16,201 research outputs found

    Exponential-family Random Network Models

    Full text link
    Random graphs, where the connections between nodes are considered random variables, have wide applicability in the social sciences. Exponential-family Random Graph Models (ERGM) have shown themselves to be a useful class of models for representing com- plex social phenomena. We generalize ERGM by also modeling nodal attributes as random variates, thus creating a random model of the full network, which we call Exponential-family Random Network Models (ERNM). We demonstrate how this framework allows a new formu- lation for logistic regression in network data. We develop likelihood-based inference for the model and an MCMC algorithm to implement it. This new model formulation is used to analyze a peer social network from the National Lon- gitudinal Study of Adolescent Health. We model the relationship between substance use and friendship relations, and show how the results differ from the standard use of logistic regression on network data

    Information Geometry Approach to Parameter Estimation in Markov Chains

    Full text link
    We consider the parameter estimation of Markov chain when the unknown transition matrix belongs to an exponential family of transition matrices. Then, we show that the sample mean of the generator of the exponential family is an asymptotically efficient estimator. Further, we also define a curved exponential family of transition matrices. Using a transition matrix version of the Pythagorean theorem, we give an asymptotically efficient estimator for a curved exponential family.Comment: Appendix D is adde

    Exponential Family Hybrid Semi-Supervised Learning

    Get PDF
    We present an approach to semi-supervised learning based on an exponential family characterization. Our approach generalizes previous work on coupled priors for hybrid generative/discriminative models. Our model is more flexible and natural than previous approaches. Experimental results on several data sets show that our approach also performs better in practice.Comment: 6 pages, 3 figure

    Information Aggregation in Exponential Family Markets

    Full text link
    We consider the design of prediction market mechanisms known as automated market makers. We show that we can design these mechanisms via the mold of \emph{exponential family distributions}, a popular and well-studied probability distribution template used in statistics. We give a full development of this relationship and explore a range of benefits. We draw connections between the information aggregation of market prices and the belief aggregation of learning agents that rely on exponential family distributions. We develop a very natural analysis of the market behavior as well as the price equilibrium under the assumption that the traders exhibit risk aversion according to exponential utility. We also consider similar aspects under alternative models, such as when traders are budget constrained

    Exponential Family Matrix Completion under Structural Constraints

    Full text link
    We consider the matrix completion problem of recovering a structured matrix from noisy and partial measurements. Recent works have proposed tractable estimators with strong statistical guarantees for the case where the underlying matrix is low--rank, and the measurements consist of a subset, either of the exact individual entries, or of the entries perturbed by additive Gaussian noise, which is thus implicitly suited for thin--tailed continuous data. Arguably, common applications of matrix completion require estimators for (a) heterogeneous data--types, such as skewed--continuous, count, binary, etc., (b) for heterogeneous noise models (beyond Gaussian), which capture varied uncertainty in the measurements, and (c) heterogeneous structural constraints beyond low--rank, such as block--sparsity, or a superposition structure of low--rank plus elementwise sparseness, among others. In this paper, we provide a vastly unified framework for generalized matrix completion by considering a matrix completion setting wherein the matrix entries are sampled from any member of the rich family of exponential family distributions; and impose general structural constraints on the underlying matrix, as captured by a general regularizer R(.)\mathcal{R}(.). We propose a simple convex regularized MM--estimator for the generalized framework, and provide a unified and novel statistical analysis for this general class of estimators. We finally corroborate our theoretical results on simulated datasets.Comment: 20 pages, 9 figure
    • …
    corecore