14,943 research outputs found

    Integrating perceptual, device and location characteristics for wireless multimedia transmission

    Get PDF
    In this paper,we describe an investigation exploring user experiences of accessing streamed multimedia content, when that content is tailored according to perceptual, device and location characteristics. To this end, we have created pre-defined transmission profiles and stream perceptually tailored multimedia content to three different locations, each characterised by different infotainment requirements. In the light of our results, we propose that multimedia transmission to mobile and wireless devices should be made based on pre-defined profiles, which contains a combination of static (perceptual, device type, CPU speed, and display specifications) and dynamic information (streamed content type location of the device/user, context of the device/user). The evaluation of such a system showed that the users and service providers can gain from such an approach considerably, as user perceptions of quality were not detrimentally affected by QoS degradations. Consequently, service providers can utilise this information to effectively manage local network traffic and bandwidth

    The intention to use mobile digital library technology: A focus group study in the United Arab Emirates

    Get PDF
    IGI Global (“IGI”) granted Brunel University London the permission to archive this article in BURA (http://bura.brunel.ac.uk).This paper presents a qualitative study on student adoption of mobile library technology in a developing world context. The findings support the applicability of a number of existing constructs from the technology acceptance literature, such as perceived ease of use, social influence and trust. However, they also suggest the need to modify some adoption factors previously found in the literature to fit the specific context of mobile library adoption. Perceived value was found to be a more relevant overarching adoption factor than perceived usefulness for this context. Facilitating conditions were identified as important but these differed somewhat from those covered in earlier literature. The research also uncovered the importance of trialability for this type of application. The findings provide a basis for improving theory in the area of mobile library adoption and suggest a number of practical design recommendations to help designers of mobile library technology to create applications that meet user needs

    Lights, Camera, Action! Exploring Effects of Visual Distractions on Completion of Security Tasks

    Full text link
    Human errors in performing security-critical tasks are typically blamed on the complexity of those tasks. However, such errors can also occur because of (possibly unexpected) sensory distractions. A sensory distraction that produces negative effects can be abused by the adversary that controls the environment. Meanwhile, a distraction with positive effects can be artificially introduced to improve user performance. The goal of this work is to explore the effects of visual stimuli on the performance of security-critical tasks. To this end, we experimented with a large number of subjects who were exposed to a range of unexpected visual stimuli while attempting to perform Bluetooth Pairing. Our results clearly demonstrate substantially increased task completion times and markedly lower task success rates. These negative effects are noteworthy, especially, when contrasted with prior results on audio distractions which had positive effects on performance of similar tasks. Experiments were conducted in a novel (fully automated and completely unattended) experimental environment. This yielded more uniform experiments, better scalability and significantly lower financial and logistical burdens. We discuss this experience, including benefits and limitations of the unattended automated experiment paradigm

    Innovation in Mobile Learning: A European Perspective

    Get PDF
    In the evolving landscape of mobile learning, European researchers have conducted significant mobile learning projects, representing a distinct perspective on mobile learning research and development. Our paper aims to explore how these projects have arisen, showing the driving forces of European innovation in mobile learning. We propose context as a central construct in mobile learning and examine theories of learning for the mobile world, based on physical, technological, conceptual, social and temporal mobility. We also examine the impacts of mobile learning research on educational practices and the implications for policy. Throughout, we identify lessons learnt from European experiences to date

    Are digital natives a myth or reality?: Students’ use of technologies for learning

    Get PDF
    This paper outlines the findings of a study investigating the extent and nature of use of digital technologies by undergraduate students in Social Work and Engineering, in two British universities. The study involved a questionnaire survey of students (n=160) followed by in-depth interviews with students (n=8) and lecturers and support staff (n=8) in both institutions. Firstly, the findings suggest that students use a limited range of technologies for both learning and socialisation. For learning, mainly established ICTs are used- institutional VLE, Google and Wikipedia and mobile phones. Students make limited, recreational use of social technologies such as media sharing tools and social networking sites. Secondly, the findings point to a low level of use of and familiarity with collaborative knowledge creation tools, virtual worlds, personal web publishing, and other emergent social technologies. Thirdly, the study did not find evidence to support the claims regarding students adopting radically different patterns of knowledge creation and sharing suggested by some previous studies. The study shows that students’ attitudes to learning appear to be influenced by the approaches adopted by their lecturers. Far from demanding lecturers change their practice, students appear to conform to fairly traditional pedagogies, albeit with minor uses of technology tools that deliver content. Despite both groups clearly using a rather limited range of technologies for learning, the results point to some age differences, with younger, engineering students making somewhat more active, albeit limited, use of tools than the older ones. The outcomes suggest that although the calls for radical transformations in educational approaches may be legitimate it would be misleading to ground the arguments for such change solely in students’ shifting expectations and patterns of learning and technology use

    Fast parallel volume visualization on cuda technology

    Get PDF
    In the medical diagnosis and treatment planning, radiologists and surgeons rely heavily on the slices produced by medical imaging scanners. Unfortunately, most of these scanners can only produce two dimensional images because the machines that can produce three dimensional are very expensive. The two dimensional images from these devices are difficult to interpret because they only show cross-sectional views of the human structure. Consequently, such circumstances require highly qualified doctors to use their expertise in the interpretation of the possible location, size or shape of the abnormalities especially for large datasets of enormous amount of slices. Previously, the concept of reconstructing two dimensional images to three dimensional was introduced. However, such reconstruction model requires high performance computation, may either be time-consuming or costly. Furthermore, detecting the internal features of human anatomical structure, such as the imaging of the blood vessels, is still an open topic in the computer-aided diagnosis of disorders and pathologies. This study proposed, designed and implemented a visualization framework named SurLens with high performance computing using Compute Unified Device Architecture (CUDA), augmenting the widely proven ray casting technique in terms of superior qualities of images but with slow speed. Considering the rapid development of technology in the medical community, our framework is implemented on Microsoft .NET environment for easy interoperability with other emerging revolutionary tools. The Visualization System was evaluated with brain datasets from the department of Surgery, University of North Carolina, United States, containing 109 datasets of MRA, T1-FLASH, T2-Weighted, DTI and T1-MPRAGE. Significantly, at a reasonably cheaper cost, SurLens Visualization System achieves immediate reconstruction and obvious mappings of the internal features of the human brain, reliable enough for instantaneously locate possible blockages in the brain blood vessels without any prior segmentation of the datasets
    corecore