desirable properties which a good block cipher should possess.
The most important ones are:

• security - which means that without knowing the key it should be impossible
(or extremely hard) to obtain any information about the plaintext,

• efficiency - meaning that both encryption and decryption procedures should
be fast and should not consume much memory,

• adjustability - meaning that it should be possible to perform a tradeoff between
the provided security level, the encryption speed, and the allocated memory,

• scalability - meaning that both block length and key length should be variable,

• theoretical foundations - meaning that the encryption (and decryption) proce-
dure should base on some mathematical principles.

The first two properties are essential for every cipher. If a cipher is not secure,
there is no reason for using it, and if it is not efficient it usually can not be used for
practical reasons. The theoretical foundations play an important role in the task of
security estimation, because they make it possible to understand and analyze (and
therefore trust) the cipher. The adjustability and scalability enable us to adapt the
cipher for optimal use in various environments and applications (e.g. a small smart
card vs. a powerful supercomputer), and they give us the flexibility and a security
margin which might be necessary in the future. For example, when a breakthrough
in computer technology occurs, making available computers million times faster than
before, we will not have to invent a completely new cipher, we just start using a
longer key. According to the degree of their scalability, block ciphers can be classified
into the following four categories:

• strongly scalable - ciphers supporting any combination of the block length n
and the key length k by design,

• fully scalable - ciphers with some minor restriction regarding the format of n
and k but without upper limits for them,

• partially scalable - ciphers supporting only a finite set of possible values for n
and k,

• not scalable - ciphers where n and k are fixed by design.

Unfortunately, adjustability and scalability are still not common in present block
cipher designs. The first modern symmetric block ciphers, e.g. des [Uni77], idea

[LM91], safer [Mas94b, Mas94a], or Blowfish [Sch94], were not scalable at all. The
development effort for the recent cryptographic standard aes [Nat97] has confirmed
that the future direction of block cipher design will be moving more towards full
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scalability. In particular, the aes candidate ciphers were required to support three
different key lengths. Even though some of the candidate ciphers supported even
multiple block lengths, none of them provided full scalability. There is still a need
for well founded block cipher designs that are fully scalable and adjustable. As the
design of secure and efficient block ciphers is a very complex task involving extensive
theory from several areas of mathematics and computer science, considerable work
has to be done until new, well founded, scalable, and adjustable designs become
widespread.

This thesis is concerned with scalable block cipher designs based on group bases.
A group basis, whose notion was introduced in the late seventies, is a mathematical
object which can be used for constructing both symmetric and public-key cryptosys-
tems. The especial attractiveness of this structure resides in its full scalability and
the strong mathematical foundations. In this work we summarize the state of the
art in symmetric cryptography based on group bases, analyze a recent encryption
scheme, and present some new, more efficient designs. Our analysis of the cryp-
tosystems does not only involve the security aspects, we also discuss the practical
implementation of the cryptosystems including the optimal data representation and
suitable algorithms, and we measure the essential efficiency parameters like memory
requirements, key setup delay, and throughput. The thesis is structured as follows:

• Chapter 2 briefly introduces the theory which is utilized in the thesis. The
fundamental concepts and terminology from group theory, randomness theory,
and block cipher theory are summarized here.

• Chapter 3 describes the current symmetric cryptosystems based on group
bases. The encryption-decryption principles are explained and the properties
of the ciphers are discussed.

• Chapter 4 analyzes the efficiency and security of cryptosystem tst in detail.
At the end of the chapter the advantages and disadvantages of the cryptosys-
tem are discussed.

• Chapter 5 introduces the notion of extended group bases and presents a new
scalable cryptosystem based on this idea. The efficiency and security of the
new cryptosystem is analyzed in detail and compared with cryptosystem tst.

• Chapter 6 presents a simplification of the tst encryption idea, and describes
the design of a new, fully scalable, iterative cryptosystem. Again, the efficiency
and security of the new cryptosystem are analyzed and compared with the
previous two designs.

• Chapter 7 summarizes the achieved results and presents some open problems.

• Appendix A describes the basic empirical randomness tests for binary se-
quences.

• Appendix B describes the battery of statistical tests which have been used for
our generic cipher evaluation.



Chapter 2

Preliminaries

This chapter summarizes the theoretical background which is utilized in the thesis.
We introduce the necessary terminology and notations and describe some techniques
used in the field.

The first section introduces basic definitions from group theory with impact on
the notion of group basis which is substantial for our thesis. For more detailed
introduction to the basic concepts of group theory and permutation groups the
reader is referred to [Big89, Wie64, DM96, But91]. A deeper introduction to group
bases and their properties can be found in [Mag86, Mem89, MM92].

The second section explains the idea of randomness and pseudorandomness and
gives an overview of the available randomness tests. More theory on this topic can
be found in [Knu97, Chap. 3], [Cal94] and [MVV97, Chap. 5].

The third section briefly formalizes the notion of a block cipher and describes the
methods for evaluation of block cipher quality. We present the idea of generic cipher
analysis as well as white box cryptanalysis. More discussion on cipher evaluation can
be found in many scientific papers. A generic cipher analysis is given, for example,
in [SB00] and [Hey97]. An introduction to the common attacks on block ciphers can
be found in [Sti95, Sch96] and some deeper description of analysis techniques can
be found, for instance, in [BS90, Mat94, LMM92, LH94, BBS99].

2.1 Group Theory

The idea of group basis is based on the theory of permutation groups. In what
follows, we will briefly summarize the basic definitions.

2.1.1 Basic Terminology

Definition 2.1.1 Permutation
Let X be a non-empty finite set. A bijective mapping p : X −→ X is called a
permutation of X.

5
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X is usually a contiguous set of integers, typically Nn = {1, 2, . . . , n} or Zn =
{0, 1, . . . , n− 1}. We will preferably use the set Zn because it is more suitable for a
computer representation. There exist exactly n! different permutations for any set
of n elements. The set of all permutations of Zn is denoted by Sn.

A permutation can be written in several notations. The simplest one is the
cartesian notation.

Definition 2.1.2 Cartesian Notation of a Permutation
Let p be a permutation of Zn. The cartesian notation of p is the vector [p(0), p(1),
. . . , p(n− 1)].

For example, the permutation p of Z5 given by values p(0) = 2, p(1) = 4,
p(2) = 3, p(3) = 0 and p(4) = 1 can be written in cartesian notation as [2, 4, 3, 0, 1].
Any two permutations can be composed into a new permutation as follows.

Definition 2.1.3 Composition of Permutations
Let a and b be two permutations of Zn. The product of a and b denoted by c = a ∗ b
is the permutation c of Zn such that c(i) = b(a(i)) for i = 0 .. n− 1.

Notation a ∗ b is usually shortened to ab. The result of the operation a ∗ b is said
to be the product of a and b. The set of all permutations of Zn forms a group with
respect to the composition operation ∗.

Definition 2.1.4 Group
A group G is an ordered pair (G, ∗) where G is a set and ∗ is a binary operation on
G which satisfies the following four axioms:

• For any x, y ∈ G it holds that x ∗ y ∈ G. (Closure)

• For any x, y, z ∈ G it holds that (x ∗ y) ∗ z = x ∗ (y ∗ z). (Associativity)

• There is an element e ∈ G such that e∗x = x∗e = x for all x ∈ G. (Existence
of identity)

• For all x ∈ G there is an x′ ∈ G such that x ∗ x′ = x′ ∗ x = e. (Existence of
inverse)

The element e is called identity and is often denoted by id or 1. The element
x′ usually denoted by x−1 is said to be an inverse element for x. The number of
elements in the set G is denoted by |G| and is known as the order of G. The group
Sn = (Sn, ∗) of all permutations of n elements is known as the symmetric group and
its order is n!.

Definition 2.1.5 Abelian Group (Commutative Group)
Let G = (G, ∗) be a group. G is called abelian when xy = yx for every x, y ∈ G.
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Definition 2.1.6 Subgroup
Let G = (G, ∗) be a group and let H be a non-empty subset of G. If H = (H, ∗) is
a group under the operation ∗ of G, then H is called a subgroup of G and we write
H ≤ G.

If a set G forms a group with respect to a particular operation whose identity
is clear from the context (e.g. permutation composition when speaking about per-
mutation groups), the notation G = (G, ∗) is often simplified to G. In this case one
speaks of “group G” instead of using the accurate description “group G”. We will
prefer the simplified notation as well.

The last few definitions of this section will be utilized in the definition of transver-
sal group basis in the next section.

Definition 2.1.7 Right Coset
Let H be a subgroup of a group G. The right coset Hg of H with respect to an
element g ∈ G is defined to be the set obtained by multiplying each element of H by
g. That is: Hg = {hg | h ∈ H}.

The element g is said to be a coset representative of Hg. Any two cosets Hg1
and Hg2 are either equal or disjoint, i.e. either Hg1 = Hg2 or Hg1 ∩ Hg2 = ∅.
Thus, there exists a unique partitioning of a group G into right cosets of any fixed
subgroup H ≤ G.

Definition 2.1.8 Right Transversal
Let H be a subgroup of a group G. A right transversal of H in G is a complete set of
right coset representatives, i.e. a set {g1, g2, . . . , gk}, gi ∈ G such that Hg1 ∪Hg2 ∪
· · · ∪Hgk = G and Hgi 6= Hgj for every i 6= j.

For more definitions and examples on group theory the reader is referred to
[Big89, DM96].

2.1.2 Group Bases

A group basis (also called logarithmic signature) is a fundamental data structure for
finite permutation groups. The notion was introduced by [Mag86].

Definition 2.1.9 Group Basis (Logarithmic Signature)
Let G be a finite group. A group basis for G is an ordered collection β = (B0, . . . , Bw−1)
of ordered subsets Bi = (bi,0, . . . , bi,ri−1) of G, such that each element p ∈ G can be
expressed uniquely as a product of the form

p = b0,x0 · b1,x1 · · · bw−1,xw−1, bi,xi ∈ Bi.
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Figure 2.1: Basis as a coordinate system

The Bi are called the blocks of β, the vector of block lengths r = (r0, r1, . . . , rw−1)
is called the type of β and the number w is the dimension of β. Each p ∈ G
corresponds to a unique index vector x = (x0, x1, . . . , xw−1), where xi ∈ Zri . The
space of all index vectors is X = Zr0 × Zr1 × · · · × Zrw−1 . The index set X has
cardinality |X| = r0 · r1 · · · rw−1 = |G|.

A basis β describes a bijective mapping β̃ : X −→ G as follows:

β̃(x) = β̃(x0, x1, . . . , xw−1) = b0,x0 · b1,x1 · · · bw−1,xw−1 = p.

When computing p = β̃(x), we say that p is composed from factors bi,xi . Computing
the inverse function x = β̃−1(p) is called factorization of p with respect to β.

We will demonstrate the idea of group basis in a simple example. Example 2.1.1
shows a 2-dimensional group basis for the permutation group S3 with 6 permutations.
The permutation [1, 0, 2] ∈ S3 can be factorized into coordinates (1, 1) with respect
to β.

Example 2.1.1 A Group Basis for G = S3

G = {[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]}
w = 2,
r = (3, 2),

p = [1, 0, 2] = [2, 0, 1] ∗ [0, 2, 1] = b0,1 ∗ b1,1,
thus, the index vector is x = (1, 1), and we write
β̃(1, 1) = [1, 0, 2] resp. β̃−1([1, 0, 2]) = (1, 1)

β

B1 [0, 2, 1] b1,1
[0, 1, 2] b1,0

B0 [1, 2, 0] b0,2
[2, 0, 1] b0,1
[0, 1, 2] b0,0

One can think of a group basis as a kind of w-dimensional discrete coordinate
system as illustrated in Figure 2.1. The six permutations of S3 might be seen as
points in a 2-dimensional space. Any one of the six points can be expressed as a
unique sum1 of two points - one from each axis. The two axes, the first with three,
and the second with two points, correspond to the two blocks of β.

The crucial property of group bases from the cryptographic point of view is the
fact that there is an enormous number of different group bases for a given group.

1Addition of points in this discrete geometry is defined by means of vectors as:
(x1, y1) + (x2, y2) = (x1 + x2 mod 3, y1 + y2 mod 2).
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We denote the set of all bases that generate G by BG. For example, the tiny group
S3 from our example has 924 different bases. 6! of them are one-dimensional bases
of type (6) and 2!.23.3! + 3!.32.2! of them are two-dimensional bases of types (2,3)
and (3,2).

According to the complexity of factorization algorithm, the bases can be classified
as wild, tame or supertame.

Definition 2.1.10 Tame, Supertame and Wild Group Basis
Let G be a group of order n and let β be a group basis of G.

• β is called tame if the factorization with respect to β can be achieved in time
polynomial in n.

• β is called supertame if the factorization with respect to β can be performed in
time O(n2).

• β is called wild if it is not tame.

The elementary operation (i.e. the unit of the measure of complexity) is considered
to be a memory lookup.

Supertame bases are the most suitable for construction of symmetric cryptosys-
tems because of their efficient factorization. On the other hand, the wild bases can be
utilized in the design of one-way functions for public-key cryptosystems [MSvT00].

A special class of group bases - the so called transversal group bases - contains
only bases which are guaranteed to be tame. (For proof see [Hor98, Sec. 2.2].)

Definition 2.1.11 Transversal Group Basis
Let Γ : G0 < G1 < · · · < Gw−1 = G be a chain of subgroups and β = (B0, . . . Bw−1)
a group basis of G such that B0 = G0 and block Bi = (bi,0, bi,1, . . . , bi,ri−1) is a right
transversal of Gi−1 in Gi for all 1 ≤ i ≤ w − 1, i.e. Gi = Gi−1Bi. Basis β is then
called transversal with respect to Γ.

We will denote the set of all transversal group bases for a group G by B∗G. A
supertame transversal basis for Sn of a special form is called the canonical basis α.
This basis is of particular interest for the generation of random transversal group
bases for Sn.

Definition 2.1.12 Canonical Group Basis for Sn
The group basis α = (A0, A1, . . . , An−2) of type r = (2, 3, . . . , n) where every block Ai

contains only permutations ai,j, j = 0 .. i+1, such that ai,j(i+1) = j, ai,j(j) = i+1
and ai,j(x) = x for all x 6= i + 1, j, is called the canonical basis for Sn. The one-
element set ki = {i+ 1} is said to be the key-letter set in Ai.
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2.1.3 Binary Permutation Groups

A permutation group is said to be a binary group (or a 2-group) if its order is a power
of 2. The Sn, for instance, is in general not a binary group because |Sn| = n! 6= 2m

for any n > 2. A special class of 2-groups are the elementary 2-groups.

Definition 2.1.13 Elementary 2-Group
A 2-group G is called elementary when x ∗ x = id for all x ∈ G.

The simplest binary group available is the Abelian (Definition 2.1.5) elementary
2-group denoted by Zn

2 . This group consists of permutations of 2n symbols in form
p = [a0, a1, . . . , a2n−1] such that for every pair of symbols a2k, a2k+1, k ∈ Zn either
a2k = 2k and a2k+1 = 2k+1, or else a2k = 2k+1 and a2k+1 = 2k. Every permutation
p ∈ Zn

2 can be represented very effectively with the so-called compact representation.

Definition 2.1.14 Compact Representation of Elements of Zn
2

Let p = [a0, a1, . . . , a2n−1], be a permutation from Zn
2 . The binary vector x =

(x0, x1, . . . , xn−1), xi ∈ {0, 1} such that xi = 0 if and only if a2i = 2i, otherwise
xi = 1, is called the compact representation of p.

In other words, the i-th bit of the compact representation indicates, whether
or not p affects a swap on positions a2i and a2i+1. The compact representation is
optimal in terms of memory requirements because it uniquely represents any of the
2n permutations of Zn

2 by exactly n bits.

Another benefit of the compact representation is the fact that it enables a direct
and very efficient composition of permutations. Let ⊕ denote a binary xor of two
values. If a binary vector x1 is the compact representation of p1 ∈ Zn

2 and x2 is
the compact representation of p2 ∈ Zn

2 , then the vector x1 ⊕ x2 is the compact
representation of the product p1p2.

Example 2.1.2 Group Z32 and Its Representations
Z32 = (cartesian representation) (compact representation)

[0, 1, 2, 3, 4, 5] 000
[1, 0, 2, 3, 4, 5] 100
[0, 1, 3, 2, 4, 5] 010
[1, 0, 3, 2, 4, 5] 110
[0, 1, 2, 3, 5, 4] 001
[1, 0, 2, 3, 5, 4] 101
[0, 1, 3, 2, 5, 4] 011
[1, 0, 3, 2, 5, 4] 111

Example of the group operation
in cartesian rep. [1, 0, 2, 3, 5, 4] ∗ [0, 1, 3, 2, 5, 4] = [1, 0, 3, 2, 4, 5]
in compact rep. 101⊕ 011 = 110

A systematic n-dimensional group basis of Zn
2 - so called canonical basis - is of

particular importance in the design of symmetric cryptosystems.
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Definition 2.1.15 Canonical Basis for Zn
2

The canonical basis α for Zn
2 has the form α = (A0, A1, . . . , An−1) where for every

i = 0 .. n− 1 the block Ai consists of the following two permutations (written in the
compact representation) ai,0 = (0 . . . 0︸ ︷︷ ︸

n times

) and ai,1 = ( 0 . . . 0︸ ︷︷ ︸
i−1 times

1 0 . . . 0︸ ︷︷ ︸
n−i times

).

The first element of every block Ai is the identity and the second element is
the permutation performing a single swap on the positions 2i and 2i+ 1. The one-
element set ci = {i} is called the set of key bit positions for block Ai. It plays an
important role during factorization with respect to α.

In contrast with Zn
2 , the group Hs is the most complex 2-group. Hs, known as

the Sylow 2-subgroup of Sn, is the largest binary subgroup of the full symmetric
group. When n = 2s, the order of Hs is 22

s−1.

Definition 2.1.16 Sylow 2-subgroup Hs of the symmetric group Sn, n = 2s.
The group Hs is defined recursively as follows:

• H1 = Ts

• Hs = (Hs−1 ×Hs−1) · Ts, for s > 1.

The group Ts = {ι, τs} consists of two permutations of 2s elements. ι is the
identity and τs is an involution which swaps the two halves {0, . . . , 2s−1 − 1} with
{2s−1, . . . , 2s − 1}, each of length 2s−1. For example T1 = {[0, 1], [1, 0]}, T2 =
{[0, 1, 2, 3], [2, 3, 0, 1]}, etc. The product (Hs−1 × Hs−1) · Ts is called the wreath
product of Hs−1 with Ts. Example 2.1.3 presents the three smallest Sylow groups
and their orders.

Example 2.1.3 Hs for s = 1, 2, 3

H1 = T1 = {[0, 1], [1, 0]}
|H1| = 22

1−1 = 2

H2 = (H1 ×H1) · T2 = {[0, 1, 2, 3], [1, 0, 2, 3], [0, 1, 3, 2], [1, 0, 3, 2],
[2, 3, 0, 1], [2, 3, 1, 0], [3, 2, 0, 1], [3, 2, 1, 0]}

|H2| = 22
2−1 = 8

H3 = (H2 ×H2) · T3 = {[0, 1, 2, 3, 4, 5, 6, 7], . . . , [7, 6, 5, 4, 3, 2, 1, 0]}
|H3| = 22

3−1 = 128

As for Zn
2 , everyHs also has a unique canonical basis αs. Each of the 2s−1 blocks

contains two permutations and has one key bit position ci = {i}. αs is constructed
recursively as follows:
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Example 2.1.4 Canonical Basis for Hs, s = 1, 2, 3, . . .

α1 :
[1, 0]

A0 [0, 1]
α2 :

[2, 3, 0, 1]
A2 [0, 1, 2, 3]

[0, 1, 3, 2]
A1 [0, 1, 2, 3]

[1, 0, 2, 3]
A0 [0, 1, 2, 3]

α3 :

[4, 5, 6, 7, 0, 1, 2, 3]
A6 [0, 1, 2, 3, 4, 5, 6, 7]

[0, 1, 2, 3, 6, 7, 4, 5]
A5 [0, 1, 2, 3, 4, 5, 6, 7]

[0, 1, 2, 3, 4, 5, 7, 6]
A4 [0, 1, 2, 3, 4, 5, 6, 7]

[0, 1, 2, 3, 5, 4, 6, 7]
A3 [0, 1, 2, 3, 4, 5, 6, 7]

[2, 3, 0, 1, 4, 5, 6, 7]
A2 [0, 1, 2, 3, 4, 5, 6, 7]

[0, 1, 3, 2, 4, 5, 6, 7]
A1 [0, 1, 2, 3, 4, 5, 6, 7]

[1, 0, 2, 3, 4, 5, 6, 7]
A0 [0, 1, 2, 3, 4, 5, 6, 7]

αs :

Îs−1 Is−1

Is−1 Îs−1

Js−1 α̂s−1

αs−1 Ĵs−1

Is = {0, 1, . . . 2s − 1},
Îs = 2s + Is = {2s, 2s + 1, . . . 2s+1 − 1}
Js denotes a (2s+1 − 2)× 2s array each row of which is equal to Is,
Ĵs = 2s + Js.

The elements of Hs can also be written in compact representation which is op-
timal in terms of memory.

Definition 2.1.17 Compact Representation of Elements of Hs

Let p be a permutation from Hs. The binary vector α̃−1s (p) = (x0, x1, . . . xw−1),
w = 2s − 1, is called the compact representation of p.

A conversion between the cartesian and compact representation of permutations
in Hs is straightforward and can be performed very effectively [Hor98]. The per-
mutation composition in Hs is a non-commutative and non-linear operation. It
can be performed directly in the compact representation according to the following
algorithm:

Algorithm 2.1.1 Product of Permutations of Hs in Compact Representation
Let the binary vectors a = (a0, . . . , an−1), n = 2s − 1, consisting of bits ai ∈ {0, 1},
and b = (b0, . . . , bn−1), consisting of bits bi ∈ {0, 1}, be two permutations of Hs, both
written in the compact representation. The product c = a ∗ b can be computed as
follows:

input a, b

set c = (0, 0, . . . , 0)

call MulPart(0, 0, n− 1)

output c

where the recursive procedure MulPart(ia, ib, l) is defined as follows:
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set t = aia+l

if l > 1 then

set l′ = l/2

if t 6= 0 then

call MulPart(ia, ib + l′, l′ − 1)
call MulPart(ia + l′, ib, l

′ − 1)

else

call MulPart(ia, ib, l
′ − 1)

call MulPart(ia + l′, ib + l′, l′ − 1)

endif

endif

set cia+l = t⊕ bib+l

The inverse operation c = a/b = a∗b−1 can be performed directly in the compact
representation as well.

Algorithm 2.1.2 “Division” of Permutations of Hs in Compact Representation
Let all the assumptions from Algorithm 2.1.1 be fulfilled. The operation c = a/b =
a ∗ b−1 also known as the inverse product of a and b can be computed as follows:

input a, b

set c = (0, 0, . . . , 0)

call DivPart(0, 0, n− 1)

output c

where the recursive procedure DivPart(ia, ib, l) is defined as follows:

set t = aia+l ⊕ bib+l
if l > 1 then

set l′ = l/2

if t 6= 0 then

call DivPart(ia, ib + l′, l′ − 1)
call DivPart(ia + l′, ib, l

′ − 1)

else

call DivPart(ia, ib, l
′ − 1)

call DivPart(ia + l′, ib + l′, l′ − 1)

endif

endif

set cia+l = t
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2.2 Randomness

Random values are used by many computer applications, e.g. games, scientific sim-
ulations, numerical Monte Carlo methods and, last but not least, in cryptographic
primitives. Typical examples of cryptographic processes which need some source
of randomness are generation of secret keys, prime number generation, stream ci-
phers based on the one-time pad principle, key-exchange protocols, secret sharing
protocols, and many others. The quality of randomness in cryptography must be
particularly high, because even smallest patterns or biases in a used “random” se-
quence might be exploited by an adversary and possibly completely disrupt the
cryptosystem. In what follows we will introduce the notion of randomness and
pseudorandomness and present some methods for testing of randomness quality.

Definition 2.2.1 Random Number Sequence (RNS)
Let m ∈ Z, be a fixed integer, m ≥ 2. A sequence of statistically independent
and uniformly distributed integers x0, x1, . . . , xl, where every xi ∈ Zm, is called a
random number sequence. In the particular case when m = 2 we speak of a random
bit sequence (RBS).

Value m is said to be the range of the sequence. Note that a truly random
sequence of bits can be easily converted into a truly random sequence of numbers
with any range m and vice versa, so there is neither a need to state the value m
when speaking about an rns, nor strictly differentiate between a rns and a rbs.

True randomness can only be achieved by a device based on some non-deter-
ministic physical source of randomness, e.g. thermal noise from a semiconductor
diode, time between emissions of particles during radioactive decay, etc. Such a
device is called a random number generator (rng). The major advantage of a rng

is that its output is really random. However, the non-determinism of the generated
sequence (i.e. the fact that the output cannot be reconstructed in the future) is
inconvenient in some cases. Also the complexity and costs2 of a rng are to high for
some applications. For these reasons a pseudorandom number generator (prng) is
often used instead of a rng.

Definition 2.2.2 Pseudorandom Number Generator (PRNG)
A pseudorandom number generator is a deterministic algorithm which, given a truly
random binary sequence of length k, outputs a binary sequence of length lÀ k which
“appears” to be random. The input to the prng is called the seed and the output is
called a pseudorandom number sequence (prns).

The output of a prng is not random. In fact, only a very small fraction 2k of
the total 2l possible sequences can be generated. However, to sufficiently fulfill its
role, it is usually enough for a prns if we cannot distinguish it from a rns by means
of statistics.

2Note that we really need a physical device. This task cannot be accomplished by a pure
algorithm.
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Again, there is an analogy between the notions of prng and prbg (pseudoran-
dom bit generator) so they can be used in place of each other. We will stick to
prng.

A simple example of a prng is the linear congruential generator. Output of this
generator is too weak for most cryptographic purposes.

Algorithm 2.2.1 Linear Congruential PRNG
Let m be a fixed range and let x0 ∈ Zm be a seed. The linear congruential prng

generates a sequence of numbers from Zm, x1, x2, . . . according to the recurrence

xn = a · xn−1 + b mod m,

where a and b are the parameters which characterize the generator.

Many suitable combinations of parameters a, b and m (e.g. a = 48271, b = 1
and m = 231 − 1) can be found in [Knu97].

2.2.1 Evaluation of Randomness Quality

Definition 2.2.2 defines a prns as a sequence which “appears” to be random. This
formulation is rather vague and, in fact, it is not a trivial problem to estimate how
much random a particular prns is. A human who would be presented 10000 bits,
such that all of them would be zeros, would very probably think that the sequence
is “definitely not random” and would reject the appropriate prng as “very weak”.
However, the sequence of 10000 zeros should be generated with the same probability
as any other particular sequence of 10000 bits, and so it should appear even by
a perfect rng. Hence, when estimating the quality of a prng, we can not make
definite conclusions, but rather probabilistic. We can say that the generator which
produced a sequence of 10000 zero bits is with very high probability not good, but
there is still some small probability that we are wrong.

The following two distributions of continuous random variables are widely used
in statistical testing.

Definition 2.2.3 The Normal Distribution
A continuous random variable X has a normal distribution with mean µ and variance
σ2 if its probability density function is defined by

f(x) =
1

σ
√
2π
· e−

(x−µ)2

2σ2 , −∞ < x <∞.

X is said to follow N(µ, σ2) distribution. The special case N(0, 1) is called the
standard normal distribution.



16 2. PRELIMINARIES

Definition 2.2.4 The χ2 Distribution
Let v > 1 be an integer. A continuous random variable X has a χ2 (“chi-square”)
distribution with v degrees of freedom if its probability density function is defined by

f(x) =

{
1

Γ(v/2)·2v/2
· x(v/2)−1 · e−x/2, 0 ≤ x <∞

0, x < 0

where Γ is the gamma function defined as Γ(t) =
∫∞
0 xt−1 · e−xdx for t > 0. The

mean and variance of this distribution are µ = v and σ2 = 2v.

Let us now briefly summarize the principles and notions of statistical testing. A
statistical hypothesis H0 is an assertion about a distribution of a random variable.
A test of a statistical hypothesis is a procedure that is based on observation of the
random variable and that leads to the (probabilistic) acceptance or rejection of H0.
The significance level α of the test of a hypothesis H0 is the probability of rejecting
H0 when it is true. Such a wrong decision is called a type I error. The case when a
wrong H0 is accepted is said to be the type II error. In practice one usually chooses
a significance level between 0.001 and 0.05 for the performed tests. A statistical test
is implemented by specifying a statistic on the random sample, i.e. some function
of the elements of the sample. Statistics are chosen so that they can be efficiently
computed (e.g. number of zeros in a sequence of bits) and they follow an N(0, 1) or
a χ2 distribution. The value of statistic X for a sample sequence is computed and
compared with the value expected for a truly random sequence as described below.

• Suppose that for a true rns a statistic X follows a χ2 distribution with v
degrees of freedom and takes on larger values for non-random sequences. To
achieve a significance level α a threshold value xα is chosen so that P (X >
xα) = α. If the valueXs of the statistic for a sample sequence satisfiesXs > xα,
then the sequence fails the test, otherwise it passes the test. Such a test is
called a one-sided test.

• Suppose that for a true rns a statistic X follows an N(0, 1) distribution and
takes on both larger and smaller values for non-random sequences. To achieve
a significance level α a threshold value xα is chosen so that P (X > xα) =
P (X < −xα) = α

2 . If the value Xs of the statistic for a sample sequence
satisfies Xs > xα or Xs < −xα, then the sequence fails the test, otherwise it
passes the test. Such a test is called a two-sided test.

Tables of probabilities P (X > x), so-called percentiles, for both N(0, 1) and χ2

distributions can be found for instance in [MVV97, p. 177–178].

The randomness tests can be divided into two classes - the empirical and the
universal tests. An empirical randomness test evaluates whether a sample sequence
possesses one specific property that should be present by a rns. We list some typical
representatives of empirical tests in Appendix A. On the other hand, a universal
randomness test is able to detect any one of a very general class of possible defects
a generator may have. This includes all defects that are detectable by the basic
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tests. A universal test is usually based on an entropy estimation, achieved e.g.
by trying to compress the sequence using a universal source coding [Mau92b] or
by measuring the Ziv-Lempel complexity of the sequence [Hey97]. A drawback of
universal randomness tests over the simple tests is that the universal tests need a
much longer sample sequence in order to be effective. For example, the Maurer test,
introduced in [Mau92b], should theoretically be executed on more than 126 MB of
data when used with parameter L = 16. For this reason batteries of tests are often
used in practice. A battery usually consists of many basic tests and a generator is
considered as satisfactory only if it passes all of them. This approach combines the
advantages of both empirical and universal tests because it detects a very general
class of defects even on a sample of a reasonable length. Some representatives of
test batteries are for instance the FIPS 140-1 [Nat94], the DieHard [Mar97] and the
battery used in [SB00].

2.3 Block Ciphers

This section provides a short overview of basic cryptographic notions with impact
on block ciphers and their evaluation.

Definition 2.3.1 Cryptosystem
A cryptosystem is a five-tuple (P, C,K, E ,D), where P is a finite set of possible
plaintexts, C is a finite set of possible ciphertexts, K is a finite set of possible keys,
E is a set of mappings P −→ C and D is a set of mappings C −→ P, such that for
every K ∈ K there exists an encryption rule eK ∈ E and a decryption rule dK ∈ D
having the property dK(eK(x)) = x for every x ∈ P.

The spaces P, C and K can be any mathematical spaces in general. However,
subspaces of the space of binary vectors {0, 1}n, n ∈ Z, are most suitable for practical
use. The plaintext and ciphertext space are usually equal, i.e. P = C. In this case
they are both called message space and are denoted byM.

Note that the set E of functions eK can be optionally considered as a single
function with two input parameters, i.e. e : K × P −→ C. Analogously, D can be
considered as a single function d : K × C −→ P. Nevertheless, in both cases the
simplified notation eK(x) and dK(x) is typically preferred to the longer e(K,x) and
d(K,x).

Definition 2.3.2 Symmetric Cryptosystem
A cryptosystem (P, C,K, E ,D) is said to be symmetric if for every K ∈ K it is
computationally easy to obtain the appropriate dK ∈ D from an eK ∈ E and vice-
versa.

Definition 2.3.3 Block Cipher
A block cipher is a cryptosystem which breaks up the plaintext messages into blocks
of fixed length n and encrypts one block at a time.
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The two characteristic parameters of a symmetric block cipher are the block
length n and the key length k (both in number of bits). The corresponding message
space and key space areM = Z2n and K = Z2k respectively. If a cipher is iterative,
the number of rounds r is another characteristic parameter.

Definition 2.3.4 Iterative Cipher
A block cipher using an encryption function of the form:

eK(x) = f(kr, f(kr−1, f(. . . f(k1, x) . . .)))

is called an r-round iterative cipher. The function f : K′ ×M −→ M is said to
be the round function, and the values k1, k2, . . . , kr ∈ K′ are the round keys. The
function g : K −→ K′(r) is called the key schedule mechanism.

Let x ∈ P be a plaintext and y ∈ C, be the corresponding ciphertext obtained
by an encryption y = eK(x) using a secret key K ∈ K. The Kerckhoff’s principle
says that the whole security of a cipher should reside in the secrecy of the key, not
in the secrecy of the algorithm. This means that knowing y but not knowing K it
should not be possible to obtain any information about x - even if both encryption
and decryption algorithms are publicly known.

The purpose of an attack on a block cipher in terms of practical security is con-
structing a function d′ which is identical to the secret decryption rule dK . If an
adversary is able to accomplish this task, he will be able to decrypt all future ci-
phertexts until the active key is changed. As the encryption and decryption rules
are publicly known, d′ is usually constructed by recovering the secret key K. Ac-
cording to the information available, the attacks can be classified as ciphertext-only
attack, known-plaintext attack, chosen-plaintext attack, etc. The simplest kind of
known-plaintext attack is the so-called brute force attack based on the exhaustive
key search. This attack, given a known pair (x, y), computes x′ = dK′(y) for all pos-
sible K ′ ∈ K until the correct value K leading to x′ = x is found. The brute force
attack finds the correct key on average after 2k−1 trial decryptions3 and, hence, its
complexity is O(2k−1). This number of computations is infeasible for usual values of
k (i.e. k ≥ 64). A cipher is said to be practically secure when the complexity of the
best possible attack against it is the same as the complexity of a brute force attack.

A more strict notion of security says that a cipher is secure when no oracle
circuit can distinguish between the encryption function eK and a truly random
permutation of 2n elements (see e.g. [LR88, ZMI90, Mau92a, NR97]). In this case the
purpose of an attack is just to distinguish (not to recover) the encryption function.
Obviously, if we cannot distinguish eK from a random permutation, we can by no
means attack the cipher. Such a cipher is theoretically secure. Hereby we say that
the cipher provides pseudorandomness if it is resistant against a distinguishing oracle
which is only allowed to perform chosen plaintext attack, and the cipher provides

3When k > n, it is principally possible to reconstruct dK , without finding K. The complete
dK , as a table of 2n rows, can be reconstructed by just 2n − 1 < 2k−1 trial encryptions. This
chosen-plaintext attack with complexity O(2n) is another type of a brute force attack.
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super-pseudorandomness when the oracle is allowed to perform chosen plaintext and
ciphertext attack.

A perfect block cipher providing the best possible security for a given block length
n and key length k can be (theoretically) designed as follows. One generates a set
of 2k randomly chosen permutations p0, p1, . . . , p2k−1 of 2

n elements and defines the
encryption function eK : {0, 1}n −→ {0, 1}n as eK(x) = pK(x). The corresponding
decryption function dK : {0, 1}n −→ {0, 1}n will be defined as dK(x) = p−1K (x).
This construction is perfect in terms of security, but can not be used in practice.
The table of 2k random permutations of 2n elements occupies 2k · 2n · n bits of
memory which is an astronomically large number for any of the nowadays typical
configurations (n, k). For instance, when (n = 128, k = 128), the required memory
space is 2240 megabytes.

Practical block ciphers only simulate the optimal block cipher by combining the
two basic Shannon’s techniques.

• Confusion - obscures the relationship between the plaintext, the ciphertext
and the key (e.g. by using a substitution component).

• Diffusion - spreads the information from the plaintext over the whole cipher-
text (e.g. by using a transposition component).

A typical building block for a block cipher design is the so-called S-box (the “s”
stays for substitution here). A u-on-v-bit S-box is a table consisting of 2u rows,
each containing an v-bit binary value. Such a table, embedded in the cipher design,
is used to increase the confusion by transforming some u-bit input value x into
a randomly looking v-bit output value y. More formally, an S-box implements a
random mapping S : {0, 1}u −→ {0, 1}v and we write S(x) = y. S-boxes are usually
defined as fixed tables, but some ciphers employ key-dependent S-boxes as well.
Moreover, S-boxes with special properties are sometimes used, for instance, a P-
box is an u-on-u-bit S-box, such that S(x) 6= S(x′) for all x 6= x′. Such an S-box
implements a permutation of 2u elements.

Another typical building block of block ciphers is a transposition (also called a
shuffle). A transposition can act at the bit level (i.e. a bit shuffle), or at the level of
whole bytes or words. The main reason for such a transformation is increasing the
diffusion of the cipher by permuting the parts of an input.

A typical block cipher combines various S-boxes, transpositions, and other trans-
formations to achieve strong confusion and diffusion. In this way the behavior of
the perfect block cipher, described above, is simulated.

2.3.1 Evaluation of Encryption Quality

The main task of a cipher is transforming a message in such a way that it cannot be
recovered without the knowledge of the proper key. As for any practical problem,
there are many proposals (i.e. encryption algorithms) suggesting how to accomplish
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this task, and we need some methods which enable us to rate the quality of a
particular cipher and to make comparisons among several ones. However, unlike
most practical problems, in cryptography there is no simple metric to evaluate the
quality of a particular encryption algorithm. To compare ciphers we have to utilize
extensive statistical computations and the achieved results will be only probabilistic.

It is important to stress that, except for very trivial cases, we cannot prove that
a particular cipher is secure. We only can prove that a cipher is not secure, for
example, if we can find an attack which is faster than an exhaustive key search.
If we expose a cipher to more and more attacks and are still not able to find any
weakness, we get better and better confidence (not proof) that the cipher is strong.

Due to the confusion and diffusion performed by the encryption function the
information contained in a plaintext is scrambled and spread and, consequently, all
redundancy (i.e. patterns or multiplicity) in the message is destroyed. It follows
that a good block cipher produces a very strong pseudorandom output when used
properly. Methods for evaluation of block ciphers try to find some irregularities
or biases in the encryption algorithm by means of statistics. According to utilized
knowledge about the tested cipher the methods can be classified as generic evaluation
methods (also called black box cryptanalysis) and white box evaluation methods. In
both cases a successful result of an evaluation is only a necessary but not a sufficient
condition for a cipher to be secure. If a cipher failed the evaluation, we know that it
is not secure; if it passed we believe that it is secure. Only a combination of several
evaluations and years of analysis can show a strong evidence that a particular cipher
is strong.

2.3.1.1 Generic Evaluation Methods

When using a generic evaluation method, we do not need to know the exact design
of the examined cipher. This approach is also called the black box cryptanalysis.
We either treat the cipher as a binary transformation and explore the dependencies
between the input and the corresponding output by means of statistics, or we treat
the cipher as a set of permutations and examine the group theoretic properties of
this set (e.g. closeness, distribution of element distances, etc.). In both cases we
test, whether the produced data have the properties expected from an output of the
ideal block cipher, using an extensive randomness testing.

The big advantage of the generic methods is their versatility which makes them
immediately applicable to any block cipher. On the other hand, this approach does
not provide us with an exact attack even if some defect has been found. In other
words, using a generic analysis method, we can find out that “there is something
wrong about that cipher” but we do not necessarily know how to exploit the weak-
ness. Nevertheless, when observing such a defect, we can at least detect whether
the particular cipher is being used or not, which should not be possible with a good
cipher.

A generic evaluation method based on randomness testing, as described for ex-
ample in [Hey97, SB00], usually consists of three independent stages shown in Fig-
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Figure 2.2: Example of a generic cipher evaluation

ure 2.2. In the first step one uses the tested cipher for producing a data sequence
which should possess very good pseudorandomness properties. In our example the
data are generated by encrypting a zero sequence in cbc mode. In the second step
one applies some randomness tests on the generated sequence and obtains the ap-
propriate X values (see also Section 2.2.1). In the final step the X values are either
accepted or rejected depending on the used significance level, and possibly some
graphical output is produced for better data visualization.

2.3.1.2 White Box Evaluation Methods

The white box cryptanalysis tries to find some weakness in the way the cipher is
working, thus, the necessary condition for its applicability is the exact knowledge
of design of the examined cipher. A common principle of these methods consists
in observing some characteristic through the encryption rounds and searching for
a statistically significant imbalance. Two typical approaches are differential crypt-
analysis, which examines a sequence of differences between the input and an in-
termediate result after few rounds [BS90], and linear analysis which examines the
sequence of so-called input-output sums [Mat94]. There are also some modifications
and combinations of the two basic principles, like the analysis of impossible differ-
entials [BBS99], the differential-linear analysis [LH94], etc. A typical target for this
kind of analysis are the fixed S-boxes. Therefore, when S-boxes are used in a cipher
design, they should have a sufficient size and should fulfill some non-trivial criteria
(see e.g. [AT90]).

The disadvantage of a white box analysis is the fact that it requires a very detailed
and sophisticated examination of the building blocks for a particular cipher. This
is a time-consuming task, because it usually cannot be automated and has to be
performed by an experienced person. Moreover, it has to be performed for every
cipher separately. The advantage of this approach is, however, that once we have
found a weakness, we usually can mount a chosen ciphertext attack4 and estimate
its complexity. Hence, white box evaluation methods provide an excellent measure
for cipher strength.

4These attacks are highly theoretical and require trial encryptions of such a huge amount of data
that they cannot be accomplished in a feasible period of time.
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Chapter 3

Current Symmetric

Cryptosystems Based on Group

Bases

This chapter presents the state of the art in symmetric cryptography based on
group bases. We describe the two major cryptosystems that utilize group bases,
and discuss their properties and some practical implementation issues. Familiarity
with the theory introduced in Section 2.1 is a prerequisite for reading this chapter.

In the first section we explain the idea of point mapping and coordinate mapping
in general. The second section is concerned with the cryptosystem pgm which
utilizes the full symmetric group Sn. A newer cipher tst which is based on the
Sylow 2-subgroup of the symmetric group is introduced in the third section. In both
cases we present the detailed encryption setup and the key generation procedure.
Furthermore we list the advantages and disadvantages of the cryptosystems. The
final fourth section of this chapter summarizes the properties of the introduced
ciphers and lists some open questions that need to be answered.

For more information on pgm the reader is referred to [Mag86, MM92], and tst

is described in detail in [Hor98].

3.1 Encryption Principle

When speaking about the cryptosystems based on group bases, the underlying
groups are always finite permutation groups. The principle of symmetric encryp-
tion utilizing group bases can easily be explained when we think of a group basis
as a coordinate system. This analogy has already been presented in Figure 2.1. A
finite permutation group G can be imagined as an w-dimensional discrete geomet-
ric space. Every permutation in G corresponds to a point in the space. A group
basis as coordinate system consists of axes (blocks), each containing several points
(permutations). Every point in the space can be uniquely described by a vector of
coordinates with respect to a particular basis.

23
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Figure 3.1: A mapping of points between two coordinate systems

Because there exist extremely many different group bases for any particular
group (see e.g. [MM92]), we can pick two tame bases β1 and β2 at random and
perform a mapping of points from β1 to β2 or vice versa. This idea is illustrated in
Figure 3.1. The 2-dimensional space in our example consists of 16 points. Both β1
and β2 are two dimensional bases of type (4, 4). The point 14 is decomposed with

respect to β1 into coordinates (2,3), i.e. β̃1
−1

(14) = (2, 3), and the composition of
a point with the same coordinates in β2 leads us to the point 10, i.e. β̃2(2, 3) = 10.
By mapping all other points in an analogous way we obtain a bijective mapping
on Z16 as displayed on the right hand side of the figure. This mapping is defined
by the pair of group bases (β1, β2) and the inverse mapping can be computed in
a very similar way - one only has to use the bases in the opposite order (β2, β1).
Both described transformations can only be performed with the knowledge of β1 and
β2, and because both β1 and β2 are tame, these transformations can be performed
efficiently. A symmetric block cipher based on this idea is defined as follows:

Definition 3.1.1 A Block Cipher Based on Point Mapping
Let G be a finite group, called the carrier group. Let λ : Z|G| −→ G be any fixed
bijective mapping. The plaintext and ciphertext spaces for the cipher are the same:
P = C = Z|G|. The key space is the set K = B∗G × B∗G.

Let K = (β1, β2) ∈ K be a secret key. Let x ∈ P be a plaintext and y ∈ C the
corresponding ciphertext. The encryption function eK : P −→ C is defined by the
rule

y = eK(x) = λ−1(β̃2(β̃1
−1

(λ(x))))

and the decryption function dK : C −→ P is defined as

x = dK(y) = λ−1(β̃1(β̃2
−1

(λ(y)))).

A slight modification of the point mapping described above is the principle of
coordinate mapping. By this approach one does not factorize a point into a co-
ordinate vector which is passed for composition to the second basis. Instead, one
composes a point from a coordinate vector and passes the point to the second basis
for factorization. Consequently, a unique numbering of coordinate vectors (instead
of a numbering of points) is needed.
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Definition 3.1.2 A Block Cipher Based on Coordinate Mapping
Let G be a finite group, called the carrier group. The plaintext and ciphertext spaces
for the cipher are the same: P = C = Z|G|. The key space is the set K = B∗G × B∗G.

Let β1 ∈ B∗G be a basis of type r = (r0, . . . , rw1−1) having the index space X1 =
Zr0 × · · · × Zrw1−1, let β2 ∈ B∗G be a basis of type r′ = (r′0, . . . , r

′
w2−1

) having the
index space X2 = Zr′0

× · · · × Zr′w2−1
, and let K = (β1, β2) be the secret key. Let

λ1 : Z|G| −→ X1 and λ2 : Z|G| −→ X2 be two fixed bijective mappings. Let x ∈ P
be a plaintext and y ∈ C the corresponding ciphertext. The encryption function
eK : P −→ C is defined by the rule

y = eK(x) = λ−12 (β̃2
−1

(β̃1(λ1(x))))

and the decryption function dK : C −→ P is defined as

x = dK(y) = λ−11 (β̃1
−1

(β̃2(λ2(y)))).

In contrast with the point mapping, when performing coordinate mapping, we
need two functions λ depending on the types of the used group bases. In fact, we
need a whole class of functions providing a unique instance for every possible basis
type r.

One should note that the number of dimensions in which we describe a group G is
not an intrinsic property ofG, it depends on the basis we use. For example, any of the
86400 seconds of a day can be noted uniquely in one-dimensional coordinates Z86400
as well as in three-dimensional coordinates Z24×Z60×Z60 (i.e. current hour, minute
and second). It follows that the same group can be seen e.g. as one-dimensional
or as three-dimensional, depending on the group basis used. Consequently, the two
bases β1 and β2 used as the secret key in both presented encryption setups do neither
need to be of the same type, nor of the same dimension.

Both presented encryption setups are general and therefore rather flexible. Each
of them defines a whole family of block ciphers. Depending on the order of the used
carrier group one can construct ciphers of different block lengths. (i.e. the ciphers are
scalable.) The complexity of the group has impact on the security and efficiency of
the ciphers. Dimensions of the bases affect the memory requirements and, through
the size of the key space, also the security of the ciphers. (i.e. the ciphers are
adjustable.) The numbering functions λ have no cryptographic importance, but
their proper choice can improve the efficiency of a particular cipher. All in all, one
can generate many ciphers with very different properties from the same specification,
depending on the particular configuration used.

Beside the flexibility, the two presented encryption schemes have another specific
property - a huge key space. The “classical” block ciphers (e.g. des, idea or rc6)
use a relatively short binary sequence as their key. Usual key lengths k lie between
64 and 192 bits. The corresponding key space Z2k is by several order of magnitudes
smaller than the key space B∗G × B∗G of the ciphers based on group bases [MM92].
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3.2 Cryptosystem PGM

The cryptosystem pgm was introduced in [Mag86]. It is based on the idea of coordi-
nate mapping (Definition 3.1.2) and utilizes the full symmetric group Sn as a carrier
group. The functions λ1, λ2 are based on the so-called knapsack transformation.

Definition 3.2.1 Knapsack Transformation
Let x ∈ Z|G| be an integer. Let X = Zr0 × · · · × Zrw−1 be the index space of a group
basis of type r = (r0, . . . , rw−1). The knapsack transformation λ : Z|G| −→ X de-
composes x into components x0, . . . , xw−1, such that xi ∈ Zri, and x = Rw−1xw−1+
· · ·+R1x1+x0 where Ri are the so-called knapsack numbers defined by the recurrence
R0 = 1 and Ri = Ri−1 · ri−1 when i > 0.

Several algorithms for computation of λ and λ−1 as well as their efficient hard-
ware implementation are discussed in [Hor98, Chap. 4].

3.2.1 Key Generation

A key K of pgm consists of a random pair of transversal group bases, i.e. K ∈
B∗Sn × B∗Sn . Most other conventional block ciphers use keys in the form of a k-bit
binary sequence, i.e. K ∈ Z2k . This simpler key format is more suitable for practical
use, because it can be generated, memorized, handled and stored more easily than
a pair of transversal group bases. Moreover, most cryptographic protocols and
standards expect a key in the form of a binary sequence. Hence, to make pgm

more convenient and practical, we need a deterministic algorithm for generating
pseudorandom pairs of transversal group bases from a given binary key.

One efficient approach to generation of pseudorandom transversal group bases is
based on the following transformations.

Definition 3.2.2 Transformations on Group Bases
Let β be a transversal group basis of a group G and let r = (r0, . . . , rw−1) be the type
of β. We define the following transformations on B∗G:

• T1: Commutative Block Shuffle performs an arbitrary number of elementary
block swaps. An elementary block swap exchanges two randomly chosen ad-
jacent blocks Bi = (bi,0, . . . , bi,ri) and Bi+1 = (bi+1,0, . . . , bi+1,ri+1) such that
bi,j ∗ bi+1,k = bi+1,k ∗ bi,j for every j ∈ Zri and k ∈ Zri+1 .

• T2: Block Fusion performs an arbitrary number of elementary fusions. An el-
ementary fusion replaces two randomly chosen, adjacent blocks Bi = (bi,0, . . . ,
bi,ri−1) having the key-letter set ci and Bj = (bj,0, . . . , bj,rj−1), j = i+ 1, hav-
ing the key-letter set cj by a single longer block B′i = Bi ⊗ Bj = (bi,m ∗ bj,n :
m ∈ Zri , n ∈ Zrj ) having the key-letter set c′i = ci ∪ cj. The transforma-
tion changes the type of the basis from r = (r0, . . . , ri, ri+1, ri+2, . . . , rw−1) to
r′ = (r0, . . . , ri · ri+1, ri+2, . . . , rw−1) and decreases the dimension of the basis
from w to w − 1.
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• T3: Randomization replaces each bi,j, i = 1, . . . , w − 1, j ∈ Zri by b′i,j =

bi,j ∗
∏i−1

k=0 bk,lk , where lk ∈ Zrk is chosen randomly for every combination of
i, j and k.

• T4: Element Shuffle randomly changes the order of the elements within each
block Bi, i ∈ Zw.

• T5: Conjugation replaces all elements bi,j, i ∈ Zw, j ∈ Zri by b
′
i,j = g−1∗bi,j∗g,

where g is a randomly chosen fixed permutation from G.

All these transformations preserve the transversality of a processed group basis,
i.e. if β is a transversal group basis for a group G, then β ′ = Ti(β), 1 ≤ i ≤ 5, is a
transversal group basis for G as well. (For proof see [Hor98, Sec. 2.3].) T1 to T5 are
not the only transformations with this property, but are the most straightforward
and practical ones. For more examples of group basis transformations and a deeper
theory on the topic see [MM92].

A single pseudorandom transversal group basis for a group G can be generated
by the following algorithm.

Definition 3.2.3 Basis Generation Algorithm (BGA)
Let G be a permutation group and let β0 be a transversal group basis for G. bga

performs a sequence of transformations β1 = T1(β0), β2 = T2(β1), . . ., β5 = T5(β4)
and outputs the randomized basis β = β5.

When used with pgm, bga has to be performed twice in order to obtain a pair
of pseudorandom bases. The initial permutation β0 is set to the canonical basis α
of Sn (Definition 2.1.12).

Because of the randomizing character of Ti the bga needs a source of ran-
domness. All randomizing steps executed during the transformations Ti should be
performed according to an output of a pseudorandom number generator (prng) ini-
tialized by a seed K. The k-bit binary value K ∈ Z2k is an important input of the
bga and, because K uniquely determines the generated pair of bases (β1, β2), it can
be used as the secret key of pgm. The definition of pgm itself does not specify any
particular algorithm to be used as the prng. The algorithm can be chosen rather
freely, it should, however, pass some non-trivial statistic tests.

In [Hor98] the author also defines a slightly simplified version of bga utilized by
the so-called Standard-PGM which is more suitable for an effective implementation.
This version of bga executes only the transformations T3, T4 and a simplified variant
of T5.

Because |B∗Sn × B∗Sn | À |Z2k | for usual values n and k, the bga can be made
scalable, i.e. can support a variable key length k. To implement pgm with scalable
keys one has to use a prng that supports a seed of variable length. This feature
gives pgm more flexibility and preserves the advantage of the huge key space.
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3.2.2 Properties

From the cryptographic point of view, pgm possesses a couple of desirable algebraic
properties. For example, the set of all encryption functions is not closed under
functional composition and hence it is not a group. As a consequence multiple
encryption is possible. The group generated by the pgm encryption functions by
taking the multiple encryption into account is the entire symmetric group S|G| -
an astronomically large set of mappings. Other interesting algebraic and statistical
properties of pgm are discussed in [MM89, Mem89, MM90, MM92] in more detail.
Brought together, pgm is a very robust cryptosystem with an extremely large key
space.

From a practical point of view, however, pgm is not that excellent. It has two
major inherent drawbacks related to its implementation and usage.

• Ciphertext Expansion. The order of the carrier group Sn is not a power of
two for any n > 2, i.e. Sn = n! 6= 2l, l ∈ Z. Hence, when establishing the
block length of the cipher, one can only use l = blog2(n!)c bits for a plaintext1.
However, the appropriate ciphertext can take on all values up to n!− 1. For a
binary representation of these values one needs l′ = dlog2(n!)e bits. It follows
that the encryption causes a data expansion by one bit, as l′ = l + 1.

This property is very undesirable, not only because it makes multiple encryp-
tion problematic, but especially because it disqualifies pgm from usage in most
standardized cryptographic protocols expecting equal lengths of plaintext and
ciphertext.

• Complexity of the Knapsack Transformation. The transformation λ1 per-
formed at the beginning and the inverse transformation λ−12 performed at
the end of every encryption do not contribute to the cryptographic strength
of the cipher, but are rather computationally intensive. This slows down the
cipher unnecessarily. As a consequence, pgm is not competitive with most of
modern block ciphers in terms of speed.

Both problems arise from the fact that the used carrier group Sn is not bi-
nary. If the order of G were a power of two, the cipher text expansion would not
happen, because all plaintexts and ciphertexts would fit in exactly log2(|G|) bits.
The knapsack transformations would also not be necessary. Note that any index
space X = Zr0 × · · · × Zrw−1 contains only subspaces whose orders ri are divisors
of |G|. Therefore, if |G| is a power of 2, all ri are powers of 2 as well. In this
case the knapsack transformation of an index vector x = (x0, . . . , xw−1) ∈ X can
simply be replaced by a concatenation of binary representations of coordinates xi,
i.e. λ(x) = x0||x1|| · · · ||xw−1.

Apparently, the problems of pgm could be solved simply by using a binary carrier
group G instead of the full symmetric group Sn. However, in order to make pgm

secure one has to use carrier groups of a sufficient order |G| ≈ 2128. Because even

1If dlog2(n!)e bits were used, the inputs p = n!, . . . , (2dlog2(n!)e − 1) could not be encrypted.
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the biggest binary group Hs has a rather small order in comparison with Sn, one
needs to work with much longer permutations when using a binary G. For instance,
to achieve |G| ≥ 2127 one needs to use permutations of 34 elements when G = Sn
(because |S34| = 34! ≥ 2127), but one needs permutations of 127 elements when
G = Hs (because |H7| = 22

7−1 ≥ 2127 and H7 ≤ S27). It follows that a simple use of
binary carrier groups without any further improvements would significantly increase
the memory requirements and, thus, reduce the efficiency of pgm.

The inconveniences of pgm have been avoided in the cryptosystem tst which
was introduced in [Hor98]. The substantially new contribution of this design resides
not only in the usage of special binary carrier groups, but especially in the definition
of their compact representation.

3.3 Cryptosystem TST

The cryptosystem tst is based on the principle of point mapping (Definition 3.1.1).
The encryption and decryption functions have been slightly extended to:

y = eK(x) = λ−1(β̃2(R(β̃1
−1

(λ(x)))))

and
x = dK(y) = λ−1(β̃1(R(β̃2

−1
(λ(y)))))

where the bit reversing function R : {0, 1}n −→ {0, 1}n reverses the order of bits in
a binary vector of length n, i.e. R(b0, b1, . . . , bn−1) = (bn−1, bn−2, . . . , b0), bi ∈ {0, 1}.
This extension of eK and dK was introduced in the interest of cryptographic strength.
A deeper argumentation for this modification is given in [Hor98, Sec. 7.5].

3.3.1 Carrier Group

In general, any binary group can be used as a carrier group of tst . However, from
both cryptographic and practical point of view the most suitable class of groups for
tst is the Hs ×H1. Let us discuss the reasons in more detail.

For the sake of cryptographic strength the carrier group should be as complex
as possible. Simple commutative groups like Zn

2 are not very advisable. The most
complex binary group available is the Sylow 2-group Hs. However, Hs is not very
suitable for another practical reason. It is desirable for any block cipher, that its
block length is a multiple of 8, or possibly 32. Only these block lengths guarantee
that the block representation in a computer will occupy a whole number of bytes,
respectively words. The order of Hs, however, is 22

s−1 and, hence, the supported
block length of the appropriate cipher would be 2s − 1 which is not equal to 8k for
any k ∈ Z.

Group Hs × H1 ensures the combination of both desirable properties. On one
hand, its order has the optimal form 22

s−1 × 2 which results into block length 2s

divisible by any 2k, k < s. On the other hand, Hs ×H1 is the group with the most
complex structure among all such groups.
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The compact representation of permutations in Hs ×H1 bases on the compact
representation in Hs (Definition 2.1.17).

Definition 3.3.1 Compact Representation of Elements of Hs ×H1
Let p1 be a permutation of Hs and p2 a permutation of H1. The compact represen-
tation of the permutation p ∈ Hs ×H1 given by p(i) = p1(i) for i ∈ {1, . . . , 2s − 1}
and p(j) = 2s+ p2(j − 2s) for j ∈ {2s, 2s+1} is the binary vector α = α1||α2 where
α1 is the compact representation of p1 in Hs and α2 is the compact representation
of p2 in H1.

Note that a compact representation of a p ∈ Hs ×H1 is an n-bit binary vector,
where n = 2s. When we observe this vector as a binary representation of an integer
x ∈ Z2n , we obtain a unique numbering of all elements of Hs×H1. This numbering
is in fact used by tst as the function λ : Z|G| −→ G according to the Definition 3.1.1.

A product of permutations a ∗ b in Hs × H1 can be performed directly in the
compact representation. The utilized algorithm is almost the same as for Hs (Algo-
rithm 2.1.1), only the highest bits of the operands must be processed as well.

Algorithm 3.3.1 Product of Permutations of Hs ×H1 in Compact Representation
Let the binary vectors a = (a0, . . . , an−1) and b = (b0, . . . , bn−1), n = 2s, consisting
of bits ai, bi ∈ {0, 1}, be two permutations of Hs ×H1, both written in the compact
representation. The product c = a ∗ b can be computed as follows:

input a, b

set a′ = (a0, . . . , an−2), (a
′ ∈ Hs)

set b′ = (b0, . . . , bn−2), (b
′ ∈ Hs)

Obtain c′ = a′ ∗ b′ using the Algorithm 2.1.1
set c = (c′0, c

′
1, . . . , c

′
n−2, an−1 ⊕ bn−1)

output c

The inverse product c = a/b = a∗b−1 can be computed in an analogous way with
the only difference that the Algorithm 2.1.1 has to be replaced by Algorithm 2.1.2.

As both the product a ∗ b as well as the inverse product a ∗ b−1 of two permuta-
tions a, b ∈ Hs × H1 can be performed directly in the compact representation, the
complete encryption or decryption procedure can be performed without any conver-
sions. A plaintext x ∈ Z2n is simply considered (without doing any computations) as
a compact representation of a permutation p ∈ Hs×H1. p is then directly factorized
by β1, the obtained index vector is reversed by R and passed for a composition into
β2. The resulting permutation p′, obtained again directly in the compact represen-
tation, is considered as a number y ∈ Z2n which is the corresponding ciphertext.
The advantage of this approach is the fact that the evaluation of λ and λ−1 does
not require any computations.
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3.3.2 Key Generation

The bga of tst works in a very similar way as the one of pgm (Definition 3.2.3).
The only difference is the initial basis β0 which is in this case equal to the canonical
basis for Hs ×H1.

Definition 3.3.2 Canonical Basis for Hs ×H1
The canonical basis α for Hs ×H1 has the form α = (A0, . . . , An−1) where n = 2s

and for every i ∈ Zn the block Ai consists of the following two permutations (written
in compact representation) ai,0 = (0 . . . 0︸ ︷︷ ︸

n times

) and ai,1 = ( 0 . . . 0︸ ︷︷ ︸
i−1 times

1 0 . . . 0︸ ︷︷ ︸
n−i times

).

We demonstrate the bga on a simple carrier group H3×H1 in both the compact
and cartesian representations in Example 3.3.1. The key-bits, printed with bold
letters in the compact representation, play an important role during factorization
which is performed according to Algorithm 3.3.2

Algorithm 3.3.2 Factorization in Compact Representation of Hs ×H1
Let β = (B0, . . . , Bw−1) be a transversal group basis generated by the bga. Let ci be
the set of key-bit positions of block Bi. Let the binary vector p = (p(0), . . . , p(n−1)),
n = 2s, consisting of bits p(i) ∈ {0, 1}, be the compact representation of a permuta-
tion in Hs ×H1. The vector of coordinates x = (x0, . . . , xw−1) of p with respect to
β can be computed as follows:

input p

for i = w − 1, w − 2, . . . , 0 do

Find fi = bi,j ∈ Bi, such that b
(k)
i,j = p(k) for all k ∈ ci

set xi = j

set p = p ∗ f−1i
endfor

output (x0, . . . , xw−1)

This algorithm looks for the factors xi of a permutation p sequentially, starting
with the highest order i = w− 1 and going down to i = 0. The initial value pw−1 is
equal to p. In every factorization step one has to find a factor fi whose key bits are
equal to those of pi. The i-th coordinate of p is given by the position of fi inside
of the base block Bi. The intermediate result pi−1 = pi ∗ f−1i is passed for further
factorization to the next lower block Bi−1 of β. Example 3.3.2 demonstrates the
factorization algorithm on a simple 8-bit tst encryption. Note that the lengths of
bit groups in the step 2 of Example 3.3.2 are established according to the types of
group bases. For instance, the first coordinate with respect to β1 is coded in 1 bit,
because log2(r1) = 1, the second in 2 bits, because log2(r2) = 2, etc.
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Example 3.3.1 Basis Generation Algorithm of TST

Canonical basis
β0 Cartesian Compact

[0,1,2,3,4,5,6,7,9,8] 0 0 0 0 0 0 0 1

B7 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[4,5,6,7,0,1,2,3,8,9] 0 0 0 0 0 0 1 0
B6 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[0,1,2,3,6,7,4,5,8,9] 0 0 0 0 0 1 0 0
B5 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[0,1,2,3,4,5,7,6,8,9] 0 0 0 0 1 0 0 0
B4 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[0,1,2,3,5,4,6,7,8,9] 0 0 0 1 0 0 0 0
B3 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[2,3,0,1,4,5,6,7,8,9] 0 0 1 0 0 0 0 0
B2 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[0,1,3,2,4,5,6,7,8,9] 0 1 0 0 0 0 0 0
B1 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[1,0,2,3,4,5,6,7,8,9] 1 0 0 0 0 0 0 0
B0 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

T1 Commutative block shuffle
β1 Cartesian Compact

[4,5,6,7,0,1,2,3,8,9] 0 0 0 0 0 0 1 0
B7 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[2,3,0,1,4,5,6,7,8,9] 0 0 1 0 0 0 0 0
B6 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[0,1,2,3,6,7,4,5,8,9] 0 0 0 0 0 1 0 0
B5 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[0,1,2,3,4,5,6,7,9,8] 0 0 0 0 0 0 0 1

B4 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[1,0,2,3,4,5,6,7,8,9] 1 0 0 0 0 0 0 0
B3 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[0,1,2,3,5,4,6,7,8,9] 0 0 0 1 0 0 0 0
B2 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[0,1,2,3,4,5,7,6,8,9] 0 0 0 0 1 0 0 0
B1 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[0,1,3,2,4,5,6,7,8,9] 0 1 0 0 0 0 0 0
B0 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

T2 Block Fusion
β2 Cartesian Compact

[6,7,4,5,0,1,2,3,8,9] 0 0 1 0 0 0 1 0
[4,5,6,7,0,1,2,3,8,9] 0 0 0 0 0 0 1 0

B3 [2,3,0,1,4,5,6,7,8,9] 0 0 1 0 0 0 0 0
[0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0
[1,0,2,3,6,7,4,5,9,8] 1 0 0 0 0 1 0 1

[0,1,2,3,6,7,4,5,9,8] 0 0 0 0 0 1 0 1

[1,0,2,3,6,7,4,5,8,9] 1 0 0 0 0 1 0 0

[0,1,2,3,6,7,4,5,8,9] 0 0 0 0 0 1 0 0

B2 [1,0,2,3,4,5,6,7,9,8] 1 0 0 0 0 0 0 1

[0,1,2,3,4,5,6,7,9,8] 0 0 0 0 0 0 0 1

[1,0,2,3,4,5,6,7,8,9] 1 0 0 0 0 0 0 0

[0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

[0,1,2,3,5,4,7,6,8,9] 0 0 0 1 1 0 0 0
[0,1,2,3,5,4,6,7,8,9] 0 0 0 1 0 0 0 0

B1 [0,1,2,3,4,5,7,6,8,9] 0 0 0 0 1 0 0 0
[0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0
[0,1,3,2,4,5,6,7,8,9] 0 1 0 0 0 0 0 0

B0 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

T3 Randomization
β3 Cartesian Compact

[6,7,4,5,1,0,2,3,8,9] 0 0 1 1 0 0 1 0
[4,5,6,7,2,3,0,1,9,8] 0 0 0 0 0 1 1 1

B3 [2,3,0,1,6,7,4,5,8,9] 0 0 1 0 0 1 0 0
[0,1,2,3,7,6,5,4,8,9] 0 0 0 1 1 1 0 0
[1,0,2,3,6,7,5,4,9,8] 1 0 0 0 1 1 0 1

[0,1,3,2,6,7,5,4,9,8] 0 1 0 0 1 1 0 1

[1,0,2,3,6,7,4,5,8,9] 1 0 0 0 0 1 0 0

[0,1,2,3,6,7,4,5,8,9] 0 0 0 0 0 1 0 0

B2 [1,0,3,2,4,5,7,6,9,8] 1 1 0 0 1 0 0 1

[0,1,2,3,4,5,6,7,9,8] 0 0 0 0 0 0 0 1

[1,0,2,3,4,5,7,6,8,9] 1 0 0 0 1 0 0 0

[0,1,3,2,5,4,7,6,8,9] 0 1 0 1 1 0 0 0

[0,1,2,3,5,4,7,6,8,9] 0 0 0 1 1 0 0 0
[0,1,3,2,5,4,6,7,8,9] 0 1 0 1 0 0 0 0

B1 [0,1,3,2,4,5,7,6,8,9] 0 1 0 0 1 0 0 0
[0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0
[0,1,3,2,4,5,6,7,8,9] 0 1 0 0 0 0 0 0

B0 [0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

T4 Element shuffle
β4 Cartesian Compact

[4,5,6,7,2,3,0,1,9,8] 0 0 0 0 0 1 1 1
[6,7,4,5,1,0,2,3,8,9] 0 0 1 1 0 0 1 0

B3 [2,3,0,1,6,7,4,5,8,9] 0 0 1 0 0 1 0 0
[0,1,2,3,7,6,5,4,8,9] 0 0 0 1 1 1 0 0
[0,1,3,2,5,4,7,6,8,9] 0 1 0 1 1 0 0 0

[0,1,2,3,4,5,6,7,9,8] 0 0 0 0 0 0 0 1

[0,1,2,3,6,7,4,5,8,9] 0 0 0 0 0 1 0 0

[1,0,2,3,4,5,7,6,8,9] 1 0 0 0 1 0 0 0

B2 [1,0,2,3,6,7,4,5,8,9] 1 0 0 0 0 1 0 0

[1,0,3,2,4,5,7,6,9,8] 1 1 0 0 1 0 0 1

[0,1,3,2,6,7,5,4,9,8] 0 1 0 0 1 1 0 1

[1,0,2,3,6,7,5,4,9,8] 1 0 0 0 1 1 0 1

[0,1,3,2,5,4,6,7,8,9] 0 1 0 1 0 0 0 0
[0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

B1 [0,1,2,3,5,4,7,6,8,9] 0 0 0 1 1 0 0 0
[0,1,3,2,4,5,7,6,8,9] 0 1 0 0 1 0 0 0
[0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

B0 [0,1,3,2,4,5,6,7,8,9] 0 1 0 0 0 0 0 0

T5 Conjugation with [6,7,4,5,3,2,1,0,9,8]
β5 Cartesian Compact

[7,6,5,4,1,0,3,2,9,8] 1 1 1 1 1 0 1 1
[5,4,6,7,3,2,1,0,8,9] 1 0 0 1 1 1 1 0

B3 [2,3,0,1,6,7,4,5,8,9] 0 0 1 0 0 1 0 0
[3,2,1,0,4,5,6,7,8,9] 1 1 1 0 0 0 0 0
[1,0,3,2,5,4,6,7,8,9] 1 1 0 1 0 0 0 0

[0,1,2,3,4,5,6,7,9,8] 0 0 0 0 0 0 0 1

[2,3,0,1,4,5,6,7,8,9] 0 0 1 0 0 0 0 0

[1,0,2,3,4,5,7,6,8,9] 1 0 0 0 1 0 0 0

B2 [2,3,0,1,4,5,7,6,8,9] 0 0 1 0 1 0 0 0

[1,0,2,3,5,4,7,6,9,8] 1 0 0 1 1 0 0 1

[3,2,0,1,5,4,6,7,9,8] 1 0 1 1 0 0 0 1

[3,2,0,1,4,5,7,6,9,8] 1 0 1 0 1 0 0 1

[0,1,3,2,5,4,6,7,8,9] 0 1 0 1 0 0 0 0
[0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

B1 [1,0,3,2,4,5,6,7,8,9] 1 1 0 0 0 0 0 0
[1,0,2,3,5,4,6,7,8,9] 1 0 0 1 0 0 0 0
[0,1,2,3,4,5,6,7,8,9] 0 0 0 0 0 0 0 0

B0 [0,1,2,3,5,4,6,7,8,9] 0 0 0 1 0 0 0 0

Note: The bold letters mark the key-bit positions.
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Example 3.3.2 TST Encryption

Carrier group: H3 ×H1
Plaintext: p = 10110110
Key: K = (β1, β2)

1. Factorization x = β̃1
−1

(p)
p = 10110110
f3 = b3,2 = 10011110
x3 = 2
p′ = p/f3 = 11101000
f2 = b2,3 = 00101000
x2 = 3
p′′ = p′/f2 = 11000000
f1 = b1,1 = 11000000
x1 = 1
p′′′ = p′′/f1 = 00000000
f0 = b0,1 = 00000000
x0 = 1
p′′′′ = p′′′/f0 = 00000000
x = (1,1,3,2)

β1

b3,3 1 1 1 1 1 0 1 1
b3,2 1 0 0 1 1 1 1 0
b3,1 0 0 1 0 0 1 0 0
b3,0 1 1 1 0 0 0 0 0

b2,7 1 1 0 1 0 0 0 0

b2,6 0 0 0 0 0 0 0 1

b2,5 0 0 1 0 0 0 0 0

b2,4 1 0 0 0 1 0 0 0

b2,3 0 0 1 0 1 0 0 0

b2,2 1 0 0 1 1 0 0 1

b2,1 1 0 1 1 0 0 0 1

b2,0 1 0 1 0 1 0 0 1

b1,3 0 1 0 1 0 0 0 0
b1,2 0 0 0 0 0 0 0 0
b1,1 1 1 0 0 0 0 0 0
b1,0 1 0 0 1 0 0 0 0

b0,1 0 0 0 0 0 0 0 0
b0,0 0 0 0 1 0 0 0 0

β2

b′4,1 1 0 1 1 1 1 1 0
b′4,0 0 0 0 1 1 1 0 1

b′3,7 1 1 1 1 1 0 0 1
b′3,6 1 0 1 1 0 0 0 0
b′3,5 1 0 1 0 1 1 0 1
b′3,4 0 0 0 1 1 0 0 0
b′3,3 1 0 0 1 0 1 0 0
b′3,2 0 1 0 1 1 1 0 0
b′3,1 1 1 1 0 1 1 0 1
b′3,0 0 1 0 0 0 0 0 0

b′2,3 0 0 0 1 1 0 0 1

b′2,2 1 0 0 0 1 0 0 0

b′2,1 0 0 0 0 0 0 0 0

b′2,0 1 0 0 1 1 0 0 1

b′1,1 0 0 0 0 1 0 0 0
b′1,0 0 0 0 1 0 0 0 0

b′0,1 0 0 0 0 1 0 0 0
b′0,0 0 0 0 0 0 0 0 0

r = (2, 4, 8, 4), 2× 4× 8× 4 = 256 = |H3 ×H1|

r′ = (2, 2, 4, 8, 2), 2×2×4×8×2 = 256 = |H3×H1|

2. Bit Reversing x′ = R(x)
x = (1, 1, 3, 2) = 1||10||110||01 = 11011001
x′ = R(11011001) = 10011011 = 1||0||01||101||1 = (1, 0, 2, 5, 1)

3. Composition c = β̃2(x
′)

c = β̃2(1, 0, 2, 5, 1) = b′0,1 ∗ b′1,0 ∗ b′2,2 ∗ b′3,5 ∗ b′4,1 = 01000011

Thus eK(10110110) = 01000011 (in decimal numbers: eK(109) = 194)

3.3.3 Properties

Cryptosystem tst successfully avoids the two biggest disadvantages of pgm - the
data expansion during encryption and the slow knapsack transformation. Both prob-
lems have been solved by using a binary carrier group based on the Sylow 2-group.
The compact representation of permutations with the appropriate multiplication
and division algorithms made it possible to perform the complete encryption and
decryption procedures on binary vectors without any conversions.

Nevertheless, the tst proposed in 1998 is rather new, and still not much is
known about its cryptographic properties and efficiency. Security considerations
presented in [Hor98] are rather intuitive and are not supported by any practical
experiments. The system has apparently been optimized for hardware, but the
suitability for a software implementation is not discussed. In fact, until now there
exists no fully functional version of tst which supports all its features. A simplified
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hardware version, so-called Chip-TST supporting a single block length was proposed
in [Hor98], but was not cryptographically analyzed.

All in all, tst seems to be a very promising cryptosystem based on novel ideas,
but not much is known about its algebraic and cryptographic properties or about
its practical efficiency. Before it can get widespread and commonly used, it has to
be analyzed and attacked extensively.

3.4 Summary and Open Problems

Unlike most usual block ciphers, block ciphers based on group bases possess several
desirable properties:

1. The encryption and decryption functions are very simple which leads to a bet-
ter transparency and possibility of mathematical examinations. The security
resides in the fact that one of extremely many mappings defined by pairs of
group bases is chosen in random and kept secret.

2. There is no upper bound of achievable key space. Depending on the dimension
of used group bases, one can construct ciphers with up to 2n! different keys
which is the theoretically possible maximum for a block cipher with block
length n.

3. The block length and key length are fully scalable. Thus, one can construct
many different ciphers from the same specification. That makes the design
more flexible and adaptable for the future.

4. A memory vs. security tradeoff is possible by modification of dimension of
used group spaces. That makes it possible to adjust the cipher properties for
a particular platform (e.g. a simple smart card vs. a powerful workstation).

The first representative of this class of ciphers was cryptosystem pgm. In spite
of its excellent cryptographic properties it was not very suitable for practical use,
because of its two major drawbacks - message expansion, and the complexity of the
used knapsack transformation. The recent cryptosystem tst, which does not suffer
from these problems, is still too new. There are two major areas of open questions
that have to be answered:

1. Security. What are the cryptographic properties of tst? Is the cryptosys-
tem secure? Which is the minimal dimension of group bases that provides a
sufficient level of security? Which prng are suitable for key generation?

2. Efficiency. How suitable is tst for implementation on different platforms?
What is its throughput and the initialization time - especially in software?
How high are the memory requirements when using the cartesian and compact
representations of permutations?
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A thorough examination is necessary to answer these questions. The answers will
help us obtain a concise view of tst and its properties, and will make it possible to
compare tst with other modern block ciphers.
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Chapter 4

Analysis of Cryptosystem TST

This chapter analyzes the efficiency and security of the symmetric cryptosystem tst.

In the first section we analyze the efficiency of both initialization and encryption
routines of tst. We propose a possible implementation of the key generation scheme
together with a suitable pseudorandom number generator, and we present the re-
sulting key generation delay. Furthermore, we measure the memory requirements
and encryption speed. Each measurement was done separately for the cartesian and
compact representation of permutations to compare their practical suitability.

The second section describes our security analysis of the tst cryptosystem. We
introduce a generic evaluation method and present the results achieved by the anal-
ysis of tst. Furthermore we examine possible attacks on tst, and in the third
section we summarize the determined properties of tst and compare it with some
other modern symmetric cryptosystems.

4.1 Efficiency

In what follows, we analyze the efficiency of tst. All presented measurements have
been performed with our C++ implementation of tst on a personal computer with
Intel Pentium II processor running at 350 MHz. In our implementation we preferred
flexibility to speed1, so the achieved encryption speeds are only approximate. We
provide the values for both the cartesian and compact representations of permu-
tations to make clear which one is more suitable for a software implementation.
As the block length of tst is scalable, we measure all values for both nowadays
common block lengths 64 and 128 bits. For comparison purposes we use the 64-bit
cipher idea [LM91, LMM92] and the 128-bit cipher aes [DR98] as representatives
of efficient and strong block ciphers.

1For example, the block length of the cipher as well as all properties of the group bases could
be configured without recompilation. The resulting dynamic memory allocation had certainly an
influence on the efficiency. Nevertheless, an implementation with fixed parameters would not be
suitable for testing, in spite of its higher speed.

37
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Hash PRNG BGA
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Figure 4.1: Key generation scheme for TST

Another factor which plays an important role in our measurements is the average
fusion extent (afe) of the used group bases. Let β = (B0, . . . , Bw−1) be a w-
dimensional group basis of type r = (r0, . . . , rw−1). The value

∑w−1
i=0 log2(ri)

w

is said to be the average fusion extent of β. afe expresses how many blocks have been
fused on average during a block fusion performed by bga (see also Definition 3.2.2
and Section 3.3.2). For example, the average fusion extent of basis β2 of type
r = (2, 4, 8, 4) presented in Example 3.3.1 is

log2(2) + log2(4) + log2(8) + log2(4)

4
= 2.

A higher value of afe contributes to better security, because the group bases become
larger and the uncertainty for an attacker grows. On the other hand, the memory
occupied by a group basis increases exponentially with a growing afe. Hence, afe

is an interesting parameter, enabling us to perform memory vs. security trade-off.

Note that a variable afe means a new degree of freedom in our experiments.
For example, when determining memory requirements of an idea implementation,
the result is a single number. When doing the same with tst, the result is rather a
sequence of values for different afe. Thus, the results for tst have usually the form
of an exponential curve, while the appropriate values of idea and aes are constant.

4.1.1 Key Generation

In contrast to most “classical” cryptosystems, tst does not use a key in the form
of an k-bit binary vector. Instead, the secret key consists of a pair of random group
bases for a given carrier group Hs × H1. However, tst can be adapted to the
standard k-bit key format as well, as shown in Figure 4.1. The two bases β1, β2 are
generated by the basis generation algorithm (bga) introduced in Section 3.3.2. A
sequence of pseudorandom numbers (prns) generated by a pseudorandom number
generator (prng) is used as a source of randomness within bga. The prng is
initialized with a k-bit binary seed. The value of the seed completely determines
both generated bases and can therefore be used as a secret key K. The secret keys
are either generated automatically (e.g. when used in communication protocols), or
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else, can be entered directly by a user. In the second case the key can possibly be
generated from a pass-phrase. This approach ensures a better distribution of the
key values and better memorization by people.

4.1.1.1 Choice of a PRNG

The prng used in a tst implementation should possess at least the following three
properties:

• Sufficient number of possible seeds. The seed length k should be at least 64
bits. Smaller values of k would not guarantee a sufficient size of the effective
key space. For the sake of flexibility the prng should support a variable seed
length k. The corresponding tst implementation will then have a scalable key
length.

• Good randomness properties of the output. The generator should pass some
non-trivial randomness tests, which will guarantee that the resulting group
bases will be uniformly and randomly distributed over the complete B∗Hs×H1

.

• Efficiency. In order to make the key initialization process as short as possible,
the prng should be fast.

Among all possible prng candidates the first requirement immediately excludes
all generators with 16 and 32-bit seeds, the second requirement excludes every simple
prng (for instance the linear congruential generator, presented in Algorithm 2.2.1)
and the third requirement disqualifies many cryptographically secure but slow gen-
erators (e.g. the Blum-Blum-Shub generator defined in [BBS87]).

In our implementation we decided to use the lagged Fibonacci generator with
Lütscher’s approach, described in [Knu97, pp.27–29,35,186–188]. The sequence gen-
erated by this prng is given by the recurrence

Xj = (Xj−100 −Xj−37) mod 232 (4.1)

where the constants (37, 100) - so-called lags - have been chosen very carefully.
The period of the generated prns is guaranteed to be 2131 and the seed length
can be scaled up to 3200 bits. These values can be further improved by changing
the lags (see also [Knu97, p. 29]). The randomness of the generated Fibonacci
sequence is strengthened by the Lütscher’s approach which is motivated by chaos
theory in dynamical systems. According to this approach, one should only use a
few first numbers from a generated block of fixed length. For example, [Knu97, p.
188] suggests using the first 100 of every 1009 generated numbers. The resulting
sequence Y1, Y2, . . . is then given by rule

Y100·k+j = X1009·k+j , k = 0, 1, 2, . . . , j = 0, 1, . . . , 99

where the values Xi are computed using the recurrence 4.1. The sequence Y0, Y1, . . .
has very good statistical properties and can be generated at a rate of about 10 MB/s
(i.e. 2.6× 106 32-bit numbers per second).



40 4. ANALYSIS OF CRYPTOSYSTEM TST

4.1.1.2 Commutative Block Shuffle Algorithm

Another practical problem related to the tst key generation is a proper imple-
mentation of the commutative block shuffle (i.e. the transformation T1, defined
in Definition 3.2.2). An important condition for preserving the transversality of
a group basis is that only commuting adjacent block may be swapped during the
shuffle. This can be ensured by a simple iterative algorithm.

Algorithm 4.1.1 Iterative Block Shuffling
Let β = (B0, B1, . . . , Bw−1) be a group basis of a group G and let x be a fixed integer.
The commutative block shuffle can be performed by the following algorithm:

input β

for i = 1, . . . , x do

set a = Random(0, w-2)

set b = a + 1

if DoCommute(Ba, Bb) then

call Swap(Ba, Bb)

endif

endfor

output β

The function Random(min, max) generates a random integer between min and max,
the function DoCommute(Ba, Bb) returns true if the blocks Ba and Bb do commute
and false otherwise, and the function Swap(Ba, Bb) swaps the blocks Ba and Bb in
β.

To ensure that every possible ordering of the blocks can appear on the output
of the algorithm, x must be equal or higher than2 Xmin = w

2 (w − 1). However, the
swap operations tend to partially compensate each other and, hence, the number
of repetitions that should be used to obtain all possible orderings with the same
probability must be several times higher than Xmin. Our simulations have shown
that at least x = 10 × Xmin should be used to ensure a good distribution of the
outputs. For the purpose of these simulations we have defined the notion of a
distance between two group bases.

Definition 4.1.1 Distance of Two Outputs of T1
Let w = 2s and let β1 = (B0, . . . , Bw−1) and β2 = (B′0, . . . , B

′
w−1) be two group bases

of type r = (r0, . . . , rw−1) where every ri = 2. Let f (β2) : Zw −→ Zw be a function

2This is the maximum number of adjacent element swaps that are necessary to rearrange a fixed
ordering of w elements to an arbitrary ordering.
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Figure 4.2: Iterative vs. recursive shuffling algorithm

which for every x ∈ Zw returns y ∈ Zw such that the key-bit position of B ′y is x. We
define the distance between β1 and β2 as

d(β1, β2) =
w−1∑

i=0

|i− f (β2)(ci)|

where ci is the key-bit position of block Bi.

The maximum possible distance between two w-dimensional group bases of an
arbitrary binary group of order 2w is dmax = w2

2 . Thus, the function d(β1, β2) can
return only values between 0 and dmax. The distance 0 will occur when β1 = β2 and
maximum distance dmax will be achieved when the blocks of β1 and β2 are in the
reverse order. We also define a normalized distance d′(β1, β2) =

d(β1,β2)
dmax

which will
take on values between 0 and 1 for any dimension w.

Let β1 and β2 be two bases obtained from the canonical basis α by x = k×Xmin

cycles of the shuffling algorithm 4.1.1. The simulation results in Figure 4.2 show
that d′(β1, α), d

′(β2, α) as well as d
′(β1, β2) grow rapidly with an increasing k until

k ' 10. For k À 10 the distances keep oscillating around some fixed values. Hence, if
we want to obtain well distributed pairs of group bases using the iterative algorithm,
we have to execute between 10×Xmin and 20×Xmin cycles. This approach is rather
time-consuming.

The commutative block shuffle can be performed in a much more efficient way,
using a recursive approach. Hereby we exploit the special structure of the carrier
group Hs×H1. In this group the component Hs represented by the first w−1 blocks
of the canonical group basis has a recursive structure (see also Definition 2.1.16).
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The component H1 represented by the last block is guaranteed to commute with
every other block.

Algorithm 4.1.2 Recursive Block Shuffling
Let α = (B0, B1, . . . , Bw−1), w = 2s, be the canonical group basis of a group Hs×H1.
The commutative block shuffle can be performed as follows:

set β = α

call ShufflePart(0, w − 2)

set r = Random(0, w − 1)

call Insert(r, w − 1)

output β

Procedure Insert(x, y) moves block By to the position x shifting the other blocks
upwards by one position. The recursive procedure ShufflePart(i, l) is defined as
follows:

set l′ = (l − 1)/2

if l ≤ 3 then

set r = Random(0, 1)

if r = 1 then

call Swap(Bi, Bi+1)

endif

else

call ShufflePart(i, l′)

call ShufflePart(i+ l′, l′)

call Merge(i, i+ l′, l′)

endif

Procedure Merge(a, b, l′) randomly rearranges the blocks Ba, . . . , Ba+l′−1, Bb, . . . ,
Bb+l′−1 in such a way that neither the relative order of blocks in the lower half
{Ba, . . . , Ba+l′−1} nor the relative order of blocks in the upper half {Bb, . . . , Bb+l′−1}
is changed.

The recursive Algorithm 4.1.2 generates bases with constantly good distribution,
as can be seen in Figure 4.2. The distances d′(β1, β2) and d

′(β1, α) ' d′(β2, α) of the
generated group bases oscillate around values 0.636, and 0.368 respectively. More-
over, every possible basis is generated with the same probability and the generation
time is 10 to 20 times shorter in comparison with the iterative Algorithm 4.1.1. Also
the amount of consumed random numbers is significantly reduced. This contributes
to the security of the key-generation process, because the probability that some
weakness of the used prng might be exploited for an attack is significantly lower
when using a prns of shorter length.
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Figure 4.3: Key setup delay of TST

4.1.1.3 Key Setup Delay

The key setup delay is the time span that elapses between the point when a ci-
pher receives a new key and the point when the cipher is ready to perform the first
encryption. This delay is typically caused by an initialization of tables, precompu-
tation of round keys, etc. The value is of minor importance when the cipher is only
used for symmetric encryption, because the keys are usually not changed frequently.
However, when using a block cipher as a cryptographic hash function (see for exam-
ple [MVV97, Chap. 9]), a fast key setup significantly contributes to the achievable
throughput.

Figure 4.3 displays the key setup delay for a 64-bit and a 128-bit version of tst

in both the compact and cartesian representation of permutations. Apparently, the
cartesian representation is only 1.3 to 1.4 times faster than the compact representa-
tion, but the impact of the block length on the delay is significantly stronger. The
64-bit version is almost four times faster than the corresponding 128-bit version.

We had expected that the key setup delay for tst would be noticeably longer
than the delays of most other modern block ciphers, because the bga operation
during initialization is a complex task. Delays above 0.5 second are undesirable in
most cases (even if the cipher is not used as a hash function) and, hence, afe > 10
(respectively 8) is not recommendable with block length 64 b (respectively 128 b).
As far as setup delays, when compared with modern block ciphers, tst is not com-
petitive - not even for small afe. The key setup of idea, for instance, is at least
300 times faster.
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Figure 4.4: Encryption speed of TST

4.1.2 Throughput

Figure 4.4 displays the encryption speeds achieved by tst. The advantage of the
cartesian over the compact representation becomes more significant than for the key
setup. A speedup by factor up to 8 can be achieved when using the more efficient
representation. Nevertheless, a comparison with other block ciphers is still disap-
pointing. idea is on average 14.3 times faster a than a 64-bit tst and aes is even
70 (!) times faster than a 128-bit tst. While the key setup delay of tst has been
at least partially suitable for practical use, the achieved throughput is completely
insufficient. Encryption speed is, besides security, the second most important prop-
erty of a cipher. A throughput of at least 2× 106 B/s is desirable to make a block
cipher interesting for practical use.

4.1.3 Memory Requirements

The memory requirements of tst grow exponentially with an increasing afe. Figure 4.5
shows the minimal amount of memory that is needed for storing a tst key. Note
that two bases of an n-bit tst occupy in compact representation at least

2 · n

AFE
· 2AFE ·

⌈n
8

⌉
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Figure 4.5: Memory requirements of TST

bytes of memory (i.e. 2 bases × n
AFE blocks ×2AFE rows ×dn8 e bytes per row)3. The

same two bases will occupy at least

2 · n

AFE
· 2AFE ·

⌈
(n+ 2) · dlog2(n+ 2)e

8

⌉

bytes in cartesian representation (i.e. roughly 8 times more space per row for
n ≤ 256). These values are rather optimistic, because a real implementation must in
addition allocate some indexation arrays for fast factorization, a few temporary vari-
ables, etc. For example, the real memory requirements of our C++ implementation
were about twice as big as the theoretically possible minimum.

It is desirable that a cipher requires an allocation of only a few tens of kilobytes
of memory. Not only, because it will then fit completely into a fast cache memory of
modern processors, but also because it is then implementable in restricted environ-
ments like smart-cards. We see that group bases of tst can fit into 100 KB only for
maximum afe values between 6 and 10, depending on the block length used and the
representation. Unfortunately, the faster cartesian representation consumes about 8
times more memory than the slower compact representation. This property does not
cause any problems on workstations, but makes tst less suitable for a smart-card
implementation.

3The author in [Hor98] has shown that two bases created by a simplified version of bga (used
by the so-called Chip-TST) can be stored in only n

AFE
· 2AFE · n−AFE

8
bytes of memory, but here

we want to analyze a full tst implementation.



46 4. ANALYSIS OF CRYPTOSYSTEM TST

eK
0,0,...,0 PRNS

eK
0,1,2, ... PRNS

eK
PRNS

eK

0,1,2, ...

A B C

Figure 4.6: Setups for pseudorandom data generation

4.2 Security

In what follows, we provide a security analysis of tst. Hereby we apply both generic
and white box evaluation methods. The basic idea of these approaches was already
presented in Section 2.3.1.1.

4.2.1 Generic Statistical Evaluation

The purpose of this kind of statistical analysis is to determine, whether the cipher
behaves as a strong pseudorandom number generator, i.e. whether its confusion
and diffusion properties are strong. The evaluation process consists of three stages:
acquisition of cryptographic data, acquisition of statistical data, and evaluation of
statistical data (shown in Figure 2.2). In what follows, we describe the methodology
which we have used in these three steps.

4.2.1.1 Acquisition of Cryptographic Data

The acquisition of cryptographic data can utilize any scheme which embeds the
examined block cipher and produces a pseudorandom sequence. If the cipher is
strong, the randomness of the produced sequence will be strong as well. Three
examples of such schemes are presented in Figure 4.6. We denote the block length
of the examined cipher by n. In setup A one encrypts a sequence of zeros (i.e. the
plaintext blocks consisting of n zero bits) in the cipher block chaining mode (cbc)
using a fixed key K. A good block cipher encrypts the zero block into a random
block of n bits, y0 = eK(0). This block is further encrypted into y1 = eK(y0) which
is, supposing the cipher is strong, random again. By repeating this procedure l-times
we obtain a sequence y0, y1, . . . , yl−1 which should be statistically indistinguishable
from a sequence of l independent uniformly distributed numbers from Z2n .

Setup B works without a feedback between the input and the output. When a
non-periodic, highly redundant sequence of input blocks xi is fed into the cipher, the
output will be non periodic as well. And, because a good block cipher must destroy
all redundancy of the input, the corresponding output will be indistinguishable from
a sequence of pseudorandom numbers. The simplest (and most redundant) possi-
ble non-periodic input is a counter sequence xi = 0, 1, 2, . . . , l. The corresponding
output sequence is yi = eK(xi). Many other input sequences are thinkable as well.
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For example the authors in [SB00] use a low density plaintext sequence, which is the
sequence where the first block consists of all zero bits, the next n different blocks
have hamming weight one, the following

(
n
2

)
different blocks have hamming weight

2, etc. The high density plaintext sequence, proposed in the same work, is created
by a bitwise binary negation of all blocks of the low density sequence.

A slight modification of the setup B is a scheme producing the outputs xi⊕eK(xi)
for i = 0, 1, . . . , l, where xi is a highly redundant non-periodic sequence. However,
when the input is really very redundant (e.g. the counter sequence above), the
randomness properties of the output will not be very different from the ones of
setup B.

Setup C utilizes the avalanche property of the examined cipher. The avalanche
criterion says that for a good cipher a small change of an input should cause an
unpredictable random change of the output, i.e. if we flip a single bit in a plaintext
block x, every bit of the corresponding ciphertext block y = eK(x) should change
with probability about one half. Setup C encrypts a highly redundant input sequence
xi, once without and once with a small change ∆. The hamming weight of ∆
is usually chosen to be 1. The sequence of differences between the corresponding
output blocks yi = eK(xi) ⊕ eK(xi ⊕∆) should be pseudorandom if the avalanche
effect of the tested cipher is strong.

There are many more possible data acquisition setups than just the three pre-
sented above. For instance, more examples can be found in [Hey97, Sec. 3.3]. It is
important to say that different setups can have a very different sensitivity regard-
ing detectable defects of the tested cipher. We show later that setup C is usually
more sensitive than setup B which is furthermore significantly more sensitive than
setup A. Because we want to test the quality of a cipher in its worst case, it is enough
to consider the data obtained by the most sensitive of the tried setups.

4.2.1.2 Acquisition and Evaluation of Statistic Data

We have used the DieHard battery of statistical tests [Mar97] for our randomness
testing. We decided to use DieHard, because it has proved itself during our exper-
iments to be the most sensitive and most powerful tool among the freely available
tests4. The test suite consists of 18 randomness tests, most of which are run with
several different parameters. In total, 243 so-called p-values are produced for every
tested sequence. These values should be uniformly distributed on [0, 1) when the
randomness of the tested sequence is strong. Both extremely high and extremely
low p-values indicate a potential weakness of the sequence. The minimum length of
an examined pseudorandom sequence is 8208 KB which is roughly 67×106 bits. For
a more detailed description of the DieHard test suite see the Appendix B as well as
the documentation provided in [Mar97].

In our tests we used 43 different random keys for every tested cipher. For each
key a pseudorandom sequence of 8208 KB was generated, using setup B or C from

4DieHard detected more defects than, for example, the universal Maurer test and the FIPS 140-1
test battery.
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Figure 4.6. The sequence was tested with DieHard and the resulting p-values were
classified as passed if 0.001 ≤ p ≤ 0.999 and as suspect otherwise. Together ntotal =
43 × 234 results of type “suspect” or “passed” were obtained in this way. The
suspicion rate R =

nsusp
ntotal

, where nsusp is the number of suspect results, was measured
for every cipher. Furthermore, to improve the sensitivity of method C, we measured
the suspicion rate for several differences ∆ and used the highest one found. The
constant 43 as the number of tested sequences was chosen in order to obtain the
suspicion rate with precision 0.0001 (i.e. 1

ntotal
' 10−4).

The distribution of suspicion rates which can be expected for a strongly random
input was obtained by extensive simulations. For generating a data sample that is
very close to a truly random sequence we used setup A (Figure 4.6) together with
the AES cipher. Figure 4.7 shows the distribution that was obtained by evaluating
200 suspicion rates, each measured on a group of 43 samples. One can see that
the distribution is very similar to a normal distribution with mean µ = 0.0023
and variance σ2 = 0.00042. The randomness properties of a tested cipher can be
considered as very good if the achieved suspicion rate is between 0.0006 and 0.0040.
The probability that a good cipher will lead to a result lying outside of this interval
is at most 0.001.

Let us demonstrate our cipher evaluation method on a simple example in Fig-
ure 4.8. The three thin dotted lines in the lower part of the graph mark the minimum
(6 × 10−4), the mean (2.3 × 10−3) and the maximum (4 × 10−3) for the interval of
acceptable suspicion rates. All sequences leading to a suspicion rate in this inter-
val can be considered as very strong. An example of a good result is the curve A
which oscillates around the mean and never walks out of the interval. The other
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two curves (B and C) are far above the good area and the corresponding sequences
can therefore be classified as not random enough. The thin dotted line in the upper
part of the graph (R ' 0.5) marks the level of randomness that can be achieved by
a linear congruential generator (Algorithm 2.2.1). Such randomness is completely
insufficient from the cryptographic point of view.

When we use the maximum of several suspicion rates achieved with different
values of ∆, an optimal curve obtained by our experiments will not oscillate around
the mean of the interval (as does the curve A), but rather slightly above it. Nev-
ertheless, even in that setup a good prns will never lead to points lying above the
interval of acceptable suspicion rates.

As already mentioned, the data acquisition setups in Figure 4.6 may result in
different test sensitivities. Figure 4.8 demonstrates this fact in a very clear way. All
three tests in the graph have been performed with the same cipher. It is obvious
that setup A leading to a passed test has the lowest sensitivity because it did not
detect any defects. Setup B is significantly more sensitive and leads to a failed test.
The most sensitive setup C produces on average 3.3 times higher suspicion rates
than setup B. Therefore we will preferably present the results achieved by setups B
and C in our experiments.

Another typical behavior which can be observed in the example is the fact that
the suspicion rate sinks when some security parameter is being increased. In our case
an increasing afe slightly improves the security properties of tst. An increasing
number of rounds would have a similar effect if an iterative cipher were tested.
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4.2.1.3 Results

Figure 4.9 shows the suspicion rates depending on afe for both 64 and 128-bit
tst. The statistical properties of tst are apparently not good. The 128-bit version
is better than the 64-bit version, but still not good enough. The dropping of the
curves is very weak. Even though the achieved results slightly improve with an
increasing afe, the safe interval can not be sufficiently reached in the examined
range of afe values.

4.2.2 White Box Analysis

In this section we will analyze the inner structure of tst. The exact knowledge of
bga enables us to estimate the potential size of the key space. Furthermore, we
construct an attack by exploiting the redundancies in the structure of tst and its
weak diffusion property.

4.2.2.1 Key Space

The effective key space of a tst implementation is given by the prng used. The
theoretically possible key space, however, is limited only by the number of possible
pairs of group bases that can be generated by the bga. In what follows we will
estimate this number.

The order of a carrier group Hs×H1 is equal to 22
s
. The block size of the corre-

sponding tst cipher is n = 2s. The number of different outputs β1 of a commutative
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block shuffle (T1) executed by Algorithm 4.1.2 is

N ′
s = 2s ·Ns (4.2)

where the values Ns are given by the recurrence

N1 = 1, Ns =

(
2s − 2

2s−1 − 1

)
·N2s−1. (4.3)

This holds because the procedure Insert can modify the basis in 2s different ways,
and the procedure Merge in

(
2s−2
2s−1−1

)
ways. The recurrent nature of the formula

reflects the recursiveness of Algorithm 4.1.2.

Let us suppose that a block fusion (T2) performed on β1 led to a basis β2 of type
r = (r0, . . . , rw−1) where w ≤ 2s and ri ≥ 2 for all i. The number of different ways
in which a randomization (T3) on β2 can be performed is given by

w−1∏

i=1



i−1∏

j=0

rj



ri

. (4.4)

A consequent element shuffle (T4) of β3 can result into

w−1∏

i=0

ri! (4.5)

different bases β4.

As the randomization and the element shuffle are two independent operations,
the total number of their combinations is the product of terms 4.4 and 4.5

N ′′
s =

w−1∏

i=0

ri! ·
w−1∏

i=1



i−1∏

j=0

rj



ri

= r0! ·
w−1∏

i=1


ri! ·



i−1∏

j=0

rj



ri
 . (4.6)

The transformations T1,T2,T3,T4 altogether are not independent. Two different
random sequences used during consecutive execution of T1 to T4 can lead to the
same β4. Because of these multiplicities, the total number N of possible bases β4
can not be computed simply as a product of the results 4.2 and 4.6. Nevertheless,
this product can be used as an upper bound for the value N .

Nmax = N ′
s ·N ′′

s (4.7)

The appropriate lower bound for N is given by

Nmin = max
{
N ′
s, N ′′

s

}
. (4.8)

To give the reader an idea about the order of these number, we present an
example.
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Example 4.2.1 Estimation of the key space for a typical 64-bit TST

s n = 2s |Hs ×H1| = 2n N ′
s

1 2 4 2

2 4 16 8

3 8 256 640

4 16 65536 3.51× 108

5 32 4.29× 109 2.39× 1024

6 64 1.84× 1019 1.67× 1065

7 128 3.40× 1038 5.25× 10165

8 256 1.16× 1077 6.23× 10404

Let, for instance, s = 6 and r = (256, 256, 256, 256, 256, 256, 256, 256).

N ′′
6 = r0! ·

w−1∏

i=1


ri! ·



i−1∏

j=0

rj



ri
 = 256! ·

7∏

i=1


256! ·



i−1∏

j=0

256



256


= (256!)8 · 256256 · 2562·256 · 2563·256 · 2564·256 · 2565·256 · 2566·256 · 2567·256
= (256!)8 · 256256·(1+2+3+4+5+6+7) = (256!)8 · 2567168
' 5.38× 1021317

Nmin = max
{
N ′
6, N ′′

6

}

= 5.38× 1021317

≈ 270816

Nmax = N ′
6 ·N ′′

6 = 1.67× 1065 · 5.38× 1021317

' 8.99× 1021382

≈ 271032

It follows that there are between 270816 and 271032 theoretically possible bases of type r
which can be generated by the bga. The corresponding key space consists of two such
bases, i.e. |K| = |B∗H6×H1

|2. Therefore, 141632 to 142064 bits would be necessary to
represent a possible key.

Note that conjugation (T5) has not been considered in the example. As there
are 2n different permutations in Hs ×H1 the total number of bases after T5 could
be as high as 2n times the earlier estimate. The corresponding key length after T5
would be, hence, increased by up to 2n bits. Moreover, we have examined only
one particular type r. The real number of bases of all possible types that can be
generated by bga is still higher.
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4.2.2.2 An Attack on a Simplified TST

tst can not be easily attacked by a differential or linear cryptanalysis in the usual
way, because these attacks are designed for iterative ciphers. We propose a new
attack constructed especially for tst. We will present the basic idea of the attack
on a simple tst instance with two 2-dimensional bases of type r = (2m, 2m). To
make the explanation simpler, we will suppose that no commutative block shuffle
has been performed during bga, i.e. the key bit positions are contiguous in every
base block. Such a setup was, for example, used in Chip-TST proposed in [Hor98].

The encryption scheme A in Figure 4.10 displays the initial situation. The
block length of the cipher is n = 2m, thus, a plaintext x can be considered as
a concatenation of two m-bit halves a and b. Analogously, an n-bit ciphertext y
consists of two m-bit halves a′′ and b′′. The two-dimensional group basis β1, which
is used for the factorization of x during an encryption, is displayed on the left hand
side of the figure. It consists of two blocks - the lower one B0 and the upper one B1 -
both of which can be stored in the compact representation as tables of 2m×2m bits.
The contents of B0 can be divided into two continuous areas: the white area marked
as 0 containing only zero bits, and the simple shaded area marked as P3 containing
2m different m-bit rows. Obviously, P3 is a table representation of a permutation of
2m elements. The columns of B0 occupied by P3 correspond to the key bit positions
of B0. The block B1 of β1 consists of two distinct areas as well. The simple shaded
one (P1) represents a permutation of 2m elements and the double shaded one (S1)
contains 2m ×m uniformly distributed random bits. Again, P1 represents the key
bits of B1. The second basis β2, used for the composition of y, is displayed on the
right hand side of the figure. Because of the bit reversing operation R (described in
Section 3.3) β2 is turned upside-down. The structure of its two blocks, consisting of
the parts 0, P2, P4, and S2, is analogous to the one of β1.

The two mappings represented by S1 and S2 are general m×m-bit S-boxes (see
e.g. Section 2.3) and the four bijective mappings (permutations) represented by P1,
P2, P3, and P4 are m×m-bit S-boxes of special structure. The binary operation ⊗
denotes the permutation product in the carrier group (performed by Algorithm 3.3.1)
and the operation ® denotes the inverse operation to ⊗, i.e. the “division” u® v =
u ⊗ v−1. All input, intermediate, and output values are binary vectors of 2m bits
considered as compact representations of permutations in the carrier group. When
an encryption is being performed, a plaintext a||b is factorized with respect to the
group basis β1, and the corresponding ciphertext a′′||b′′ is composed using the basis
β2. The second division performed during factorization and the first multiplication
performed during composition (both marked with dotted lines) do not need to be
completed, because their outgoing resp. incoming value is guaranteed to be the
identity permutation represented by a vector of 2m zero bits.

The described encryption scheme A can be translated into an equivalent, but
more understandable, scheme B as follows. When looking for the first factor of
a||b with respect to β1 according to Algorithm 3.3.2, we take that particular row of
B1 whose key bits (i.e. the right half corresponding to a row of P1) are equal to
b. This can be formally written as x1 = P−11 (b) and (a′||0) = (a||b) ® (S1(x1)||b).
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Figure 4.10: Analysis of TST
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Furthermore, we reverse the coordinate x1 and pass it to P2 for a composition,
i.e. (b′||0) = (0||0) ⊗ (P2(R(x1))||0). The functions P1, S1 and P2 can be replaced
by functions p1(x) = P−11 (x), s1(x) = S1(x) and p2(x) = P2(R(x)) respectively,
without changing the mapping a||b −→ a′||b′. An analogous transformation can be
made with P3, P4 and S2, without changing the mapping a′||b′ −→ a′′||b′′.

The scheme B can be further simplified to scheme C by removing the permuta-
tions p1 and p3 and using s′1(x) = s1(p1(x)), p

′
2(x) = p2(p1(x)), s

′
2(x) = s2(p3(x)),

and p′4(x) = p4(p3(x)), instead of s1, p2, s2 and p4 respectively. The mapping
a||b −→ a′′||b′′ is still equivalent to the one defined by scheme A.

Now we can exploit the fact that scheme C is redundant, i.e. there are several
possible quadruples of functions s′1, s

′
2, p

′
2, p

′
4 for every particular mapping a||b −→

a′′||b′′. For instance, the functions s′1, s
′
2, p

′
2 and p

′
4 in scheme C of Figure 4.10 can

be replaced by functions s′′1(x) = s′1(x)®c−11 , p′′2(x) = p′2(x)⊗c−12 , p′′4(x) = s′4(x®c1),
and s′′2(x) = s′2(x® c1)⊗ c2 respectively, where c1 and c2 are two arbitrarily chosen
constants. This idea is demonstrated in Figure 4.11. One can see that because every
group operation is associative, the operations u ® c−11 ® c1, as well as u ⊗ c−12 ⊗ c2
will compensate each other and the new scheme D will implement exactly the same
mapping a||b −→ a′′||b′′ as the scheme C. Note that there is nothing special about
the particular operations ⊗ and ®. For the purpose of our attack these can be
basically any two group operations on {0, 1}m. Also note that there exists no zero
element in a group (Definition 2.1.4), i.e. there is no z ∈ G, such that z ∗ x = z for
all x ∈ G. Thus, the values c1 and c2 can be chosen to be truly arbitrarily, without
any restrictions.

The equivalence of the schemes B, C, and D in Figure 4.10 implies that we do
not necessarily need to recover the original functions of scheme B, we rather find
an equivalent quadruple of functions s′′1, s

′′
2, p

′′
2, p

′′
4 which implement the same map-
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ping. By reconstructing the tables representing s′′1, s
′′
2, p

′′
2 and p′′4 we can completely

recover the encryption function (which can easily be inverted to the corresponding
decryption function) and, hence, break the cipher. Hereby we do not need to know
the exact values of c1 and c2, we just have to ensure that they are fixed.

The constants c1 and c2 used in the scheme D of Figure 4.11 can be chosen
arbitrarily. Hence, we decide to use c1 = s′1(0) and c2 = p′2(0) which will ensure
that s′′1(0) = 0 and p′′(0) = 0. In other words, from the many possible equivalent
quadruples of s′′1, s

′′
2, p

′′
2 and p′′4 we will look for that particular one, for which

s′′1(0) = 0 and p′′(0) = 0. (Such a quadruple of mappings does exist, as the values
c1 = s′1(0) and c2 = p′2(0) do exist.) The scheme D can now be attacked in the
following way.

First, let us fix b = 0 and encrypt all 2m possible inputs. For every input
ai||0, where ai = 0, . . . , (2w − 1), we obtain an output a′′i ||b′′i , such that a′′i = p′′4(ai)
and b′′i = s′′2(ai). In other words, we are able to obtain all 2m rows of the tables
representing p′′4 and s′′2 with just 2m trial encryptions. The appropriate s′′1 and p′′2
can be recovered in another 2m steps. Hereby we fix a = 0 and perform a trial
encryption for every possible input 0||bi. Using the corresponding outputs a′′i ||b′′i ,
we can compute s′′1(bi) = p′′−14 (a′′i ) and p

′′
2(bi) = b′′i ® s′′2(p′′−14 (a′′i )) for every possible

bi = 0, . . . , (2w − 1), i.e. completely recover both s′′2 and p′′4.

All in all, we have shown that it is possible to completely reveal the encryption
and decryption functions of the cipher with just 2m+1 trial encryptions. The memory
space necessary for this attack is the same as the memory space required for a regular
tst encryption.

4.2.2.3 Generalizations and Extensions of the Attack

The attack on tst with two 2-dimensional bases of type r = (2m, 2m) can be ex-
tended to a more general class of tst representatives in a very straightforward
way. The vulnerable class of tst ciphers includes all instances whose w-dimensional
bases β1 and β2 of types r = (r0, r1, . . . , rw−1) and r′ = (rw−1, rw−2, . . . , r0) were
constructed without a commutative block shuffle.

The extended attack works similarly as the basic version. First, a scheme with
(unknown) S-boxes and permutations, equivalent to the original encryption function,
is constructed in an analogous way as described above. Second, by consecutive
parsing of all possible log2(ri)-bit sub-blocks of the input, the corresponding S and
P tables are reconstructed. The complexity of such attacks is only

∑w−1
i=0 ri trial

encryptions. For instance, the simplified tst version, so-called Chip-TST, proposed
in [Hor98] is vulnerable against these attacks and is, hence, not secure in spite of its
extremely large key space.

Even if the bases of a tst implementation have been generated with a commu-
tative block shuffle during bga, a similar attack might still be possible. The only
obstacle for mounting an attack in this case is the unknown ordering of the key
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bit positions5. Once we know the key bit positions for particular blocks, we can
partition the plaintext vector into w variables, each of length ri. Even though these
partitions are not continuous as, for instance, the parts a and b in the example
above, we can parse them part by part, similarly as in the simple example above,
and obtain the w2 secret functions with just

∑w−1
i=0 ri trial encryptions.

The remaining question is, whether or not it is hard to obtain the key bit or-
dering. Unfortunately, it is relatively easy. Because of the special structure of the
carrier group Hs × H1, some key bit positions are more probable to appear in the
lower blocks, and some can not appear there at all. Suitable candidates for the rw−1
key bit positions of the last block can be found by means of statistics. In what
follows, we describe one of the possible techniques.

When trying all n differences with weight 1 in setup C of Figure 4.6, the ∆
values corresponding to the key bit positions of the last block of β1 will produce the
worst randomness. The reason for this behavior is the weak avalanche effect in tst

described in Theorem 4.2.1.

Theorem 4.2.1 Let G be a binary permutation group, let β = (B0, . . . , Bw−1) be
a group basis for G generated by bga, and let ∆ be a fixed binary vector. Fur-
thermore, let ci denote the set of key bit positions of a block Bi of β. When two
permutations p and p′ = p⊕∆ (both written in compact representation) have coordi-
nates (x0, . . . , xw−1) = β̃−1(p) and (x′0, . . . , x

′
w−1) = β̃−1(p′) respectively, then xi is

equal to x′i for all i > m, where m ∈ Zw is the maximal value for which ∆ contains
a non-zero bit on a position from cm.

Sketch of proof: The weak avalanche effect of a factorization is basically caused
by the recursive character of the Sylow group Hs (Definition 2.1.16) which is the
biggest component of the tst carrier group Hs×H1. The recursive structure of Hs

has the following consequences:

1. Let us consider the operation v ← v ⊗ c in the compact representation of
Hs ×H1 (performed by Algorithm 2.1.1). Let both v and c be binary vectors
(i.e. a compact representations of permutations fromHs×H1). When c is fixed
and v varies through all possible values, the graph of dependencies between
the bits vi of v consists of one binary tree corresponding to the component Hs

and one separated vertex corresponding to the component H1. Figure 4.12 A
presents a sample graph of bit dependencies inside of v for H3 × H1. Any
change of a bit corresponding to a vertex vi of the tree can only affect vi itself
and the bits which correspond to the descendant vertices of vi. This follows
from the way the Algorithm 2.1.1 is working.

This dependency structure is rather sparse and consequently the diffusion of
the group operation in Hs × H1 is weak. The desired “all on all” bit depen-
dencies, which would provide the optimal diffusion, are displayed on the right

5More precisely, only the sets of key bits corresponding to the particular blocks need to be known
- the exact order of key bits is not important.
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Figure 4.12: Bit dependencies during operation v ← v ⊗ c in H3 ×H1 and Z256

hand side of the figure. For example, the group operation ’+ mod 256’ on the
set Z256 has the desired property. This means that a change of any bit of the
input v can influence any bit of the output v + c mod 256 when v is variable
and c is fixed.

2. When factorizing a permutation p with respect to a transversal group basis β,
each factor xi depends only on those bits of an intermediate result pi+1, which
correspond to the key bit positions of the block Bi of β. This follows from the
Algorithm 3.3.2 (see also Example 3.3.2 for more details).

3. Commutative block shuffle is the only step of bga which can affect the ordering
of key bit positions in β. Commutative block shuffle is performed with the
canonical basis α (Definition 3.3.2) which contains only blocks of the form
Bi = (id, pi), where the compact representation of pi contains a single non-
zero bit on the i-th position. The key bit position of Bi is i. Only commuting
blocks can be swapped during commutative block shuffle.

4. Two blocks (id, pi) and (id, pj) of α commute if and only if pi and pj commute.
Furthermore, pi and pj commute if and only if the corresponding vertices vi
and vj in the appropriate dependency graph (e.g. the one in Figure 4.12) are
not a descendant of each other. For example, according to Figure 4.12, the
permutations p6 and p3 inH3×H1 do not commute, because v3 is a descendant
of v6. On the other hand, p5 and p1 do commute, because neither v5 is a
descendant of v1, nor vice versa. This property follows from the particular
structure of Hs which is discussed in [Hor98] in more detail.

5. It follows from observations 3 and 4 that no descendant can be moved above
its ancestor during bga. More precisely: Let ci and cj be the sets of key bit
positions of blocks Bi and Bj of a basis β which was generated by bga. If a
vertex vk corresponding to a key bit position k ∈ ci is an ancestor of a vertex
vl corresponding to l ∈ cj , then i ≥ j. (The equality is possible because of
block fusion.)

6. The points 1, 2, and 5 together imply the Theorem 4.2.1.
¤

According to Theorem 4.2.1, any change ∆ of an input can only influence the
coordinates produced by:
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• the highest block whose key bits are included in ∆, and

• the blocks below.

When ∆ contains non-zero bits only on the key bit positions of the lowest block B0
of β1, the factors xi for all i = (w − 1), . . . , 1 will be fixed, and only x0 will vary.
Consequently, only the block B0 of β1 and the block Bw−1 of β2 will contribute
to the randomness of the output, and all other blocks of both bases will be passed
by. This simplification, enforceable by an adversary, makes it principally possible to
reveal the key bit ordering and, consequently, to perform the attack on tst in spite
of the commutative block shuffle used.

It has to be noted that even more sophisticated attacks on tst are thinkable.
An attack might, for instance, exploit the fact that a particular prng used is not
cryptographically secure. The exact internal status of the prng which we suggested
in Section 4.1.1.1 can be reconstructed by knowing just 100 consecutive 32-bit num-
bers from the generated pseudorandom sequence. With this knowledge one can trace
the complete sequence in both directions - the future as well as the previous values.
This property of a prng would not cause any problems if tst itself were secure,
but as soon as some weakness of tst enables an adversary to reveal a long enough
consecutive part of any group basis, the other parts might be easily recomputed
using the exact knowledge of the particular tst implementation together with the
knowledge of the pseudorandom sequence. In this way the complexity of an attack
(i.e. the number of needed trial encryptions) could further be reduced.

4.3 Summary

We have examined the efficiency and security properties of tst. Table 4.1 presents
the efficiency comparison of tst with some of the fifteen aes candidates. The tst

values (using afe = 9) have been obtained with our C++ implementation, and the
values of the aes candidates have been taken from [Gla99, ea99]. In both cases
the examined block length was 128 bits. The times are stated in clock cycles on
Intel Pentium II processor, which makes them comparable independently on the
frequency of a particular processor used.

We have shown that the special structure of a tst key can be made transparent
for a user, and the cipher can accept a key in the usual m-bit binary form. When
using a proper prng, the key length of tst can be made fully scalable. The com-
mutative block shuffle in bga can be performed in several ways. The most efficient
one is the recursive Algorithm 4.1.2 which is about 10 to 20 times faster than a
simple iterative algorithm. In spite of this speedup, the complete basis generation
procedure is still rather complex and the corresponding key setup delay of tst is
significantly longer than with the other block ciphers. Nevertheless, when choosing
afe ≤ 10, the key setup delays of tst are acceptable.

The cartesian representation of permutations speeds up the encryption in com-
parison with the compact representation roughly by factor 6. But even then, the
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Cipher Key Setup Time† Encryption Time†

TST Compact 398× 106 141526

TST Cartesian 269× 106 27882

Magenta 30 6539

Frog 1.4× 106 2417

Loki 97 7430 2134

Safer+ 4278 1722

Rijndael (AES) 305, 1389‡ 374

RC6 1632 270

† Measured in clock cycles on Intel Pentium II processor

‡ Key setup delays for encryption and decryption are different

Table 4.1: Efficiency of TST in comparison with other ciphers

encryption speed of tst is still not competitive with the most modern block ciphers.
The throughput of about 200 KB/s is completely insufficient. The winner of the
aes competition Rijndael encrypts about 14 MB/s on the same platform.

The memory requirements of tst grow exponentially with an increasing afe,
but can be held in a sensible range when afe ≤ 10. Memory requirements of up to
1 MB are feasible on workstations, but are unsuitable for smart cards.

The most serious concern about tst relates to its security. Even if the size of the
potential key space of tst is astronomically large, the statistical randomness prop-
erties of the cipher are not good. The quality of encryption slightly improves with
an increasing afe, but can not reach a sufficient level of security in an acceptable
range of afe. Moreover, a chosen-plaintext attack with complexity only

∑w−1
i=0 ri

can be mounted for simplified tst versions. Hereby the weak diffusion in the carrier
group is exploited. The presented attack idea appears to be further extendable to
a general tst, and some more sophisticated attacks based on the used prng might
further be possible.

All in all, there is a need for improvements in the design of tst which would
lead to higher security and, possibly, also to better efficiency.



Chapter 5

A New Cryptosystem Based on

Extended Group Bases

This chapter introduces a novel idea of extended group bases and proposes a new
tst-like symmetric cryptosystem utilizing this class of bases. The main aim by
designing the new cryptosystem was to strengthen tst by improving its diffusion
properties.

In the first section we introduce the notion of extended group basis as a gener-
alization of the group basis for a permutation group. We explain the basic idea and
the theoretical concepts, and discuss some possibilities of effective implementation.

In the second section we describe a new symmetric cryptosystem tst’ based
on the extended group bases of binary groups. Because of its improved diffusion
properties, the new cryptosystem makes it possible to use a new carrier group Zn

2 in
addition to the original Hs×H1. Owing to its commutativity and simpler structure,
the group Zn

2 enables a faster and more flexible realization of the tst encryption
idea.

We present an efficiency analysis of the new cryptosystem in the third section
and a security analysis in the fourth section of this chapter. In both cases we use the
same methodology which has already been used for the tst analysis in Chapter 4.
The obtained results are therefore directly comparable, and the advantages and
drawbacks of the two cryptosystems can be effectively evaluated. The resulting
comparison of tst with tst’ as well as a summary of the properties of the new
cryptosystem is presented in the final fifth section.

5.1 Extended Group Bases

The notion of an extended group basis generalizes the idea of a group basis for
permutation group.

61
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Definition 5.1.1 Extended Group Basis
Let G be a permutation group and let T be a set of bijective transformations on
G, T = {Ti : G −→ G, 0 ≤ i < w}. A T -extended group basis for G of type
r = (r0, . . . , rw−1) is a pair β(T ) = (β, T ), where β = (B0, B1, . . . , Bw−1) is an
ordered collection of ordered subsets Bi = (bi,0, bi,1, . . . , bi,ri−1) of G, such that each
element p ∈ G can be expressed uniquely as a product of the form

p = id⊗(0) b0,x0 ⊗(1) b1,x1 ⊗(2) · · · ⊗(w−1) bw−1,xw−1, bi,xi ∈ Bi.

The operations ⊗(i) on G are defined as a⊗(i) b = Ti(a ∗ b), a, b ∈ G, where ∗ is the
usual permutation composition on G.

In the special case when Ti(g) = g for all g ∈ G, i ∈ Zw, we obtain the usual
group basis as given in Definition 2.1.9.

The composition of a permutation p ∈ G from a coordinate vector x = (x0, . . . ,
xw−1) with respect to an extended group basis β(T ) is denoted by β̃(T )(x) = p.
The inverse operation - factorization of p with respect to β(T ) - is denoted by
β̃(T )−1(p) = x. The binary operation inverse to ⊗(i), which is necessary for per-
forming a factorization, will be denoted by ®(i). This operation is defined as
a®(i) b = T−1i (a) ∗ b−1 for all a, b ∈ G.

The transversal group bases are of special interest for the construction of sym-
metric cryptosystems, because they are guaranteed to be tame. When a group basis
β of a group G is transversal with respect to a chain of subgroups G0 < G1 < · · · <
Gw−1 = G (see also Definition 2.1.11), and the set of transformations T of the cor-
responding extended group basis β(T ), having the blocks identical with β, contains
only transformations of the form Ti : Gi −→ Gi for 0 ≤ i < w with polynomial
complexity, then β(T ) is tame as well. Moreover, if β is supertame and the complex-
ity of all Ti is O(n), the resulting β(T ) is supertame. This is ensured, because the
equality of the blocks of β and β(T ) makes the factor lookup operation equally fast
in both bases. Efficient transformations Ti with linear complexity are discussed in
more detail in Section 5.2.2.

tst-like cryptosystems employ only binary permutation groups to avoid a plain-
text expansion which was typical for pgm. A permutation p of a binary permutation
group G of order 2n can be written in the compact representation as an n-bit bi-
nary vector, so the transformations Ti : Gi −→ Gi can be in this case considered as
transformations on a set of binary vectors, Ti : {0, 1}log2(|Gi|) −→ {0, 1}log2(|Gi|).

The improved generality of extended group bases can be illustrated with a geo-
metric coordinate system similarly as in Figures 2.1 and 3.1. Let Pi denote a group
of i points. In Figure 5.1 we show a factorization with respect to a 2-dimensional
extended group basis β(T ). The chain of subgroups in our example is P4 < P16 = G.
When we factorize the point 5, we undo the transformation T1 first. T1 is nothing
else than a permutation of 16 elements, and T−11 maps 5 on 14. Thus, we will look
for the second coordinate of point 14 in P16. We do it in the same way as in a “non-
extended” 2-dimensional coordinate system, which will lead us to the coordinate 3.
The intermediate element from the next subgroup P4 is the point 2. We undo the
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Figure 5.1: Factorization with respect to an extended group basis
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Figure 5.2: Points whose second coordinate is 3

transformation T0 (a permutation of four elements) and obtain the point 0 which
leads us to the first factor 0. It follows that the coordinate vector of point 5 with
respect to β(T ) is (0, 3).

We see that the transformations Ti in fact do not increase the complexity of the
factorization algorithm. However, they do increase the complexity of the dependen-
cies between the points and their coordinates with respect to β(T ). While the second
coordinate in a usual group basis β depends exclusively on the vertical position of
the point, the same coordinate in the extended group basis β(T ) depends on both
vertical and horizontal position of the point. Figure 5.2 demonstrates this property
on the points whose second coordinate is 3. When using the usual group basis β,
different inputs (i.e. points) belonging to the same coset (i.e. vertical position) have
always the same coordinate on the particular position (i.e. the second coordinate
in our example). With β(T ) any small change of the input can influence all its co-
ordinates. It follows that the diffusion properties of the function β̃(T )−1 (as well as
β̃(T )) have been improved. Note that this effect can not be achieved by any of the
bga steps1 and it brings us a new cryptographic quality. An extended group basis

1More precisely, an equivalent effect can be achieved by an element shuffle (transformation T4
in Definition 3.2.2), but only for the lowest coordinate of a point. Any higher coordinates cannot
be affected in this way.
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combines the fast factorization properties of a transversal group basis for a binary
group with a high complexity2 which is typical for the full symmetric group.

5.2 Cryptosystem TST’

We introduce a new cryptosystem tst’ based on the principle of point mapping
(Definition 3.1.1). The encryption setup is the same as the one of the cryptosystem
tst (Section 3.3), but in contrast to tst, the new cryptosystem will use extended
group bases. The corresponding encryption and decryption functions are:

y = eK(x) = λ−1(β̃2
(T )

(R(β̃1
(T )−1

(λ(x)))))

and
x = dK(y) = λ−1(β̃1

(T )
(R(β̃2

(T )−1
(λ(y))))).

Analogously to tst, the secret key is a random pair of extended group bases,

K = (β
(T )
1 , β

(T )
2 ). The decryption function is basically the same as the encryp-

tion function, only the roles of β
(T )
1 and β

(T )
2 are swapped. The functions λ and λ−1

do not require any computations, exactly as the ones of tst.

5.2.1 Carrier Group

The binary carrier group group Hs ×H1 utilized by tst can be used with tst’ as
well. However, because of their improved diffusion properties, the extended group
bases can also be combined with some simpler binary groups. As the diffusion of tst

was ensured only by the group operation ∗ in the carrier group G, the complexity
of G had to be maximized (see also Section 3.3.1). Unfortunately, this had a bad
impact on the efficiency of tst, because the operation ∗ in G became (especially in
software) rather time consuming. On the other hand, the major contribution to the
diffusion of tst’ is given by the transformations Ti, not by the carrier group. Thus,
one can prefer the efficiency to complexity when choosing a carrier group for tst’.
The simplest binary permutation group available is the elementary Abelian group
Zn
2 introduced in Section 2.1.3. This carrier group has a couple of very attractive

properties.

We have shown that a product of two permutations a∗b in Zn
2 can be computed as

a single xor of their compact representations. This operation is significantly faster
than the permutation composition inHs×H1, performed by Algorithm 2.1.1. Hence,
we expect that the efficiency of tst’ based on Zn

2 will be higher. Also a scaling of
the block length n can be done with a better granularity when using Zn

2 . In contrast
to the group Hs ×H1, which enabled only block lengths of the form n = 2s, s ∈ N,
the group Zn

2 makes it possible to use any n ∈ N. For instance, the block length 192
bits, whose supporting was originally intended as a condition for the aes candidates,
can easily be achieved by Zn

2 , but not by Hs ×H1. Moreover, Zn
2 is a commutative

2Note that the complexity of the bit dependencies, as discussed in Figure 4.12, is “all on all” for
the operations ®(i) and ⊗(i).
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group, which means that the block swaps during a commutative block shuffle can be
performed without any restrictions by a very straightforward algorithm. Not only
the problems described in Section 4.1.1.2 are not relevant anymore, but also the
number of possible bases which can be generated by the bga increases. This means
a larger key space and a higher uncertainty for an adversary. Last but not least,
the dilemma between the compact and the cartesian representation of permutations
is not present when using Zn

2 . When implementing tst, we had to decide, whether
to use the cartesian or the compact representation of Hs × H1. The first one was
significantly faster but consumed significantly more memory, the second one was
shorter but slow. This contrast does not appear with tst’ based on Zn

2 , because in
this case the compact representation is both faster and shorter.

5.2.2 Family of Transformations T

Definition 5.1.1 does not restrict the form and the properties of transformations Ti
in any way. We have shown that it is advisable to use transformations of the form
Ti : {0, 1}log2(|Gi|) −→ {0, 1}log2(|Gi|) together with an extended transversal binary
carrier group, in order to make the factorization efficient. Nevertheless, some more
properties of Ti might be recommendable from the cryptographic point of view. In
what follows, we will discuss the most suitable form of Ti in more detail.

Let G be a binary permutation group of order 2n and let β = (B0, . . . , Bw−1)
be a w-dimensional group basis for G of type r = (r0, . . . , rw−1). The size of ci (the
set of key bit positions of block Bi) is |ci| = log2(ri). We denote the i-th bit of a
binary vector x as x(i), and we define a function γ : {0, 1}n × Zk

n −→ {0, 1}k as the
function which extracts the specified bits from an n-bit binary vector. For example,
γ(00101011, {3, 4, 7}) = 011. Another function δ : {0, 1}n×Zk

n×{0, 1}k −→ {0, 1}n
initializes the specified bits of a binary vector with specified values. For example,
δ(00101011, {3, 4, 7}, 000) = 00100010.

When a plaintext p (considered as a permutation written in the compact form)
is encrypted with tst, p is first factorized with respect to β1, and the resulting
coordinates are passed to β2. During the i-th factorization step an intermediate
result pi+1 is divided by a factor bi,xi from the block Bi of β1. The coordinate xi is
passed to β2, and the intermediate result pi = pi+1® bi,xi is further factorized in the
next lower block Bi−1 of β1. This procedure is continued, until p0 = id is reached.
In order to create an optimal diffusion, every coordinate xi should depend on all
variable bits of the intermediate result pi+1. Because xi depends only on those bits

of p
(j)
i+1 of pi+1 for which j ∈ ci (see Algorithm 3.3.2 for more details), an optimal

transformation Ti should make these bits dependent on all variable bits of pi. Ti
does not need to change any bits p

(j)
i+1 such that j 6∈ ci.

More precisely, an optimal Ti has the form Ti(pi+1) = δ(pi+1, ci, h(pi+1)), where
the function h : {0, 1}n −→ {0, 1}log2(ri) ensures that every bit of an output y =
h(x) ∈ {0, 1}log2(ri) depends non-idly on every bit of the input x ∈ {0, 1}n. Such
a function is usually called an n-to-log2(ri)-bit hash function. There exist many
possible n-to-m-bit hash functions, for instance, a simple xor-checksum, a cyclic
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redundancy code (crc), and many others. A hash function can implement a fixed
or, if appropriate, possibly also a key-dependent mapping.

A hash function h : {0, 1}n −→ {0, 1}m, m ≤ n, suitable for construction of Ti
should possess at least the following five properties:

1. The composite function δ(p, c, h(p)) must be invertible for all p ∈ {0, 1}n,
c ∈ Z∗n (where Z∗n denotes all possible subsets of Zn).

2. The computation of h(x) should not be time consuming.

3. Every bit of the output should depend on every bit of the input, i.e. for every
i ∈ Zn, j ∈ Zm there should exist two inputs x1, x2 ∈ {0, 1}n, such that

x
(i)
1 6= x

(i)
2 and h(x1)

(j) 6= h(x2)
(j)

4. Every output bit should be balanced, i.e. the value
∑

x∈{0,1}n h(x)
(i)

2n should be
approximately equal to 1

2 for every i ∈ Zn.

5. The function should not be affine (linear), i.e. it should not be true that for
every j ∈ Zm there exists a combination of coefficients li ∈ {0, 1}, i ∈ Zn+1,
such that for any x ∈ {0, 1}n it holds h(x)(j) = l0 +

∑n
i=1 li · x(i−1).

The need for properties 1 and 2 is obvious. If the composite function δ(p, c, h(p))
were not invertible, we would not be able to decrypt, and if the computation of h(x)
were too complex, it would non-necessarily slow down the cipher. The third property
ensures an optimal diffusion, because it guarantees that a change of any input bit can
influence all output bits. The fourth property ensures that the function has no strong
biasses which might be exploited for a cryptanalysis. Finally, the fifth property
contributes to a better confusion, improving the non-linearity of the factorization
in the carrier group. More theory on cryptographically strong functions and their
construction can be found e.g. in [AT90].

The invertibility of the transformation Ti(pi+1) = δ(pi+1, ci, h(pi+1)) can be en-
sured in a simple and efficient way by using a Ti of the form

p′i+1 = Ti(pi+1) = δ(pi+1, ci, h(γ(pi+1,Zn \ ci))⊕ γ(pi+1, ci)) (5.1)

as shown on the right hand side of Figure 5.3. This refinement ensures that the
inverse transformation T−1i can be computed in the following way

pi+1 = T−1i (p′i+1) = δ(p′i+1, ci, h(γ(p
′
i+1,Zn \ ci))⊕ γ(p′i+1, ci)) (5.2)

independently of the properties of function h. The operation ⊕ can be basically any
invertible binary operation on the set of binary vectors.

Because Ti in the form 5.1 is always invertible, we only have to ensure that our
n-to-m-bit hash function h is efficient, strongly diffusive, balanced and non-linear.
This can, for example, be achieved by chaining a simple non-linear m on m bit
bijective function p, as shown in Figure 5.4. The operation ⊗ can be any efficiently
computable group operation on {0, 1}m, e.g. bitwise xor, addition modulo 2m, etc.
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When n is not a multiple of m, the last few input bits of h constructed according to
Figure 5.4 can not be initialized from an input x. (Note that x has only n bits, while
h expects d nme × m bits.) In such a case the remaining input bits of h should be
constantly set to zeros to make the function deterministic. Among other possible,
here are some examples of functions p, some of them key dependent, some not.

• p(x) = rotc(x), where rotc denotes a rotation of the argument by c positions
and c is relatively prime to m

• p(x) = c·x (mod 2m), where c is anm-bit prime containing roughly m
2 non-zero

bits

• p(x) = x(2x+ 1) (mod 2m), this function has, for instance, been used in RC6
[RRSY98]

• p(x) = pk(x), where pk is a key-dependent permutation of 2m elements (i.e. a
pseudorandom table of m× 2m bits, such that no two rows are equal)

• p(x) = cx+ki(mod 2
m)(mod 2m), where c is an m-bit prime and ki are some key

dependent values

Note that if a key-dependent function h is used, this function and its secret
parameters are considered as part of the extended group basis according to Defini-
tion 5.1.1. Consequently, a key for tst’ is completely determined by the pair of
group bases used. Also note that chaining, as described here, is just one of the
possible realizations of h. This scheme is particularly interesting, because of its sim-
plicity and efficiency. Nevertheless, other realizations are very well possible. When
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designing a family of transformations T , one should just ensure that a particular
implementation satisfies the five requirements listed in this section.

5.3 Efficiency

Our efficiency evaluation of tst’ was performed in the same way as the evaluation
of tst described in Section 4.1. We examine 64-bit and 128-bit versions of tst’ for
both Sylow and Abelian carrier groups, using a variable afe. We compare the new
cryptosystem with the original3 tst as well as with the cryptosystems idea and
aes.

5.3.1 Key Generation

A key for tst’ based on group Hs ×H1 consists of two randomly chosen extended
transversal group bases for this group. Because a key of tst has exactly the same
form, the key generation setup for tst’ based on Hs ×H1 can be the same. When
using the commutative carrier group Zn

2 , the bga of tst’ can be slightly simplified.
The commutative block shuffle can be performed in a very straightforward way by
Algorithm 5.3.1.

Algorithm 5.3.1 Trivial Block Shuffling
Let β = (B0, B1, . . . , Bw−1) be a group basis of a commutative group G. The com-
mutative block shuffle can be performed by the following algorithm:

input β

for i = 0, . . . , (w − 1) do

set j = Random(i, w − 1)

call Swap(Bi, Bj)

endfor

output β

The function Random(min, max) generates a random integer between min and max,
and the function Swap(Bi, Bj) swaps the blocks Bi and Bj in β (when i = j, the
function does nothing).

This algorithm generates every possible ordering of blocks with the same prob-
ability 1

w! . Because of the guaranteed commutativity of Zn
2 , the more complicated

Algorithms 4.1.1 and 4.1.2 are no longer necessary.

The requirements for a prng used during the bga are the same as with tst

(see Section 4.1.1.1 for more details). Hence, in our tst’ implementation we use the
same lagged Fibonacci prng that we used with tst.

3Hereby we consider the tst version using the cartesian representation of permutations which has
shown itself to be significantly more efficient than the version based on the compact representation.
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Figure 5.5: Key setup delay of TST’

5.3.1.1 Key Setup Delay

Figure 5.5 displays the key setup delays for tst’ using both carrier groups. Note
that the times achieved by tst’ based on the Sylow group are the same as the ones
of tst. This was expected, because the same key setup scheme has been used in
both cases.

The irregularity on the curves for Abelian group when afe = 8 is caused by the
internal data representation in our implementation. 8 is the last number for which
all 2AFE values (e.g. indices of rows inside of a base block, coordinates, etc.) fit into
one byte. For afe > 8 already two bytes must be allocated for every such variable.
This sudden change of word length manifests itself as a small peak on the curves.

One can see that the key setup delays of tst’ based on the Abelian group are
roughly 11 times shorter than the ones of tst. In spite of the fact that these values
are still not competitive to idea and aes, the delays staying significantly under 0.5
seconds enable a comfortable use of tst’ for symmetric encryption. The suitability
of tst’ for building cryptographically secure hash functions, however, is still not
very good. Only delays substantially below 10−3s would be appropriate for that
purpose.

5.3.2 Throughput

The encryption speed of tst’ depends substantially on the carrier group used. The
middle pair of curves in Figure 5.6 corresponds to the original tst cryptosystem.
As expected, tst’ based on the Sylow group is slower than the original tst. The
complexity of factorizations and compositions is the same for both cryptosystems,



70 5. NEW CRYPTOSYSTEM BASED ON EXTENDED GROUP BASES

4 5 6 7 8 9 10 11 12
10

4

10
5

10
6

10
7

10
8

Average Fusion Extent

T
hr

ou
gh

pu
t [

B
yt

es
/s

ec
.]

TST’ 64b Sylow   
TST’ 128b Sylow  
TST’ 64b Abelian 
TST’ 128b Abelian
TST 64b          
TST 128b         
AES 128b         
IDEA 64b         

Figure 5.6: Encryption speed of TST’

but tst’ has to perform the transformations Ti in addition. When using the Abelian
group, this disadvantage is more than compensated. A 64-bit tst’ is 2.5 times faster
and a 128-bit tst’ is even 3.2 times faster than the original tst. Unfortunately, the
achievable speeds are still not competitive to the ones of idea and aes.

There is an interesting local maximum by afe = 8 on the curves corresponding to
Zn
2 . This peak is not of pure implementational nature. The extraordinary increased

speed is caused by a combination of two factors. First, the already mentioned
optimal length of variables (8 bits = exactly 1 byte) plays a role and, second, the
extraordinary regularity of group bases for afe = 8, which will be discussed in
Section 5.4 in more detail, contributes to this speedup. A similar peak can be
expected in all points where the two mentioned factors appear together, e.g. afe =
8, 16, 32, etc.

Although the locally improved speed for afe = 8 seems to be an advantage, this
fast configuration should preferably not be used, because the security properties of
the cryptosystem have their local minimum exactly at this point.

5.3.3 Memory Requirements

tst’ does not bring any new values regarding the minimal memory requirements.
The memory requirements with the Sylow group are the same as the ones of tst.
The amount of memory which is necessary when we use the Abelian group is the
same as the one of tst with the compact representation, i.e. roughly eight times
smaller for n ≤ 256. These results are displayed in Figure 5.7.

However, the eight times smaller memory requirements of tst’ are not counter-
balanced by a decreased throughput, as it was the case with tst using the compact
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Figure 5.7: Memory requirements of TST’

representation. On the contrary, the speed of tst’ is higher when using the smaller
memory. This property of tst’ can actually be considered as a decrease of memory
requirements by a factor of 8 in comparison with tst.

5.4 Security

In what follows we analyze the security of tst’ using both generic and white box
evaluation methods. In both cases we compare the results of tst’ with the ones of
the original tst to make clear, whether or not the intended improvement of security
properties was achieved.

5.4.1 Generic Statistical Evaluation

The methodology used for the statistical evaluation of tst’, whose results are pre-
sented in this section, was exactly the same as the one which has been used for tst

evaluation in Section 4.2.1.

The positive influence of the extended group bases on the statistical properties
of tst’ is demonstrated in Figure 5.8. In contrast to tst, whose suspicion rate is too
high and sinks very slightly, the randomness properties of tst’ based on the Sylow
carrier group are very good. Even the version based on the simple Abelian group
has a very rapidly sinking suspicion rate for a growing afe. However, the curves
corresponding to the Abelian group do not sink monotonously. Apparently, there
is a strong local maximum (weakness) for afe = 8. This deviation is caused by an
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extraordinary regularity of the group bases which can be explained as follows4.

Because both examined plaintext lengths n = 64 and 128 bits are divisible by
8, the blocks of the two group bases β1 and β2 are mapped “one to one” when afe

= 8. In this special case no parts of blocks overlap between the bases, and every
coordinate xi with respect to β1 completely determines the coordinate x′w−1−i with
respect to β2. This is exactly the case which we exploited in the attack on tst

described in Section 4.2.2.2.

An increasing afe affects the statistical properties of tst’ in two ways. First,
there is an exponentially strong trend which improves the pseudorandomness prop-
erties until a certain level is reached which is not distinguishable from perfect ran-
domness. Second, there are local peaks at those points where afe divides the block
length n (i.e. 64 or 128 bits in our case). The falling-off of the suspicion rate is
the superior of the two trends and, therefore, after reaching a certain level, the lo-
cal maxima become negligible. Our investigations have shown that the deviations
become most obvious in the middle part of the curve. For small values of afe the
randomness is very poor anyway, so the even worse values for the divisors of n (e.g.
afe = 4) are not that flagrant. On the other hand, when afe is large enough, the
positive influence of large group bases is much stronger than the local deviations,
and these deviations (e.g. for afe = 16) become negligible again.

It is noticeable that we do not observe similar maxima on the tst curves. This
is supposedly caused by the following two factors. First, the randomness properties
of tst are rather poor, so the deviations are not obvious, and second, the more

4The following considerations belong, in fact, to the white box analysis because they are based
on the inner structure of tst’. Nevertheless, we think that it is more appropriate to place them
into this section, where the problem arises for the first time.
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complex structure of Hs × H1 might suppress creation of such maxima. The fact
that there are no similar peaks on the curves corresponding to tst’ based on the
Sylow group supports this hypothesis. Nevertheless, even in its worst maximum
the randomness of tst’ is significantly better than the one provided by tst. The
randomness properties of tst’ based on Abelian group, achievable with afe ≥ 9,
are very strong, and 9 is therefore the minimum afe value advisable for practical
use. With the slower Sylow group even afe ≥ 4 seems to be sufficient.

5.4.2 White Box Analysis

The extended group bases of tst’ improve its cryptographic properties in compar-
ison with tst. On the other hand, the usage of a simpler carrier group Zn

2 might
compromise the security of tst’ in some way. We analyze the influence of these
modifications, estimate the new size of the potential key space, and investigate the
possibility of new attacks.

5.4.2.1 Key Space

The theoretical key space size of tst’ depends on the carrier group used. When us-
ing the Sylow group, the key space is identical to the one of tst which has already
been analyzed in Section 4.2.2.1. When using the commutative Abelian group, the
key space becomes larger. The block swaps performed during a commutative block
shuffle of a canonical basis for Zn

2 are not limited in any way, because all block do
commute. It follows that the number of possible outputs of T1 is the same as the
number of all possible permutations of n elements, i.e. n!. This value is roughly
2n times higher than the corresponding value 4.2 for tst. This improvement corre-
sponds to approximately n additional key bits. Nevertheless, when speaking about
hundreds of thousands of key bits (see e.g. Example 4.2.1), such an improvement is
marginal.

5.4.2.2 Attacks on TST’

From the cryptographic point of view, the fact that the key bits are spread uni-
formly among the blocks of group bases is much more relevant than the increase
of the hypothetically achievable key length. The uniform distribution of key bits
in Zn

2 disables an adversary to make good predictions regarding the probability of
appearance of some key bit positions in the lower (respectively higher) blocks. Thus,
even if a tst’ based on Zn

2 had the weak avalanche effect of tst (which is not the
case), the prediction possibilities described in Section 4.2.2.3 would be reduced.

The contribution of transformations Ti to the security of tst’ is even more
important. Let us consider a version of tst’ which is simplified in a similar way
as the one described in Section 4.2.2.2. Figure 5.9 shows a very simple tst’ with
block length n = 2m whose two group bases have type r = (2m, 2m). As already
mentioned, the transformation T0 affecting the last coordinate x0 is the only one
whose action is equivalent to an element shuffle of the corresponding base block.
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Figure 5.9: Analysis of TST’
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Hence, the evaluation of T0 can be omitted. The simplification from scheme A to
scheme D is done in the same way as the one performed in Section 4.2.2.2. The
operations ⊕, ⊗, and ® are not particularly important for the attack, and can be
therefore realized by any group operations on {0, 1}m.

A cryptanalysis of scheme D can not be done in the trivial way described in
Section 4.2.2.2. When setting b = 0 and varying a through all 2m possible values,
the input of function s′′1 will not be constant, because of the transformation T1.
However, when the exact h is publicly known (i.e. h is not key-dependent), the
attack can be performed in a slightly modified way. Instead of keeping b = 0, we
can perform the trial encryptions of inputs ai||bi, where ai = 0, . . . , (2m − 1), and
bi is an inverse element to h(ai) with respect to the group operation ⊕. Using this
approach we can keep the input of s′′1 and p

′′
2 constant and, hence, attack the scheme

with the same complexity as the scheme D in Figure 4.10. It follows that Ti, i > 0
should always be made key dependent.

When the uncertainty of the output of Ti is at least m bits, an adversary can not
predict the input of s′′1 and, consequently, can not construct the attack described
above. To guarantee such an uncertainty a Ti can, for example, be implemented
as chaining of a key-dependent bijection h which is incompatible with ⊕ and can
implement (depending on the particular key used) at least 2m different mappings.
“Incompatible with ⊕” means that the output value of term h(k, a)⊕b should not be
controllable without the knowledge of k. For example, h(k, a) = k⊕a is a bad choice
for h, because by setting bi = ai the output of h(k, a)⊕ b can be held constant. On
the other hand, a good choice for h(k, a) is a random permutation of 2m elements
depending on k. For such an implementation of h the output of h(k, a) ⊕ b can be
correctly predicted with probability at most 1

2m .

It follows that with a proper choice of the transformation family T for the ex-
tended group bases of tst’ the cryptosystem can be made resistant against an
efficient class of attacks which could be successfully mounted on tst.

5.5 Summary

The new cryptosystem tst’ is based on extended group bases involving a class of
transformations T . This new design ensures a strong avalanche effect of the cipher,
because every coordinate of a permutation factorized with respect to an extended
group basis depends on all its bits. Owing to its improved diffusion properties the
new cryptosystem can utilize a new simpler carrier group Zn

2 in addition to the
original group Hs ×H1.

The security of tst’ based on both groups is improved. When using the com-
mutative carrier group, the statistical properties of the cipher are steadily good for
afe ≥ 9. Moreover, the distribution of key bits among the blocks of group bases
is uniform in Zn

2 . Consequently, the prediction of the key bit positions becomes
harder, and the potential key space grows slightly. The statistical properties of tst’
based on the Sylow 2-group are even better. With only afe ≥ 4 a sufficient level of
randomness can be achieved.
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Cipher Key Setup Time† Encryption Time†

TST’ (Sylow) 269× 106 90629

TST’ (Abelian) 25× 106 9500

TST (compact) 398× 106 141526

TST (cartesian) 269× 106 27882

Magenta 30 6539

Frog 1.4× 106 2417

Loki 97 7430 2134

Safer+ 4278 1722

Rijndael (AES) 305, 1389‡ 374

RC6 1632 270

† Measured in clock cycles on Intel Pentium II processor

‡ Key setup delays for encryption and decryption are different

Table 5.1: Efficiency of TST’ in comparison with other ciphers

The attack which was successful against tst can be excluded in tst’ by using
key-dependent transformations Ti ∈ T . The invertibility of these transformations
can be ensured in a straightforward and efficient way based on a simple hash function.
To further improve the security properties of tst’ it is advisable to avoid afe values
which are not relatively prime to the block length n.

The simplicity and commutativity of group Zn
2 manifests itself in the improved

efficiency of tst’. When using this new carrier group, the key setup is 11 times
faster, the throughput is on average 3 times faster, and the memory requirements
are roughly 8 times smaller than with the original tst. The efficiency of the group
Hs × H1 is the same as with tst, but the throughput of tst’ based on Hs × H1
is lower, because of the additional transformations Ti that have to be performed.
Hence, in spite of its good cryptographic properties the Sylow 2-group seems not to
be very suitable for practical use.

In Table 5.1 we present a performance comparison of tst’ with tst (in both
cases afe = 9) and with some of the aes candidates. Note that a tst implementa-
tion should preferably use the cartesian representation of permutations, and a tst’
implementation should be preferably based on the Abelian group. tst in the com-
pact representation and tst’ based on the Sylow 2-group are not very efficient, and
are listed only for comparison purposes. The values for the aes candidate ciphers
are the same as the ones in Table 4.1. We see that, although the new cryptosys-
tem tst’ is still not as efficient as the aes candidates, it is significantly faster than
the original tst. The improved efficiency properties of tst’ combined with its full
scalability might make it interesting for some applications.



Chapter 6

A New Iterative Cryptosystem

This chapter introduces a new iterative cryptosystem based on mathematical oper-
ations that are similar to the ones of tst’. The new cipher does not use real group
bases anymore, but utilizes a key-dependent random table similar to one block of
a group basis, and the structure of its round is very similar to one factorization-
composition step known from tst’. This new design demonstrates a possible combi-
nation of two cipher design approaches - the “group basis oriented” and the “classical
iterative” one.

In the first section we analyze the reasons for the relatively low efficiency of tst

and tst’ in comparison with the modern iterative block ciphers. Based on these
considerations we suggest some modifications of the encryption scheme, which will
lead us to an iterative structure relative to tst’. We show that there is a relationship
between our new scheme and the unbalanced Feistel networks - a typical framework
for iterative cipher design.

In the second section we present a concrete scalable block cipher family based on
our new scheme. We describe the encryption setup, and analyze the influence of the
variable parameters on the properties of the cryptosystem. Furthermore we discuss
some implementation issues and present one possible realization of the cipher.

The following fourth and fifth section present an efficiency and security analysis
of the new cryptosystem. This analysis is based on the same methodology which was
used in the previous two chapters. The final sixth section summarizes the properties
of the new iterative cipher and compares them with the ones of tst and tst’.

6.1 Motivation

A cryptosystem based on group bases encrypts a plaintext by translating it through
two secret group bases. This approach is, from the mathematical point of view, very
compact and straightforward. In fact, the complete encryption and decryption rules
can be written in just two short formulae. Moreover, the block length and the key
length of such ciphers are scalable by nature which is a very advantageous property.
From the practical point of view, the two secret group bases can be seen as two big
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key-dependent random tables with a special structure. These tables embody the
encryption rule of the cipher, and a secret key consists, by definition, of both of
them.

Secret tables as building blocks of a cipher contribute to its security, because
they are a source of a bigger uncertainty for an adversary, and they suppress the
possibility of precomputation attacks. However, when the size of the tables is the
only factor contributing to the security of a cipher, one is forced to use tables that
are really big. The resulting memory requirements (see e.g. Figure 5.7) make such
a cipher unsuitable for use in restricted environments, e.g. smart cards. Even on
powerful workstations with large ram the efficiency of such a cipher suffers. Here,
the memory requirements are not the primary problem, because the bases do not
exhaust the big memory space available by far. However, the tables are too big to fit
into the fast cache memory1 and must therefore be stored in the slower main memory.
Even worse, due to the nature of encryption, the table accesses happen on random
offsets, so the success rate of cache prediction algorithms is completely decimated,
and the main memory is accessed at its slowest speed. As a consequence, even the
fastest secure version of tst’ is roughly 25 times slower than the aes algorithm
which only uses a few kilobytes of tables. Also the key setup time suffers from the
large tables, because they must be initialized by a rather time-consuming non-trivial
algorithm. The resulting key setup delays exclude this class of ciphers from every
application which requires frequent key setups, e.g. cryptographic hash functions.

Another inherent disadvantage of cryptosystems like tst or tst’, beside their
inefficiency, is the strict relation between security and memory requirements. The
security of these ciphers can only be increased through a bigger afe, which will cause
an exponential growth in the table size. Unfortunately, it is not possible to increase
the security at the cost of encryption time by unchanged memory requirements.
This property does not allow us to make a free tradeoff between memory, speed, and
security.

Virtually all popular modern symmetric cryptosystems, including des, idea,
gost, Skipjack, Safer, rc5, as well as most of the fifteen aes candidates, are iterative
ciphers (Definition 2.3.4). This design, based on multiple repetitions of a fixed round
function with different round keys, is so popular because of its simplicity, efficiency,
and the well controllable security level. The round function is usually simple and fast
enough to be implemented even on smart cards, and the desired security level can
be achieved by repeating the function a sufficient number of times. Unfortunately,
the design of most iterative cryptosystems is rather fixed, and their block and key
lengths are not scalable. In what follows we suggest a combination of the table-based
encryption approach, known from tst’, with the efficient iterative approach. The
resulting symmetric cryptosystem will be scalable by nature, but more efficient than
the ciphers based on group bases.

1A typical size of the fastest first level cache of modern processors is 64 kB and the second
level cache has usually 512 kB. These spaces are shared by all running processes, thus, an efficient
encryption algorithm should not use tables longer than few tens of kilobytes in total.
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6.2 Iterative TST Design

Designing an iterative cipher involves a round function design, a key schedule design,
and an estimation of the secure number of rounds. In this section we demonstrate
these three steps for a new symmetric cryptosystem called Iterative TST.

6.2.1 Round Function

Let us consider a tst’ encryption for n = 64 and afe = n
4 = 16 displayed on the

left hand side of Figure 6.1. The transversal group basis β1 for the carrier group
G = Z642 is based on the chain of subgroups G0 = Z162 < G1 = Z322 < G2 = Z482 <
G3 = Z642 = G. For the sake of simplicity we display the key bits for each base block
on adjacent positions. In a real group basis, created by the bga, these bits would be
randomly shuffled. Nevertheless, we can disregard the shuffling now, because once
we know the exact key bit ordering, we can move them to adjacent positions by
transposing the columns of the bases and redefining the operations ® and ⊗.

The first factorization step, enclosed within the dashed rectangle, starts with a
transformation T of the input vector p ∈ G3. This transformation affects only those
bits of p′ which lie on the key bit positions for B3. All other bits of p′ are equal to
the ones of p. In the next step the factor b3,x3 in B3 is found, so that the key bits
of b3,x3 are equal to the ones of p′. The intermediate result p′′ ∈ G2, p′′ = p′ ® b3,x3 ,
whose bits on the key bit positions for B3 are guaranteed to be zeros, is passed to the
next factorization step. The coordinate x3 is reversed and used for the composition
in β2.

Every pair of corresponding factorization and composition steps that are con-
nected through a coordinate xi has together 64 variable input- and 64 variable
output-bits. A composite transformation P -R-P at every level can be replaced by
one equivalent permutation p, as was shown in Section 4.2.2.2. When we consider
an input vector of the original encryption scheme as a sequence of four 16-bit seg-
ments, we see that every segment plays the role of key bits for a certain factorization-
composition level. The active key bit segment is moving from the right most position
in the first level to the left most position in the last level.

A transformation which is very similar to this tst’ encryption can be constructed
by four repetitions of a slightly modified first factorization step displayed on the right
hand side of Figure 6.1. Hereby, the transformation T is implemented with a key-
dependent hash function h, as was proposed in Section 5.2.2, the highest coordinate
x3 is “reused” on the key bit positions of the output vector p′′ (these bits would
be otherwise zeros), and the right-to-left movement of the active key segment is
ensured by a segment rotation ξ at the end of the “factorization step”. The key-
dependent random table consisting of parts S and P corresponds to a “block of a
group basis”. It can be considered as two separate S-boxes: the cross shaded S of
the size 2m×(n−m) bits, and the simple shaded P of the size 2m×m bits. P , whose
all rows are distinct, represents a permutation of 2m elements and corresponds to
the “key bits of the basis block”.
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Figure 6.1: One factorization step of TST’ as a round function
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Figure 6.2: Unbalanced Feistel networks

The resulting 64-to-64-bit mapping will be called a TST round, and we will use
it as a round function of a new symmetric cryptosystem Iterative TST. The value
m ≤ n

2 , corresponding to the “number of key bits” in a tst round, will be called a
segment length, and a consecutive sequence of m bits xk·m+0, . . . , xk·m+(m−1), k ∈ Z,
of a binary vector x will be called a segment. The left most segment of a binary
vector x will be denoted by xL, and the rest of the vector by xR.

6.2.1.1 TST Round as an Unbalanced Feistel Network

The Feistel structure, displayed in Figure 6.2 A, is a scheme commonly used for
designing round functions of block ciphers. A cipher based on the Feistel structure
divides an n-bit plaintext into two n

2 -bit halves L0 and R0, and processes them
by r successive rounds. For i = 1, . . . , (r − 1) the i-th round transforms an input
Li−1||Ri−1 into Li||Ri, such that Li = Ri−1 and Ri = Li−1 ⊕ f(Ri−1, ki), where f
is a non-linear function, and ki is the i-th round key. The last r-th round does not
swap the halves and, hence, the resulting ciphertext is Lr||Rr, where Rr = Rr−1

and Lr = Lr−1 ⊕ f(Rr−1, kr). This encryption scheme is called Feistel network,
and it is guaranteed to be invertible for any f (even if f is not invertible). When a
plaintext x has been encrypted into ciphertext y by r Feistel rounds, using the round
keys k1, . . . , kr, the inverse transformation x = dK(y) can be performed by the same
scheme using the round keys in the reverse order kr, . . . , k1. This property enables
an efficient hardware implementation of Feistel networks, because both encryption
and decryption operations can be performed using the same circuit.

Unbalanced Feistel networks (ufn) were introduced and analyzed independently
in [SK96] and [Nyb96]. A Feistel network is generalized to a ufn by introducing
variable lengths of the two sub-blocks. Figure 6.2 B displays an s-on-t ufn. The
sub-block L is called the target and its length is denoted by t. The sub-block R
is said to be the source and its length is denoted by s. The conventional Feistel
network is a special case of a ufn for t = s = n

2 . A ufn is called source heavy when
s > t and target heavy when t > s. A ufn is said to be homogeneous when the f is
identical in all rounds (except for the round keys ki) and heterogeneous otherwise.
A further generalization of a ufn leads to a generalized unbalanced Feistel network
(gufn) displayed in Figure 6.2 C. In this construction R must be an invertible
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Figure 6.3: tst round as a gufn
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Figure 6.4: tst round as a heterogeneous ufn

function, and G must be reversible in the sense that there exists a function H such
that for all k, xs, xt H(k, xs,G(k, xs, xt)) = xt.

When considering the tst round as a gufn, the hash function h together with
the operation⊕ correspond toG, and the permutation P together with the operation
® and segment rotation ξ are included in R. This equivalence is demonstrated in
Figure 6.32. Note that when we permute the rows of S according to permutation
P , P can be placed after the S-box as well, without changing the round mapping.
In fact, as both P and S are generated randomly, it does not matter whether P is
placed before or after S.

A simplified version of Iterative tst, whose rounds do not contain P and ξ, can
be considered as a heterogeneous ufn, consisting of source heavy (n−m)-on-m odd
rounds, and target heavy m-on-(n−m) even rounds. This equivalence is displayed
in Figure 6.4. Such a ufn alternately utilizes two different key-dependent functions
f1 : {0, 1}n−m −→ {0, 1}m in the odd rounds, and f2 : {0, 1}m −→ {0, 1}n−m in the
even rounds. One simplified tst round corresponds in this case to two ufn rounds3,

2To stress the similarity of the two structures, the key segment of the tst round is displayed on
the left, in contrast to Figure 6.1 where it was displayed on the right.

3According to the terminology in [SK96], such a simplified tst round should be called a cycle,
because its output bits are returned on their original positions.
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h corresponds to f1, and S to f2. Even though we present this analogy, we do not
intend to make use of such a simplified tst round, because both P and ξ contribute
to the cryptographic quality of Iterative tst. Note that the segment rotation ξ at
the end of a tst round ensures that all segments are regularly processed (as an
input) by both f1 and f2. This is not the case in the presented ufn. Furthermore,
permutation P ensures that all output segments of a tst round depend on all input
segments in a non-linear way. Without P the dependence between xL and y′L would
become linear.

6.2.1.2 Variable Components of a TST Round

The tst round, displayed in Figure 6.3, has been derived directly from the tst’
encryption scheme. Similarly as in tst’, there are several components in the tst

round which can be implemented in different ways without changing the basic en-
cryption principle. These variations, however, can have a substantial influence on
the efficiency and security of the resulting cipher. The following components can be
varied:

• Function h. This function corresponds to hi used in Ti of tst’ (see e.g. Sec-
tion 5.2.2). The choice of h affects the efficiency and diffusion properties of
the cipher.

• Random tables P and S, and the prng used for their generation. These
components correspond to the random group bases of tst’. A weak prng used
for initialization of P and S can substantially weaken the cipher. The number
of different P ’s and S’s used affects the security and memory requirements of
the cipher. (One can use, for example, the same P and S in all rounds, use
a fixed S and a variable Pi in every round, or vary both Pi and Si in each
round.)

• Operation ®. This operation corresponds to the group operation in the carrier
group of tst’. Choices of different operations ® have a similar effect as varying
the carrier group of tst’, i.e. can improve the efficiency and confusion of the
cipher.

• Segment length m. This value corresponds to the afe of tst’. Usage of
a bigger m contributes significantly to the complexity of the implemented
encryption mapping. On the other hand, it also exponentially increases the
memory requirements.

In this context the tst round scheme should be understood as a framework
for the construction of scalable block ciphers. Depending on the components used,
the resulting cipher belonging to the Iterative tst family can have very different
properties. In what follows we discuss some of the possible implementations of the
variable components by taking the efficiency and security into account. The resulting
version of Iterative tst, presented in this chapter, will be just one of many possible
implementations.
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Figure 6.5: Efficient implementations of h

6.2.2 Implementation Issues

6.2.2.1 Hash function

Some possible implementations of h have been already discussed in Section 5.2.2.
Furthermore, it was concluded in Section 5.4.2.2 that h should be made key-dependent
to improve its attack resistance. The simplest implementation of h - a chaining of a
non-linear bijection p with a binary operation ⊗ - was already shown in Figure 5.4.
This segment-wise computation is simple and easily scalable, nevertheless, it requires
too many computation steps, especially for a small m. There are some more efficient
designs shown in Figure 6.5.

The tree variant A is most suitable for a hardware implementation because it
employs the highest possible parallelization level. On the other hand, the two-level
variant B is most suitable for an efficient software implementation. When m′ is
chosen to be the longest register length for a given implementation platform (e.g.
32 or 64 bits for nowadays usual processors), a speedup by factor up to m′

m can be
achieved in comparison with the scheme in Figure 5.4. The operation ⊗ should be in
all cases an efficiently computable binary operation on {0, 1}m (resp. on {0, 1}m′),
like xor, + mod 2m, etc. The non-linear bijection p (resp. p′) can be implemented
in many different ways (see e.g. the proposals in Section 5.2.2). To ensure that h is
key-dependent, either pmust be key-dependent, or else a round key ki must be added
to the input of h as shown in Figure 6.5 D. To prevent a contrived manipulation
of the resulting hash value, the binary operation ¯ should not be distributive and
associative with ⊗.

A more complex hashing scheme (Figure 6.5 C) can combine two hash values
obtained by two different methods. The advantage of this approach is that, when
h1 and h2 are independent, the resulting hash value can not be controlled by ma-
nipulations of the input. For example, when using the scheme from Figure 5.4 with
a constant bijection p, an adversary can enforce all 2m outputs of h by processing
just 2m input vectors. Hereby the first m bits of the input will be varied, and the
other bits will be kept fixed. The adversary can not estimate the output values
of h, but he knows that they are all different. Such a manipulation, which might
be useful for an attack, is not possible with the scheme C. When h1 and h2 are
independent and random, all changes in the input lead to a change in the output
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with probability 2
m−1
2m . Even when h1 and h2 work segment-wise (word-wise), a con-

trived manipulation of the output can be obstructed significantly, e.g. by computing
h1 and h2 on rotated versions of the input, i.e. h = h1(xR) ⊗ h2(rotk(xR)). This
construction can be extended to an arbitrary number l of sub-hashes by computing
h =

⊗l
i=1 hi(rotk·i(xR)). When k · l > (n−m), the shift value k should be relatively

prime to n−m.

We presently propose two concrete realizations of h. The simpler implementation
ha is based on scheme B in Figure 6.5, and uses p′ : {0, 1}m′ −→ {0, 1}m′ of the
form p′(x) = c · x, where c is an m′-bit prime containing roughly m′

2 non-zero bits
and having the highest bit equal to 1. The particular constants used are m′ = 32,
and c = 3010192529. This function is computed by Algorithm 6.2.1.

Algorithm 6.2.1 Function ha
Let x be an (n−m)-bit binary vector, and let m′ and c be two constants. The hash
function ha : {0, 1}n−m −→ {0, 1}m is defined as follows:

input x

set s = 0

for i = 0, . . . , d(n−m)/m′e do

set s = c · (s + GetSegm(x, i,m′))

endfor

set y = 0

for i = 0, . . . , dm′/me do

set y = y ⊕ GetSegm(s, i,m)

endfor

output y

The binary operation + denotes an integer addition mod 2m
′
, and ⊕ denotes a binary

xor. The function GetSegm(v, i, l) returns the i-th l-bit segment of a vector v, i.e.
w = GetSegm(v, i, l)= (vi·l, · · · , vi·l+(l−1)), where vj denotes the j-th bit of v. When
the requested segment jets out of the vector v, the corresponding bits of w are zeros.

The second (more complex) hash function hb is based on scheme C shown in
Figure 6.5. Both h1 and h2 are implemented according to scheme B, but the input
of h2 is rotated by k bits before processing. The bijection p′ has the same form as in
ha. The particular constants used are m′ = 32, c1 = 3010192529, c2 = 3283113329,
and k = 8.
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Algorithm 6.2.2 Function hb
Let x be an (n −m)-bit binary vector, and let m′, c1, c2, and k be constants. The
hash function hb : {0, 1}n−m −→ {0, 1}m is defined as follows:

input x

Compute y1 = ha(x) according to Algorithm 6.2.1 using c = c1

Compute y2 = ha(rotk(x)) according to Algorithm 6.2.1 using c = c2

output y1 ⊗ y2

The function rotk(x) rotates a binary vector x by k bits.

Because the proposed p′ is not key-dependent, both ha and hb should be combined
with a round key addition, as shown in Figure 6.5 D.

6.2.2.2 Random Tables

According to classical terminology the key-dependent table S, utilized by a tst

round (Figure 6.3), is an m-on-(n −m)-bit S-box. Analogously, the key-dependent
table P is an m-on-m-bit S-box of a special structure. (For a more detailed infor-
mation on S-boxes see e.g. [AT90].) If we wish to keep the amount of secret table
material of Iterative tst equal to that of tst’, we would have to use a different
random P and S in every round. However, we have seen in Section 6.1 that the
extreme memory requirements of tst and tst’ cause an undesirable slowdown of
these ciphers. Therefore, we prefer using a fixed pair of tables in all rounds of our
new cipher.

The composed operation consisting of the S-box S and the operation ® (see
Figure 6.3) can represent a variable mapping even if the same S-box is used in all
rounds. This can be achieved in the following way. The round key addition proposed
in Figure 6.5 D produces a key-dependent binary vector x′R. When we use this vector
(instead of xR) as an input to ®, the composed operation a®′ b = (a¯ ki)® b will
become different for every round. Certainly, the new scheme using a single pair
(P, S) has a smaller entropy (i.e. uncertainty for an adversary) than a version using
variable tables. However, unlike the original tst’, which can by design only perform
four factorization-composition steps when afe = n

4 , the new scheme can be repeated
an arbitrary number of times and, hence, implement a much more complex input-
output mapping than the original tst’.

As a consequence of using single pair of S-boxes the memory requirements of
Iterative tst will be significantly smaller than the ones of tst’. Figure 6.6 shows
a comparison of the memory requirements for afe = n

4 . Version A, consuming
2 · n

AFE · 2AFE · n bits, corresponds to the standard tst’ with two bases. Version B,
requiring n

AFE · 2AFE · (n + AFE) bits, can be achieved without loss of generality
by discarding the zero blocks of the group bases. Version C, which is achievable
through simplifications of bga , consumes n

AFE · 2AFE · (n − AFE) bits. (This
configuration is not advisable because of its serious security flaw which we have
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Figure 6.6: Memory requirements comparison

discussed in Section 5.4.2.2.) Finally, version D, corresponding to our iterative
proposal, requires only 2AFE · n bits of memory.

Both P and S, as well as the round keys ki are generated by a prng. The seed
value used for initialization of the prng is equal to the secret key K. We suggest
using the same prng as proposed for our tst implementation in Section 4.1.1.1.
The key setup of Iterative tst is performed by Algorithm 6.2.3.

Algorithm 6.2.3 Key Setup of Iterative TST
Let K ∈ {0, 1}k be a k-bit secret key. The iterative TST key setup generates a
permutation table P , an S-box S, and round keys k1, . . . , kr as follows:

input K

call Randomize(K)

for i = 0, . . . , (2m − 1) do

set Pi = i

endfor

for i = 0, . . . , (2m − 1) do

set j = Random(i, 2m − 1)

call Swap(Pi, Pj)

endfor

for i = 0, . . . , (2m − 1) do

for j = 0, . . . , (n−m− 1) do

set Si,j = Random(0, 1)

endfor

endfor
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for i = 1, . . . , r do

set ki = Random(0, 2
n−m − 1)

endfor

output P , S, k1, . . . , kr

The function Randomize(x) initializes the pseudorandom number generator used with
a seed value x, function Random(min,max) generates a random integer between min
and max, and the function Swap(Pi, Pj) swaps the items Pi and Pj of an array P .

6.2.2.3 Binary Operations

Until now there have been four binary operations involved in the tst round design:

• ¯ : 2n−m × 2n−m → 2n−m used for the round-key addition,

• ⊗ : 2m
′ × 2m

′ → 2m
′
used for the chaining in h,

• ⊕ : 2m × 2m → 2m used for adding the output from h to xL, and

• ® : 2n−m × 2n−m → 2n−m used for combining the output of the S-box with
xR.

All these operations form groups with underlying sets {0, 1}n−m, {0, 1}m, and {0, 1}m′
respectively. It has been shown in [LM91] that it is advisable to use incompatible
(i.e. non-distributive and non-associative) operations o1 and o2, whenever an output
of o1 is used as an input in o2, or vice versa. It follows that the pairs of operations
(¯,⊗), (⊗,⊕), and (¯,®), used in the tst round function, should not be com-
patible. Moreover, all four operations should be efficiently computable on modern
processors.

According to the requirements above we suggest the following realization of the
binary operations:

• ¯ - bit-wise xor of two (n−m)-bit vectors,

• ⊗ - m′-bit integer addition mod 2m
′
,

• ⊕ - bit-wise xor of two m-bit values, and

• ® - word-wise addition mod 2m
′
of two (n−m)-bit vectors (denoted by ¢).

This proposal is based on alternating a binary xor with a regular integer addition.
The operations ¯ and ® process their operands as arrays of m′-bit vectors, where m′

is the maximal register length for a particular platform (m′ > m). Word-wise pro-
cessing not only improves the speed in comparison with a segment-wise processing,
but in case of ® it also improves the cryptographic properties of the operation. When
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m < m′, an m′-bit integer addition creates more complex dependencies between the
input and output bits than an m-bit integer addition.

The operation ® of tst’ was implemented by an inverse permutation product
in the particular carrier group. The investigations in Section 5.4 have shown that
the cryptographic properties of tst’ based on Hs × H1 are better than those of
the version based on Zn

2 . Unfortunately, the cryptographically stronger operation
was rather slow. The operation ® of Iterative tst is implemented by the word-wise
addition ¢ whose bit dependence complexity (see e.g. Figure 4.12) is at least as
good as the one of ∗ in Hs×H1. For instance, when n = 128 and m′ = 32 a change
of a single input bit during operation v ← v ∗ c affects on average 16.5 output bits
in the group (Z432,¢), but only 6.02 bits in the group (H7 ×H1,®). Moreover, the
operation ¢ is as fast as ∗ in Zn

2 , because e.g. 32-bit additions take on most modern
processors the same time as 32-bit xor’s. It follows that the operation ¢ used in
Iterative tst combines the complexity of Hs ×H1 with the efficiency of Zn

2 .

6.2.3 Iterative TST

Upon the considerations above, we formalize the tst round function of our Iterative
tst implementation.

Definition 6.2.1 TST Round Function
Let h : {0, 1}(n−m) −→ {0, 1}m be a hash function, let P ∈ S2m be a permutation
of 2m elements, let S be an 2m × (n −m) binary array, and let ki ∈ {0, 1}n−m be
a round key. A TST round function f (h,P,S) : {0, 1}n × {0, 1}n−m −→ {0, 1}n is
defined as follows:

f (h,P,S)(x, ki) = rotm(P (xL ⊕ h(xR ⊕ ki))||((xR ⊕ ki)¢ S(xL ⊕ h(xR ⊕ ki)))),

where S(i) denotes the i-th vector (row) in S, ¢ denotes a word-wise addition mod-
ulo 2m

′
, || denotes a concatenation, and rotm denotes a left rotation by m bits.

The inverse function f
(h,P,S)
inv is computed in the following way:

f
(h,P,S)
inv (y, ki) = rot−m((P

−1(yL)⊕h(yR¯S(P−1(yL))))||((yR¯S(P−1(yL)))⊕ ki)),

where ¯ is a word-wise subtraction modulo 2m
′
, i.e. the inverse operation to ¢.

Figure 6.7 shows an example of a tst round for m = n
8 with the lowest-order

bit placed on the left. The function h utilized in our implementation is computed
according to Algorithm 6.2.2. The tables P and S as well as the round keys ki are
generated according to Algorithm 6.2.3.

An r-round cryptosystem Iterative TST encrypts a plaintext x by performing
r tst rounds, i.e. x0 = x, and xi = f (h,P,S)(xi−1, ki) for i = 1, . . . , r. The re-
sulting ciphertext y = eK(x) is equal to rot−m(xr). (i.e. the cryptographically
insignificant segment rotation of the last round is undone). The corresponding de-
cryption x = dK(y) is computed by performing r inverse tst rounds, i.e. yr = y,

yi−1 = f
(h,P,S)
inv (yi, ki) for i = r, . . . , 1, and x = rotm(y0).
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Figure 6.7: Iterative TST

6.2.3.1 Scalability

The block length and the key length of Iterative tst can be freely scaled by changing
the parameters n and k respectively. The cryptosystem provides a unique instance
(cipher) for any configuration (n,m, k, r), where n,m, k, r ∈ N, and m ≤ n

2 . The
security of the cryptosystem can be scaled in two ways:

1. By increasing the number of rounds. This approach does not increase the
memory requirements. The security is improved at the cost of speed.

2. By increasing the segment length (corresponding to afe of tst’). This ap-
proach does not slowdown the cipher. The security is improved at the cost of
memory.

Consequently, one can perform a free tradeoff between security, memory, and speed,
which was not possible in tst and tst’.

6.2.4 Secure Number of Rounds

The fundamental question regarding every iterative cipher is, how many rounds need
to be performed to make the cipher secure. In this section we deal with this question
for Iterative tst in terms of practical security (defined in Section 2.3).

The authors of [AB96] have shown that the cipher bear is provably secure in
the sense that attacks which will find its key would yield attacks on the underlying
components. bear is a 3-round ufn defined as follows.

Definition 6.2.2 Block Cipher BEAR
Let HK(M) be a keyed hash function which returns a result of a fixed size k bits
for a message M of arbitrary length and a key K. Let furthermore S(M) be a key
stream generator, i.e. a function which given an input M of length k generates a
pseudo random output of an arbitrary length.
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A secret key K consists of two independent subkeys K1 and K2, both longer than
k bits. An n-bit plaintext x = L||R, where |L| = k and |R| = n− k is encrypted as
follows:

L′ = L⊕HK1(R)

R′ = R⊕ S(L′)
L′′ = L′ ⊕HK2(R

′)

and the resulting ciphertext is y = L′′||R′.

The corresponding decryption of a ciphertext y = L′′||R′ is performed by com-
puting L′ = L′′⊕HK2(R

′), R = R′⊕S(L′), L = L′⊕HK1(R), and x = L||R. When
the components H and S are cryptographically secure, bear is secure against almost
all attacks. For special H and S bear might be vulnerable to a combined chosen
plaintext and ciphertext attack, but this hypothetical weakness can be avoided by
using an additional fourth round [AB96].

The encryption idea of bear is surprisingly similar to the one of Iterative tst.
bear is in fact a 1.5-round version of the simplified Iterative tst, presented in
Figure 6.4, which uses cryptographically secure h and S. It follows that the lower
bound for the security of Iterative tst using ideal h and S is 2 rounds. The S-
boxes S and P of a real-life Iterative tst can be made ideal (in terms of practical
security) when a cryptographically secure prng is used for the key setup. The
real-life implementations of h, however, will be usually far from ideal, because due
to efficiency optimizations one will usually use simpler (cryptographically insecure)
hash functions. Consequently, one must definitely execute more than just two rounds
to make Iterative tst secure.

Referring to Figures 6.3 and 6.7, we will now analyze the properties of Iterative
tst based on statistically (not cryptographically) strong components. Let us sup-
pose that each of the 2m possible outputs of f1 is produced with the same probability.
For instance, the f1 defined by Algorithms 6.2.1 or 6.2.2 meets this requirement. Let
us furthermore suppose that S produces a pseudorandom (n−m)-bit vector for each
of its possible inputs, and P produces a unique pseudorandom m-bit vector for each
of its possible inputs. S and P meet these requirements with very high probability
when they have been generated by a statistically strong prng. Based on these as-
sumptions, the sum xL ⊕ f1(xR) takes on every possible value with probability 1

2m

and, consequently, both yL and yR will change in one of 2m randomly looking possi-
ble ways, whenever either xL or xR have changed. The transformations performed
by different rounds of Iterative tst can be considered as independent, because the
round keys ki are generated by random, and the operation ¯ is incompatible with
both ⊗ and ®. Consequently, the number of different pseudorandom ways in which
an input x can be modified into an output y by r tst rounds is 2r·m. To reconstruct
a mapping consisting of 2r·m point-wise independent randomly looking transforma-
tions one needs to encrypt 2r·m different inputs. This number is larger than the
number of all possible inputs when r ≥ n

m . It follows that n
m is the minimal prac-

tically secure number of rounds. When k < n, the complexity O(2r·m) must only
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be greater than the complexity of an exhaustive key search O(2k) and, hence, the
minimal practically secure number of rounds is k

m in that case. It follows that at

least min(d nme, d kme) rounds should be executed for a given configuration (n,m, k)
of Iterative tst .

The analysis above is based on assumptions which might not always be fulfilled.
For instance, even a strong prng can sometimes generate an S whose rows Si and
Sj are equal for some i and j. A tst round using such an S can not ensure 2m

possible differences between xR and y′R and should, hence, be executed more than
just min(d nme, d kme) times. Even though the probability of generating such an un-
fortunate S is very low4 for usual n and m, we suggest performing one additional
round to provide a certain security margin. The total number of rounds which we
propose for a given configuration (n,m, k) is therefore

rp = min

(⌈ n
m

⌉
,
⌈ k
m

⌉)
+ 1.

6.3 Efficiency

The presented efficiency evaluation examines 64-bit and 128-bit versions of Iterative
tst using variable segment length m. For every configuration (n,m) the number of
executed rounds is d nme + 1 (i.e. we suppose a constant key length k ≥ 128). The
obtained results are compared with the ones of tst’ based on the Abelian group as
well as with aes and idea.

6.3.1 Key Generation

The key material of Iterative tst consists of a permutation P , an S-box S, and
round keys k1, . . . , kr. These objects are generated from a main key K by Algo-
rithm 6.2.3. In comparison with the bga of tst or tst’, this algorithm is very
simple and straightforward. The resulting key setup delays, presented in Figure 6.8,
are noticeably shorter than the ones of tst’ or tst. For smaller values m the perfor-
mance of Iterative tst is competitive with aes and idea. The cryptosystem appears
to be suitable even for the construction of cryptographic hash functions whenm ≤ 8.
The key setup gets slower with growing m, but on average is 24 times (respectively
56 times) faster than the corresponding key setup of 64-bit (respectively 128-bit)
tst’. A comparison with tst is even clearer, the average speedup factor is 225 for
a 64-bit version and 582 for a 128-bit version.

6.3.2 Throughput

The encryption speeds of Iterative tst are presented in Figure 6.9. The achievable
speedup factor is 3 to 4.5 in comparison with tst’, and 10 to 14 in comparison with
tst. The encryption speeds grow with an increasing m, as the number of rounds to

4See Theorem 6.4.1 for more details.
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Figure 6.8: Key setup delay of Iterative TST

4 5 6 7 8 9 10 11 12
10

5

10
6

10
7

10
8

Segment Length resp. Average Fusion Extent

T
hr

ou
gh

pu
t [

B
yt

es
/s

ec
.]

Iterative TST 64b 
Iterative TST 128b
TST’ 64b Abelian  
TST’ 128b Abelian 
TST 64b           
TST 128b          
AES 128b          
IDEA 64b          
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Figure 6.10: Memory requirements of Iterative TST

be executed decreases. Even though the excellent performance of aes can still not
be achieved, the throughput of Iterative tst is competitive with idea for m ≥ 11.

6.3.3 Memory Requirements

Reducing the high memory consumption of tst and tst’ was one of the main de-
sign goals of our Iterative tst proposal. The minimal memory requirements for a
configuration (m,n, r) are

(2m + r) ·
⌈
n−m

8

⌉

bytes, i.e. 2m ·m bits for P plus 2m · (n −m) bits for S, and r · (n −m) bits for
the round keys ki. These values are presented in Figure 6.10. The resulting memory
requirements are fully competitive with the ones of aes and idea. In comparison
with tst’ the average improvement factor 24 (resp. 13) is achieved when n = 128
(resp. 64). The average improvement factors over tst are 193, and 107 respectively.
Iterative tst is suitable for a smart card implementation when m ≤ 11.

6.4 Security

Some security properties of Iterative tst have been already discussed in Section 6.2.4.
The number of rounds rp, proposed there, is expected to ensure strong statistical
properties and resistance against white box analysis. In what follows, we will fur-
ther investigate security of Iterative tst. The methodology used for the presented
evaluations is the same as the one used with tst (Section 4.2) and tst’ (Section 5.4).



6.4. SECURITY 95

n m 4 5 6 7 8 9 10 11 12 13 14 15 16

rp 17 14 12 11 9 9 8 7 7 6 6 6 5
64 rs 7 6 5 4 4 3 3 3 3 3 2 2 2

c 2.4 2.3 2.4 2.8 2.3 3.0 2.7 2.3 2.3 2.0 3.0 3.0 2.5

rp 33 27 23 20 17 16 14 13 12 11 11 10 9
128 rs 8 6 5 5 4 4 3 3 3 3 2 2 2

c 4.1 4.5 4.6 4.0 4.3 4.0 4.7 4.3 4.0 3.7 5.5 5.0 4.5

Table 6.1: Proposed vs. statistically secure r for Iterative TST

6.4.1 Generic Statistical Evaluation

Figure 6.11 displays suspicion rate profiles for a 64-bit Iterative tst. (The curves
of a 128-bit version are almost identical.) The upper graph shows the statistical
properties depending on the number of executed rounds. The 16 curves (going from
right to the left) correspond to different segment lengths m = 4, . . . , 16. The higher
the segment length m, the less rounds are necessary to reach the secure interval.
The output of Iterative tst using m = 4 (the right most curve) is statistically
indistinguishable from a rns when r ≥ 7. The highest three segment lengths m =
14, 15, 16 provide a strong randomness already after two rounds. The lower graph
presents the suspicion rates depending on the segment length. In this case every curve
corresponds to a certain number of rounds. For example, the curve corresponding
to one round sinks very slightly and can not reach the secure interval for m ≤ 16.
It follows that executing one round produces statistically weak results, unless we
use an extremely high m. On the other hand, when executing, say, 4 rounds, all
segment lengths above 6 produce a strong pseudorandomness.

The proposed number of rounds that should be executed for a given configuration
(n,m, k) is rp = min(d nme, d kme) + 1. This number is several times higher than the
statistically strong number of rounds denoted by rs. The corresponding security
coefficient, based on randomness, is c =

rp
rs
. For instance, the statistical security

coefficient of aes is 3.3 and the one of rc6 is 5 [SB00]. Table 6.1 lists the values
rp, rs, and c of Iterative tst for different segment lengths m, supposing a constant
key length of 128 bits. Obviously, when n = 64, the number of executed rounds
is 2 to 3 times higher than the number of rounds providing a strong randomness.
For n = 128 the coefficient takes on values between 3.7 and 5.5. It follows that,
in contrast to tst’ (see e.g. Figure 5.8), any segment length m in a suspicion rate
profile of Iterative tst will provide (more than) strong randomness when executing
the proposed rp rounds.

Note that there exists no security margin in the sense of rounds, when speaking
about the statistical properties of tst’. The only possibility how to incorporate a
security margin into a tst’-like cryptosystem is increasing afe, which has many
undesirable side effects. For example, we concluded that afe = 9 is the minimal
value providing a strong pseudorandomness of the tst’ output. To introduce a
security margin we might use, say, afe = 12 instead, but the memory requirements
of such a tst’ version are roughly ten times higher than for afe = 9, so the price
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Figure 6.11: Suspicion rate profiles of Iterative TST
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paid for ensuring the margin would be rather high.

6.4.2 White Box Analysis

It has been said in Section 6.2.4 that even a perfect random number generator can
sometimes generate an S-box whose rows are not distinct. Theorem 6.4.1 estimates
the probability of generating such an unfortunate S-box.

Theorem 6.4.1 Let n be a block length and m a segment length of a particular
instance of Iterative TST. The probability that at least two rows the S-box S are
equal is approximately

1− 1

e2m
·
(

2n−m

2n−m − 2m

)2n−m−2m+ 1
2

when S was generated by a strong prng.

Proof: Let r = n−m, and let S be a table of 2m×r uniformly distributed random
bits. The number of all possible tables S is

Nall = 2r·2
m

(6.1)

The number of tables having all 2m rows different is

Ndif = 2r · (2r − 1) · (2r − 2) · · · (2r − (2m − 1)) (6.2)

because the first row of S can contain any of the 2r possible r-bit vectors, the
second row can contain any of the remaining 2r − 1 vectors, etc. Expression 6.2 can
be simplified to

Ndif =
2r!

(2r − 2m)!
(6.3)

because e.g. 6 · 5 · 4 = 6·5·4·3·2·1
3·2·1 = 6!

3! . Now, using Stirling’s formula

n! ≈
√
2πn ·

(n
e

)n

we can approximate the expression 6.3 as follows

Ndif ≈
√
2π2r ·

(
2r

e

)2r
√

2π(2r − 2m) ·
(
2r−2m

e

)2r−2m

=

√
2r

2r − 2m
· (2r)2

r · e2r−2m

(2r − 2m)2r−2m · e2r

=

√
2r

2r − 2m
· 1

e2m
· (2r)2

r−2m+2m

(2r − 2m)2r−2m

=

√
2r

2r − 2m
· 1

e2m
· (2

r)2
r−2m · (2r)2m

(2r − 2m)2r−2m

=

√
2r

2r − 2m
· 1

e2m
·
(

2r

2r − 2m

)2r−2m
· (2r)2m

=
(2r)2

m

e2m
·
(

2r

2r − 2m

)2r−2m+ 1
2
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The approximate probability that all rows of S are different is, hence,

Pdif =
Ndif

Nall
≈ 1

e2m
·
(

2r

2r − 2m

)2r−2m+ 1
2

(6.4)

The complementary probability (that at least two rows of S are equal) is Peq =
1− Pdif . After substituting r = n−m we obtain

Peq ≈ 1− 1

e2m
·
(

2n−m

2n−m − 2m

)2n−m−2m+ 1
2

(6.5)

which proves the Theorem 6.4.1. ¤

These values are really small, e.g. Peq ≈ 0.76 × 10−5 for n = 64, m = 16,
Peq ≈ 0.45 × 10−12 for n = 64, m = 8, Peq ≈ 0.41 × 10−24 for n = 128, m = 16,
and Peq ≈ 0.25× 10−31 for n = 128, m = 8. Moreover, even if two or three rows of
S happen to be equal, the cipher is not weakened seriously. To significantly reduce
the number of possible input-output differences achievable by a tst round, at least,
say, 20% of the rows of S should be equal. The probability of generating such a
weak S-box is negligible when we use a statistically strong prng .

6.4.2.1 Key Space

The maximum number of theoretically possible different keys for an Iterative tst

configuration (n,m, r) is

2m!× 22
m·(n−m) × 2(n−m)·r (6.6)

i.e. 2m! possible values of P , 22
m·(n−m) possible values of S, and 2(n−m) possible

values of every ki for 1 ≤ i ≤ r. For instance, when n = 64, m = 8, and r = 9,
the maximum number of possible keys is 256! × 214336 × 2504 ' 216524. Certainly,
this number is much smaller than the corresponding value for tst, presented in
Example 4.2.1. Nevertheless, the potentially possible 16524-bit key is still much
longer than the keys of most others symmetric cryptosystems.

When the key space above is not sufficient for some application, one can use a
different P and S in every round. The achievable number of different keys will grow
to (

2m!× 22
m·(n−m) × 2(n−m)

)r
(6.7)

which corresponds to roughly 2148716 different keys for the configuration above. How-
ever, in the interest of efficiency, one should keep with a single P and S if possible.
An astronomically large (hypothetical) key space is in most cases less important
than the memory requirements and the encryption speed of a cipher.

6.4.2.2 Possible Attacks on Simplified Versions of Iterative TST

When the prng used for generating P , S, and ki is statistically strong, it is very
hard to determine the highest probable input-output difference of a tst round, which
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would be necessary for a differential cryptanalysis. Analogously, without knowing P ,
S, and ki, it is very hard to find out the highest imbalance of an input-output sum,
which is necessary for a linear cryptanalysis. Consequently, it is hard to cryptanalyze
Iterative tst in general.

Some attacks might be possible on simplified versions of the cryptosystem. For
example, Iterative tst can be weakened by performing one or more of the following
modifications:

1. reducing the number of executed rounds, i.e. for a given n and m executing
significantly less than rp rounds,

2. using an extremely small m (e.g. m = 2) without compensating through a
high number of rounds,

3. using an extremely weak prng,

4. using a trivial, possibly linear, f1 (e.g. a simple m-bit xor checksum)

5. using compatible, group operations ¯, ⊗, and ® (e.g. using a simple xor in
place of all three operations),

6. disregarding the round key addition at the beginning and/or the segment ro-
tation at the end of a round.

The effect of simplifications 1 and 2 is equivalent and (especially when combined
with the simplification 6) it can have a disastrous effect on the security of the cipher.
When executing just few rounds for a small m without the segment rotations, an
adversary can recover S and P by fixing xR and varying xL through all possible
values. When he repeats this for several different xR, he can compute the rows of
S based on the low number of possible input-output differences. Nevertheless, this
does not seem to be possible against the full Iterative tst.

Simplification 4 (especially when combined with simplification 5) could make it
possible to change xR in such a way that the output of f1 is held fixed. Consequently,
the active row of S could be held fixed for very many (specially prepared) different
inputs. An attacker who would be able to fix the active S-box rows in r− 1 rounds,
could easily recover S and P by “parsing” just the last r-th round. The complexity
of such an attack might possibly be as low as O(2m). Again, this does not seem to
be possible against full Iterative tst with a non-trivial f1.

It is generally possible to reconstruct P and S from a relatively small fragment
if they have been generated by a cryptographically insecure prng. When the prng

is extremely simple, it might be possible to exploit even a tiny piece of information,
say, 2 × 32 consecutive bits of S. In this case, when an adversary were able to
somehow reveal a genuine 64 bit sequence from any place of S, he would be able
to break the complete cipher. However, such a weak prng is not very probable
to be used for the key setup, because it would limit the effectively achievable key
space of the particular Iterative tst implementation to 64 bits. The internal state
of the lagged Fibonacci prng proposed in our implementation is representable by
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3200 bits5, so an adversary would have to reveal at least 3200 consecutive bits of S
to recompute the secret information. Or, possibly, he might recover just x bits of
the sequence, and find the remaining 3200− x bits by brute force. All this does not
seem to be possible for the full Iterative tst .

6.4.2.3 Possible Improvements of Iterative TST

Based on the considerations above, there are several possible improvements of It-
erative tst which can be made for further strengthening the cryptosystem, when
necessary. These are:

1. increasing the number of executed rounds,

2. using more complex f1 (e.g. by making the internal scheme of f1 truly key-
dependent),

3. using some more complex group operations, especially in place of ¯ and ®,

4. using a cryptographically (not just statistically) strong prng,

5. performing a rotation by c instead of m bits at the end of a round, where c
and n are relatively prime.

The proposals 1 to 3 are rather straightforward, but they certainly cause a slowdown
of the encryption speed. Modification 4, which works against the recomputation at-
tacks on P and S, will definitely slow down the key setup procedure. Nevertheless,
when using some efficient cryptographically secure prng (e.g. [KSF99]), the slow-
down might still be acceptable.

The last modification does not increase the computational complexity and, hence,
should not slow down the encryption. The motive for such a modification is making
the cipher a prime network, i.e. ensuring that the length of cipher’s cycle6 is equal
to its block length. For example, the authors of [SK96] have shown an evidence that
a prime ufn is very hard to cryptanalyze. We expect that the same is true for a
prime version of Iterative tst. The constant c should be specified according to the
following rules:

5In fact, it is slightly more because of the used Lütscher’s approach. See e.g the references in
Section 4.1.1.1 for more details.

6Cycle is the minimal number of rounds which is needed for an input bit to come on its original
position.
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• c has no common divisors with n to make the network prime.

• c has no common divisors withm′ to ensure that the cycle related to them′-bit
words (not just to the block length) is maximal as well. This will create more
complex dependencies for f1 and ® which both work word-wise. (Note that
the fulfillment of this condition is, in most cases, implied by the first condition,
because both n and m′ are usually powers of 2.)

• c ≥ m to ensure that the content of the segments completely changes after
every round.

• When ® is defined as + mod 2m
′
, c should be close to m′

2 to ensure that all
bits appear alternately on both higher and lower order bit position inside the
m′-bit words. This will improve the diffusion properties of the series of ®
operations.

According to the points above, for instance, value 17 is a suitable candidate for c
when n is a power of 2, m′ = 32, andm ≤ 17. Value 31 might be used whenm′ = 64.

6.5 Summary

The cryptosystem Iterative tst was designed to improve the efficiency of tst and
tst’. The new design simplifies the group basis oriented approach and combines
it with the conventional iterative approach. The resulting cipher provides a full
scalability, similar to tst and tst’, but is more flexible and efficient than these
ciphers. The structure of the new cryptosystem is similar to a heterogeneous ufn.
The round design incorporates variable components and thus enables several possible
realizations. Taking efficiency and security into account, we have introduced and
analyzed one possible implementation of the cryptosystem.

From the statistical point of view the proposed number of rounds ensures excel-
lent randomness properties of the cipher, and even provides a substantial security
margin. In contrast to tst and tst’ the statistical properties of Iterative tst are
very good for any segment length m.

We were only able to construct attacks against weakened versions of Iterative
tst . Constructing an attack on the full version does not seem to be feasible. The
pseudorandom components used in our round design make a differential or linear
cryptanalysis hard. Moreover, because of its flexibility, the cryptosystem can be
easily strengthened in case that some weakness should be discovered in the basic
version.

The efficiency of Iterative tst has been significantly improved over tst and tst’.
The key setup of a 128-bit version is on average 56 times faster when compared with
tst’, and 582 times faster when compared with tst. The encryption speed is up to
4.5 times higher in comparison with tst’ and up to 14 times higher in comparison
with tst. The memory requirements have been reduced by a factor of 24, and
193 respectively. As a consequence, Iterative tst is suitable for both smart card
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Cipher Key Setup Time† Encryption Time†

Iterative TST (m=12) 1.2× 106 1900

Iterative TST (m=6) 82000 3700

TST’ 25× 106 9500

TST 269× 106 27882

Magenta 30 6539

Frog 1.4× 106 2417

Loki 97 7430 2134

Safer+ 4278 1722

Rijndael (AES) 305, 1389‡ 374

RC6 1632 270

† Measured in clock cycles on Intel Pentium II processor

‡ Key setup delays for encryption and decryption are different

Table 6.2: Efficiency of Iterative TST in comparison with other ciphers

implementation and usage in cryptographically secure hash functions when m ≤ 8.
Table 6.2 compares two representative variants of Iterative tst with cryptosystems
based on group bases, as well as with some of the aes candidates.



Chapter 7

Conclusions

Adjustability and scalability are two very desirable properties of block ciphers. They
make cryptosystems adaptable for various environments and provide a sufficient
security margin for the future. Unfortunately, in spite their excellent efficiency and
strong security properties, most of present day block ciphers are not fully scalable
and adjustable by design.

One of possible approaches to constructing adjustable and scalable block ciphers
is based on group bases. pgm and tst are two representatives of this class of ciphers.
pgm, based on the full symmetric group, provides strong cryptographic properties,
but has several inherent drawbacks that make it less suitable for practical use. The
recent cryptosystem tst based on the Sylow 2-subgroup of the symmetric group
has solved the problems of pgm in an impressing way, but has not been deeply
cryptanalyzed yet. A hardware implementation of a simplified tst has proven itself
to be efficient, but because the design is still rather new, there have been no other
implementation efforts yet. Our thesis presents the first deep analysis of tst and
introduces two new improved block cipher designs based on group bases.

The results of the thesis can be summarized as follows:

• Chapter 4

We discuss an efficient implementation of the tst key generation procedure
and presented its possible extension to the usual binary vector format as well
as to the pass-phrase format.

We implemented the first software version of tst. This was the first imple-
mentation ever which provided full functionality of tst.

Our measurements confirm that the cartesian representation of permutations
is more suitable for an efficient software implementation of tst than the com-
pact representation. Unfortunately, the efficiency of tst in software is not
competitive with modern block ciphers.

Our generic security evaluation of tst based on randomness studies has shown
that the statistical properties of tst are weak. We have shown, furthermore,

103
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that efficient attacks can be mounted against tst - especially against its sim-
plified chip version. The security problems are caused mainly by weak diffusion
of the involved operations.

• Chapter 5

We introduce the notion of an extended group basis whose factorization and
composition operations ensure strong diffusion.

We designed and implemented a modified variant of tst based on extended
group bases. The new design called tst’ makes it possible to use another,
more efficient, commutative carrier group.

tst’ based on the commutative group is noticeably faster than the original
tst. The key setup became simpler and faster, and the memory requirements
of the most efficient version are reduced in comparison with tst.

The statistical properties of tst’ are noticeably better than those of tst, and
the attack that was possible against tst can be avoided by using a proper
class of extended group bases.

• Chapter 6

By simplifying the tst’ encryption scheme we have designed a round function
that can be used for constructing an iterative version of tst. The resulting
cryptosystem is fully scalable and adjustable.

Our measurements have shown that the new cipher is much more efficient than
the ciphers based on full group bases. The encryption speed, the key setup
speed, as well as the memory efficiency have been improved significantly.

The statistical properties of the new cipher are excellent in all configurations,
and we were not able to construct any efficient attacks against the full version
of the cryptosystem.

We conclude that there is an “intersection” between the iterative approach and
the group basis oriented approach to the construction of block ciphers. A combi-
nation of these two designs makes it possible to construct block ciphers that are
fully scalable and adjustable on the one hand, and reasonably efficient and easily
implementable on the other hand. This seems to be a suitable way for designing
well founded scalable block ciphers that might be used in the future.

There are still several open questions regarding the new iterative cryptosystem:

• The structure based on key dependent random tables seems not to be eas-
ily attackable by differential or linear cryptanalysis. Is it possible to mount
a differential or linear attack on Iterative tst or, at least, on its simplified
versions? What is the complexity of such attacks?

• Our implementation of the hashing function h is just one of many possible
solutions. Are there some more efficient (or even optimal) designs for h?
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• Block cipher bear (Definition 6.2.2) based on cryptographically secure com-
ponents provides a kind of provable security. Is it possible to achieve provable
security using Iterative tst based on some special (i.e. cryptographically or
statistically strong) components? What is the necessary number of rounds for
such a construction?

These and related problems might be of interest for some future research.
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Appendix A

Basic Empirical Tests

In what follows we list the five basic empirical randomness tests for binary sequences
[MVV97, p.181]:

Frequency test (monobit test). The purpose of this test is to determine
whether the number of 0’s (n0) and number of 1’s (n1) in a sequence are approxi-
mately the same (as would be expected for a rns). The statistic used is

X =
(n0 − n1)2

n

which approximately follows a χ2 distribution with 1 degree of freedom.

Serial test (m-bit test). Whenm = 2, the purpose of this test is to determine,
whether the numbers of occurrences of overlapping subsequences 00, 01, 10 and 11
in an n-bit sample sequence are approximately the same (as would be expected for
a rns). Note that n00+n01+n10+n11 = (n−1) since the subsequences are allowed
to overlap. The statistic used is

X =
4

n− 1
(n200 + n201 + n210 + n211)−

2

n
(n20 + n21) + 1

which approximately follows a χ2 distributions with 2 degrees of freedom. Certainly,
the test can be generalized to higher values of m, and we can examine the triples,
quadruples or longer subsequences of bits. However, because of practical problems
one usually uses less exact tests (e.g. the poker test) for larger m’s.

Poker test. Let m be a positive integer such that b nmc ≥ 5 ·2m and let k = b nmc.
The poker test divides a sequence into k non-overlapping parts of m bits and counts
the number of occurrences ni of every possible m-bit block, 1 ≤ i ≤ 2m. The test
determines whether each m-bit pattern appears approximately the same number of
times (as would be expected for a rns). The statistic used is

X =
2m

k
·
(
2m∑

i=1

n2i

)
− k

107



108 A. BASIC EMPIRICAL TESTS

which approximately follows a χ2 distribution with 2m−1 degrees of freedom. Note
that the poker test is a generalization of the frequency tests (which is a special case
for m = 1).

Runs test. A run is a subsequence consisting of consecutive 0’s or consecutive
1’s which is neither preceded nor succeeded by the same symbol. The purpose of
the runs test is to determine whether the number of runs of various lengths in the
sequence is as expected for a rns. The expected number of runs of length i in a
rns of length n is ei = (n− 1 + 3)/2i+2. Let k be equal to the largest integer i for
which ei ≥ 5. Let Bi be the number of runs of 1’s and Gi the number of runs of 0’s
of length i for each 1 ≤ i ≤ k. The statistic used is

X =
k∑

i=1

(Bi − ei)2
ei

+
k∑

i=1

(Gi − ei)2
ei

which approximately follows a χ2 distribution with 2k − 2 degrees of freedom.

Autocorrelation test. The purpose of this test is to check for correlations
between an n-bit sequence s and the shifted versions of it. Let d be a fixed integer
such that 1 ≤ d ≤ bn/2c. The number of bits in s not equal to their d-shifts is
A(d) =

∑n−d−1
i=0 si ⊕ si+d. The statistic used is

X = 2 · A(d)−
n−d
2√

n− d

which approximately follows an N(0, 1) distribution. Since small values of A(d) are
as unexpected as large values, a two-sided test should be used.

Note: Descriptions of more empirical tests can be found, for example, in [Knu97]
and [SB00].



Appendix B

The DieHard Test Battery

The DieHard randomness test suite [Mar97] consists of the following tests:

The birthday spacings test. Choose m birthdays in a year of n days. List
the spacings between the birthdays. If j is the number of values that occur more
than once in that list, then j is asymptotically Poisson distributed with mean m3

4n .
Experience shows n must be quite large, say n ≤ 218, for comparing the results to
the Poisson distribution with that mean. This test uses n = 224 and m = 29, so that
the underlying distribution for j is taken to be Poisson with λ = 227

226
= 2. A sample

of 500 j’s is taken, and a χ2 goodness of fit test provides a p value. The first test
uses bits 1 to 24 (counting from the left) from integers in the specified file. Then the
file is closed and reopened. Next, bits 2 to 25 are used to provide birthdays, then
3 to 26 and so on to bits 9 to 32. Each set of bits provides a p-value, and the nine
p-values provide a sample for a Kolmogorov-Smirnov test.

The overlapping 5-permutation test. The test looks at a sequence of one
million 32-bit random integers. Each set of five consecutive integers can be in one of
120 states, for the 5! possible orderings of five numbers. Thus the 5th, 6th, 7th, . . .
numbers each provide a state. As many thousands of state transitions are observed,
cumulative counts are made of the number of occurrences of each state. Then the
quadratic form in the weak inverse of the 120× 120 covariance matrix yields a test
equivalent to the likelihood ratio test that the 120 cell counts came from the specified
(asymptotically) normal distribution with the specified 120× 120 covariance matrix
(with rank 99). This version uses 1,000,000 integers, twice.

The binary rank test for 31 × 31 matrices. The leftmost 31 bits of 31
random integers from the test sequence are used to form a 31 × 31 binary matrix
over the field {0, 1}. The rank is determined. That rank can be from 0 to 31, but
ranks < 28 are rare, and their counts are pooled with those for rank 28. Ranks are
found for 40,000 such random matrices and a χ2 test is performed on counts for
ranks 31, 30, 29, and ≤ 28.

The binary rank test for 32×32 matrices. A random 32×32 binary matrix
is formed, each row a 32-bit random integer. The rank is determined. That rank
can be from 0 to 32, ranks less than 29 are rare, and their counts are pooled with
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those for rank 29. Ranks are found for 40,000 such random matrices and a χ2 test
is performed on counts for ranks 32, 31, 30, and ≤ 29.

The binary rank test for 6 × 8 matrices. From each of six random 32-bit
integers from the generator under test, a specified byte is chosen, and the resulting
six bytes form a 6 × 8 binary matrix whose rank is determined. That rank can be
from 0 to 6, but ranks 0, 1, 2, and 3 are rare; their counts are pooled with those for
rank 4. Ranks are found for 100,000 random matrices, and a χ2 test is performed
on counts for ranks 6,5 and ≤ 4.

The bitstream test. The file under test is viewed as a stream of bits. Call
them b1, b2, . . .. Consider an alphabet with two “letters”, 0 and 1 and think of the
stream of bits as a succession of 20-letter “words”, overlapping. Thus the first word
is b1b2 . . . b20, the second is b2b3 . . . b21, and so on. The bitstream test counts the
number of missing 20-letter (20-bit) words in a string of 221 overlapping 20-letter
words. There are 220 possible 20 letter words. For a truly random string of 221+19
bits, the number of missing words j should be (very close to) normally distributed
with mean 141,909 and sigma 428. Thus j−141909

428 should be a standard normal
variate (z score) that leads to a uniform [0, 1) p value. The test is repeated twenty
times.

The overlapping-pairs-sparse-occupancy test. The OPSO test considers 2-
letter words from an alphabet of 1024 letters. Each letter is determined by a specified
ten bits from a 32-bit integer in the sequence to be tested. OPSO generates 221

(overlapping) 2-letter words (from 221 + 1 “keystrokes”) and counts the number M
of missing words - that is 2-letter words which do not appear in the entire sequence.
That count should be very close to normally distributed with mean 141,909, sigma
290. Thus M−141909

290 should be a standard normal variable. The OPSO test takes 32
bits at a time from the test file and uses a designated set of ten consecutive bits. It
then restarts the file for the next designated 10 bits, and so on.

The overlapping-quadruples-sparse-occupancy test. The test OQSO is
similar, except that it considers 4-letter words from an alphabet of 32 letters, each
letter determined by a designated string of 5 consecutive bits from the test file,
elements of which are assumed 32-bit random integers. The mean number of missing
words in a sequence of 221 four-letter words, (221+3 “keystrokes”), is again 141909,
with sigma = 295. The mean is based on theory; sigma comes from extensive
simulation.

The DNA test. This test considers an alphabet of 4 letters C,G,A,T, deter-
mined by two designated bits in the sequence of random integers being tested. It
considers 10-letter words, so that as in OPSO and OQSO, there are 220 possible
words, and the mean number of missing words from a string of 221 (overlapping)
10-letter words (221+9 “keystrokes”) is 141909. The standard deviation sigma=339
was determined as for OQSO by simulation. (Sigma for OPSO, 290, is the true value
(to three places), not determined by simulation.
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The count-the-1’s test on a stream of bytes. Consider the file under test
as a stream of bytes (four per 32 bit integer). Each byte can contain from 0 to 8
ones, with probabilities 1, 8, 28, 56, 70, 56, 28, 8, 1 over 256. Now let the stream of
bytes provide a string of overlapping 5-letter words, each “letter” taking values A,
B, C, D, E. The letters are determined by the number of 1’s in a byte 0, 1, or 2 yield
A, 3 yields B, 4 yields C, 5 yields D and 6, 7, or 8 yield E. Thus we have a monkey
at a typewriter hitting five keys with various probabilities (37, 56, 70, 56, 37 over
256). There are 55 possible 5-letter words, and from a string of 256,000 (overlapping)
5-letter words, counts are made on the frequencies for each word. The quadratic
form in the weak inverse of the covariance matrix of the cell counts provides a χ2

test Q5-Q4, the difference of the naive Pearson sums of (OBS−EXP )2

EXP on counts for
5- and 4-letter cell counts.

The count-the-1’s test for specific bytes. Consider the file under test as
a stream of 32-bit integers. From each integer, a specific byte is chosen, say the
leftmost bits 1 to 8. Each byte can contain from 0 to 8 ones, with probabilities 1, 8,
28, 56, 70, 56, 28, 8, 1 over 256. Now let the specified bytes from successive integers
provide a string of (overlapping) 5-letter words, each “letter” taking values A, B,
C, D, E. The letters are determined by the number of 1’s, in that byte 0, 1, or 2
−→ A, 3 −→ B, 4 −→ C, 5 −→ D, and 6, 7, or 8 −→ E. Thus we have a monkey
at a typewriter hitting five keys with various probabilities 37, 56, 70, 56, 37 over
256. There are 55 possible 5-letter words, and from a string of 256,000 (overlapping)
5-letter words, counts are made on the frequencies for each word. The quadratic
form in the weak inverse of the covariance matrix of the cell counts provides a χ2

test Q5-Q4, the difference of the naive Pearson sums of (OBS−EXP )2

EXP on counts for
5- and 4-letter cell counts.

The parking lot test. In a square of side 100, randomly “park” a car - a circle
of radius 1. Then try to park a 2nd, a 3rd, and so on, each time parking “by ear”.
That is, if an attempt to park a car causes a crash with one already parked, try again
at a new random location. (To avoid path problems, consider parking helicopters
rather than cars.) Each attempt leads to either a crash or a success, the latter
followed by an increment to the list of cars already parked. If we plot n: the number
of attempts, versus k the number successfully parked, we get a curve that should
be similar to those provided by a perfect random number generator. Theory for
the behavior of such a random curve seems beyond reach, and as graphics displays
are not available for this battery of tests, a simple characterization of the random
experiment is used: k, the number of cars successfully parked after n = 12,000
attempts. Simulation shows that k should average 3523 with sigma 21.9 and is very
close to normally distributed. Thus k−3523

21.9 should be a standard normal variable,
which, converted to a uniform variable, provides input to a Kolmogorov-Smirnov
test based on a sample of 10.

The minimum distance test. It does this 100 times choose n = 8000 random
points in a square of side 10000. Find d, the minimum distance between the n2−n

2
pairs of points. If the points are truly independent uniform, then d2, the square
of the minimum distance should be (very close to) exponentially distributed with
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mean 0.995 . Thus 1−e− d2

0.995 should be uniform on [0, 1) and a Kolmogorov-Smirnov
on the resulting 100 values serves as a test of uniformity for random points in the
square. Test numbers = 0 mod 5 are printed but the Kolmogorov-Smirnov test is
based on the full set of 100 random choices of 8000 points in the 10000 × 10000
square.

The 3D spheres test. Choose 4000 random points in a cube of edge 1000.
At each point, center a sphere large enough to reach the next closest point. Then
the volume of the smallest such sphere is (very close to) exponentially distributed
with mean 120π

3 . Thus the radius cubed is exponential with mean 30. (The mean is
obtained by extensive simulation). The 3D spheres test generates 4000 such spheres

20 times. Each min radius cubed leads to a uniform variable by means of 1− e− r3

30 ,
then a Kolmogorov-Smirnov test is done on the 20 p-values.

The squeeze test. Random integers are floated to get uniforms on [0, 1).
Starting with k = 231 = 2147483647, the test finds j, the number of iterations
necessary to reduce k to 1, using the reduction k = dk ∗ Ue, with U provided by
floating integers from the file being tested. Such j’s are found 100,000 times, then
counts for the number of times j was ≤ 6, 7, . . . , 47,≤ 48 are used to provide a χ2

test for cell frequencies.

The overlapping sums test. Integers are floated to get a sequence U1, U2, . . .
of uniform [0, 1) variables. Then overlapping sums, S1 = U1 + . . . + U100, S2 =
U2 + . . . + U101, . . . are formed. The S’s are virtually normal with a certain co-
variance matrix. A linear transformation of the S’s converts them to a sequence
of independent standard normals, which are converted to uniform variables for a
Kolmogorov-Smirnov test. The p-values from ten Kolmogorov-Smirnov tests are
given still another Kolmogorov-Smirnov test.

The runs test. It counts runs up, and runs down, in a sequence of uniform
[0, 1) variables, obtained by floating the 32-bit integers in the specified file. This
example shows how runs are counted: 0.123, 0.357, 0.789, 0.425, 0.224, 0.416, 0.95
contains an up-run of length 3, a down-run of length 2 and an up-run of (at least)
2, depending on the next values. The covariance matrices for the runs-up and runs-
down are well known, leading to χ2 tests for quadratic forms in the weak inverses
of the covariance matrices. Runs are counted for sequences of length 10,000. This
is done ten times. Then repeated.

The craps test. It plays 200,000 games of craps, finds the number of wins and
the number of throws necessary to end each game. The number of wins should be
(very close to) a normal with mean 200000p and variance 200000 · p · (1 − p), with
p = 244

495 . Throws necessary to complete the game can vary from 1 to infinity, but
counts for all > 21 are lumped with 21. A χ2 test is made on the number-of-throws
cell counts. Each 32-bit integer from the test file provides the value for the throw
of a die, by floating to [0, 1), multiplying by 6 and taking 1 plus the integer part of
the result.
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Note: Most of the tests in DieHard return a p-value, which should be uniform
on [0, 1) if the input file contains truly independent random bits. Those p-values are
obtained by p = F (X), where F is the assumed distribution of the sample random
variable X - often normal. But that assumed F is just an asymptotic approximation,
for which the fit will be worst in the tails. Thus one should not be surprised with
occasional p-values near 0 or 1, such as 0.0012 or 0.9983. When a bit stream really
fails big, the resulting p’s will contain 0 or 1 on six or more decimal places [Mar97].
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List of Notations

Units

s Second
b Bit
B Byte (8 bits)
KB Kilobyte (210 bytes)
MB Megabyte (220 bytes)
MHz Megahertz (106 cycles per second)

Abbreviations

AES Advanced Encryption Standard [Nat97]
AFE Average Fusion Extent Section 4.1
BEAR Name of a symmetric cryptosystem [AB96]
BGA Basis Generation Algorithm Sections 3.2.1, 3.3.2
CBC Cipher Block Chaining [Sch96, Sec. 9.3]
CRC Cyclic Redundancy Code [PFTV88, Sec. 20.3]
DES Data Encryption Standard [Uni77]
GUFN Generalized Unbalanced Feistel Network Section 6.2.1.1
IDEA Name of a symmetric cryptosystem [LM91]
PGM Name of a symmetric cryptosystem Section 3.2
PRNG Pseudorandom Number Generator Section 2.2
PRNS Pseudorandom Number Sequence Section 2.2
RC6 Name of a symmetric cryptosystem [RRSY98]
RNG (True) Random Number Generator Section 2.2
RNS (True) Random Number Sequence Section 2.2
TST Name of a symmetric cryptosystem Section 3.3
TST’ Name of a symmetric cryptosystem Section 5.2
UFN Unbalanced Feistel Network Section 6.2.1.1
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Symbols

x′, x′′, x′′′, . . . Modified or alternative versions of x
xi i-th element of x

x(i) i-th bit of x (in cases when xi has a different meaning)
|x| Size or length of x
x||y Concatenation of x and y
bxc Floor of x (i.e. maxk≤x(k))
dxe Ceiling of x (i.e. mink≥x(k))
' Approximately equal
≈ (Very) roughly equal
À Much bigger than
c, c′, ci Constants
k Coefficient or factor
∆ Difference
d(., .) Distance between two objects
d′(., .) Normalized distance between two objects (0 ≤ d′ ≤ 1)
ProcName Name of a procedure used during an algorithm
O(.) Computational complexity
N(µ, σ2) Normal distribution with mean µ and variance σ2

χ2 Chi-square distribution
¤ End of proof

N Infinite set {1, 2, 3, . . .}
Nn Finite set {1, 2, . . . , n}
Z Infinite set {0, 1, 2, . . .}
Zn Finite set {0, 1, . . . , n− 1}
Z∗n Set of all possible subsets of Zn

x, y, z Elements of a set or of a group
i, j, k, l Indices
p, p′, pi Permutations
id Identity permutation
G, Gi Groups
|G| Order of G
∗ The group operation for G
/ The inverse group operation for G

⊕,¯,⊗,®,¢,¯,⊗(i) Diverse group operations
Sn Full symmetric group
Zn
2 Elementary Abelian group (a subgroup of S2n)
Hs Sylow 2-subgroup of S2s

Hs ×H1 Wreath product of two Sylow subgroups

BG Set of all group bases for G
B∗G Set of all transversal group bases for G
β, β′, βi Various group bases
α Canonical group basis
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w Dimension of a group basis
X Space of coordinate vectors
Bi The i-th block of a group basis
bi,j The j-th element of Bi

ci The set of key bit positions for Bi

ri Number of elements of Bi

β̃(.) Composition with respect to β

β̃−1(.) Factorization with respect to β
T Set of transformations
T , T ′, Ti Various transformations

β(T ) T -extended group basis

β̃(T )(.) Composition with respect to β(T )

β̃(T )−1(.) Factorization with respect to β(T )

P Plaintext space
C Ciphertext space
M Message space (notion used when P = C)
K Key space
eK(.) Encryption function
dK(.) Decryption function
x, x′ Plaintexts
y, y′ Ciphertexts
K, K ′ Keys
ki Round key for the i-th round
n Block length
k Key length
k′ Round key length
m Segment length
r Number of rounds
rp Proposed r
rs Statistically strong r
P Permutation box
S Substitution box

{0, 1}n Set of all n-bit binary vectors
⊕ Binary XOR operation
γ(., .) Bit extraction function (Section 5.2.2)
δ(., ., .) Bit initialization function (Section 5.2.2)
rotx(.) Rotation by x bits
h(.) Hash function
xL First m bits of x
xR All but first m bits of x
ξ Segment rotation (i.e. rotm(.))
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[Hey97] Burkhard Heyber. Zur Güte von Zufallsprozessen in der Kryptologischen
Praxis. PhD thesis, Department of Electrical Engineering, FernUniver-
sität Hagen, Hagen, Germany, 1997.
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