We consider the design of prediction market mechanisms known as automated
market makers. We show that we can design these mechanisms via the mold of
\emph{exponential family distributions}, a popular and well-studied probability
distribution template used in statistics. We give a full development of this
relationship and explore a range of benefits. We draw connections between the
information aggregation of market prices and the belief aggregation of learning
agents that rely on exponential family distributions. We develop a very natural
analysis of the market behavior as well as the price equilibrium under the
assumption that the traders exhibit risk aversion according to exponential
utility. We also consider similar aspects under alternative models, such as
when traders are budget constrained