8,001 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Smartphone Augmented Reality Applications for Tourism

    Get PDF
    Invisible, attentive and adaptive technologies that provide tourists with relevant services and information anytime and anywhere may no longer be a vision from the future. The new display paradigm, stemming from the synergy of new mobile devices, context-awareness and AR, has the potential to enhance tourists’ experiences and make them exceptional. However, effective and usable design is still in its infancy. In this publication we present an overview of current smartphone AR applications outlining tourism-related domain-specific design challenges. This study is part of an ongoing research project aiming at developing a better understanding of the design space for smartphone context-aware AR applications for tourists

    How does the design of landmarks on a mobile map influence wayfinding experts’ spatial learning during a real-world navigation task?

    Full text link
    Humans increasingly rely on GPS-enabled mobile maps to navigate novel environments. However, this reliance can negatively affect spatial learning, which can be detrimental even for expert navigators such as search and rescue personnel. Landmark visualization has been shown to improve spatial learning in general populations by facilitating object identification between the map and the environment. How landmark visualization supports expert users’ spatial learning during map-assisted navigation is still an open research question. We thus conducted a real-world study with wayfinding experts in an unknown residential neighborhood. We aimed to assess how two different landmark visualization styles (abstract 2D vs. realistic 3D buildings) would affect experts’ spatial learning in a map-assisted navigation task during an emergency scenario. Using a between-subjects design, we asked Swiss military personnel to follow a given route using a mobile map, and to identify five task-relevant landmarks along the route. We recorded experts’ gaze behavior while navigating and examined their spatial learning after the navigation task. We found that experts’ spatial learning improved when they focused their visual attention on the environment, but the direction of attention between the map and the environment was not affected by the landmark visualization style. Further, there was no difference in spatial learning between the 2D and 3D groups. Contrary to previous research with general populations, this study suggests that the landmark visualization style does not enhance expert navigators’ navigation or spatial learning abilities, thus highlighting the need for population-specific mobile map design solutions

    Assessing real world imagery in virtual environments for people with cognitive disabilities

    Get PDF
    People with cognitive disabilities are often socially excluded. We propose a system based on Virtual and Augmented Reality that has the potential to act as an educational and support tool in everyday tasks for people with cognitive disabilities. Our solution consists of two components: the first that enables users to train for several essential quotidian activities and the second that is meant to offer real time guidance feedback for immediate support. In order to illustrate the functionality of our proposed system, we chose to train and support navigation skills. Thus, we conducted a preliminary study on people with Down Syndrome (DS) based on a navigation task. Our experiment was aimed at evaluating the visual and spatial perception of people with DS when interacting with different elements of our system. We provide a preliminary evaluation that illustrates how people with DS perceive different landmarks and types of visual feedback, in static images and videos. Although we focused our study on people with DS, people with different cognitive disabilities could also benefit from the features of our solution. This analysis is mandatory in the design of a virtual intelligent system with several functionalities that aims at helping disabled people in developing basic knowledge in every day tasks

    Assessing real world imagery in virtual environments for people with cognitive disabilities

    Get PDF
    People with cognitive disabilities are often socially excluded. We propose a system based on Virtual and Augmented Reality that has the potential to act as an educational and support tool in everyday tasks for people with cognitive disabilities. Our solution consists of two components: the first that enables users to train for several essential quotidian activities and the second that is meant to offer real time guidance feedback for immediate support. In order to illustrate the functionality of our proposed system, we chose to train and support navigation skills. Thus, we conducted a preliminary study on people with Down Syndrome (DS) based on a navigation task. Our experiment was aimed at evaluating the visual and spatial perception of people with DS when interacting with different elements of our system. We provide a preliminary evaluation that illustrates how people with DS perceive different landmarks and types of visual feedback, in static images and videos. Although we focused our study on people with DS, people with different cognitive disabilities could also benefit from the features of our solution. This analysis is mandatory in the design of a virtual intelligent system with several functionalities that aims at helping disabled people in developing basic knowledge in every day tasks

    Spatial cognitive implications of user interfaces in virtual reality and route guidance

    Get PDF
    The relationship between spatial learning and technology is becoming more intimately intertwined. This dissertation explores that relationship with multiple technologies and multiple types of spatial knowledge. With virtual reality, teleporting is commonly used to explore large-scale virtual environments when users are limited by the tracked physical space. Past work has shown that locomotion interfaces such as teleporting have spatial cognitive costs associated with the lack of accompanying self-motion cues for small-to-medium scale movement in virtual environments, but less is known about whether the spatial cognitive costs extend to learning a large-scale virtual environment. Experiment 1 (Chapter 2) evaluates whether rotational self-motion cues teleporting interfaces impact spatial learning for large-scale virtual environments. using two measures of survey learning (an object-to-object pointing task and map drawing task). Results indicate that access to rotational self-motion cues when teleporting led to more accurate survey representations of large-scale virtual environments. Therefore, virtual reality developers should strongly consider the benefits of rotational self-motion cues when creating locomotion interfaces. For Experiments 2 and 3 (Chapter 3), previous work has demonstrated that repeatedly using GPS route guidance reliably diminishes route learning. Memory research has shown that recalling information (i.e., testing) significantly improves retention of that information when compared to restudying the same information. Similarly, memory retrieval of routes during learning may be advantageous for long-term retention compared to following route guidance using a GPS. However, whether such a benefit would occur for route learning is not clear because the benefits of testing have primarily been explored with verbal materials. Experiments 2 and 3 explore whether retrieving routes from memory during learning enhance route knowledge of a large-scale virtual city using a driving simulator compared to learning a route by repeatedly following GPS route guidance. Results from both experiments demonstrated that there was no difference in performance between testing and repeatedly following route guidance at final test, but further analysis revealed that in the testing condition, a large proportion of errors produced during learning was also repeated at final test. The experiments described here not only expand the current knowledge regarding the intersection of technology and spatial learning, but also underscore the importance of evaluating applications of spatial cognitive theory across a range of applied domains
    • …
    corecore