6,641 research outputs found

    Cell Towers as Urban Sensors: Understanding the Strengths and Limitations of Mobile Phone Location Data

    Get PDF
    Understanding urban dynamics and human mobility patterns not only benefits a wide range of real-world applications (e.g., business site selection, public transit planning), but also helps address many urgent issues caused by the rapid urbanization processes (e.g., population explosion, congestion, pollution). In the past few years, given the pervasive usage of mobile devices, call detail records collected by mobile network operators has been widely used in urban dynamics and human mobility studies. However, the derived knowledge might be strongly biased due to the uneven distribution of people’s phone communication activities in space and time. This dissertation research applies different analytical methods to better understand human activity and urban environment, as well as their interactions, mainly based on a new type of data source: actively tracked mobile phone location data. In particular, this dissertation research achieves three main research objectives. First, this research develops visualization and analysis approaches to uncover hidden urban dynamics patterns from actively tracked mobile phone location data. Second, this research designs quantitative methods to evaluate the representativeness issue of call detail record data. Third, this research develops an appropriate approach to evaluate the performance of different types of tracking data in urban dynamics research. The major contributions of this dissertation research include: 1) uncovering the dynamics of stay/move activities and distance decay effects, and the changing human mobility patterns based on several mobility indicators derived from actively tracked mobile phone location data; 2) taking the first step to evaluate the representativeness and effectiveness of call detail record and revealing its bias in human mobility research; and 3) extracting and comparing urban-level population movement patterns derived from three different types of tracking data as well as their pros and cons in urban population movement analysis

    A Hierarchical Approach for Investigating Social Features of a City from Mobile Phone Call Detail Records

    Full text link
    Cellphone service-providers continuously collect Call Detail Records (CDR) as a usage log containing spatio-temporal traces of phone users. We proposed a multi-layered hierarchical analytical model for large spatio-temporal datasets and applied that for the progressive exploration of social features of a city, e.g., social activities, relationships, and groups, from CDR. This approach utilizes CDR as the preliminary input for the initial layer, and analytical results from consecutive layers are added to the knowledge-base to be used in the subsequent layers to explore more detailed social features. Each subsequent layer uses the results from previous layers, facilitating the discovery of more in-depth social features not predictable in a single-layered approach using only raw CDR. This model starts with exploring aggregated overviews of the social features and gradually focuses on comprehensive details of social relationships and groups, which facilitates a novel approach for investigating CDR datasets for the progressive exploration of social features in a densely-populated city

    The impact of mobile telephony on developing country micro-enterprises: a Nigerian case study

    Get PDF
    Informational challenges-absence, uncertainty, asymmetry-shape the working of markets and commerce in many developing countries. For developing country micro-enterprises, which form the bulk of all enterprises worldwide, these challenges shape the characteristics of their supply chains. They reduce the chances that business and trade will emerge. They keep supply chains localised and intermediated. They make trade within those supply chains slow, costly, and risky. Mobile telephony may provide an opportunity to address the informational challenges and, hence, to alter the characteristics of trade within micro-enterprise supply chains. However, mobile telephony has only recently penetrated. This paper, therefore, presents one of the first case studies of the impact of mobile telephony on the numerically-dominant form of enterprise, based around a case study of the cloth-weaving sector in Nigeria. It finds that there are ways in which costs and risks are being reduced and time is saved, often by substitution of journeys. But it also finds a continuing need for journeys and physical meetings due to issues of trust, design intensity, physical inspection and exchange, and interaction complexity. As a result, there are few signs of the de-localisation or disintermediation predicted by some commentators. An economising effect of mobile phones on supply chain processes may therefore co-exist with the entrenchment of supply chain structures and a growing 'competitive divide' between those with and without access to telephony

    Understanding Mobility and Transport Modal Disparities Using Emerging Data Sources: Modelling Potentials and Limitations

    Get PDF
    Transportation presents a major challenge to curb climate change due in part to its ever-increasing travel demand. Better informed policy-making requires up-to-date empirical mobility data to model viable mitigation options for reducing emissions from the transport sector. On the one hand, the prevalence of digital technologies enables a large-scale collection of human mobility traces, providing big potentials for improving the understanding of mobility patterns and transport modal disparities. On the other hand, the advancement in data science has allowed us to continue pushing the boundary of the potentials and limitations, for new uses of big data in transport.This thesis uses emerging data sources, including Twitter data, traffic data, OpenStreetMap (OSM), and trip data from new transport modes, to enhance the understanding of mobility and transport modal disparities, e.g., how car and public transit support mobility differently. Specifically, this thesis aims to answer two research questions: (1) What are the potentials and limitations of using these emerging data sources for modelling mobility? (2) How can these new data sources be properly modelled for characterising transport modal disparities? Papers I-III model mobility mainly using geotagged social media data, and reveal the potentials and limitations of this data source by validating against established sources (Q1). Papers IV-V combine multiple data sources to characterise transport modal disparities (Q2) which further demonstrate the modelling potentials of the emerging data sources (Q1).Despite a biased population representation and low and irregular sampling of the actual mobility, the geolocations of Twitter data can be used in models to produce good agreements with the other data sources on the fundamental characteristics of individual and population mobility. However, its feasibility for estimating travel demand depends on spatial scale, sparsity, sampling method, and sample size. To extend the use of social media data, this thesis develops two novel approaches to address the sparsity issue: (1) An individual-based mobility model that fills the gaps in the sparse mobility traces for synthetic travel demand; (2) A population-based model that uses Twitter geolocations as attractions instead of trips for estimating the flows of people between regions. This thesis also presents two reproducible data fusion frameworks for characterising transport modal disparities. They demonstrate the power of combining different data sources to gain new insights into the spatiotemporal patterns of travel time disparities between car and public transit, and the competition between ride-sourcing and public transport

    Natural Experiments in Environmental and Transport Economics

    Get PDF
    This thesis provides a collection of five natural experiments in environmental and transport economics. Chapter 1 introduces the topics and offers the methodological context. Chapter 2 tests the hypothesis that particulate matter has a direct effect on human decision-making. It uses chess games as a natural experiment and demonstrates that air pollution causes individuals to take less risk. Chapter 3 assesses whether ozone air pollution affects human physical activity. Findings show that ozone reduces cycling speed, even for concentrations below current air quality standards. Chapter 4 finds that public rental bicycles are a local net substitute for metro service and that these bicycles can alleviate time losses stemming from interruptions in public transport. Chapter 5 focuses on New York City and estimates the causal effect of protected bike lanes on traffic speed, flow, and road safety. Bike lanes seem to improve cyclists' safety both on streets and at junctions, while having no statistically significant effect on traffic speed and traffic flow. Chapter 6 investigates to what extent smartphones play a role in the number of road accidents. The results indicate that smartphone distraction can explain 10% of accidents and that phone-related accidents mainly happen on local urban roads

    An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques

    Full text link
    Origin-destination~(OD) flow modeling is an extensively researched subject across multiple disciplines, such as the investigation of travel demand in transportation and spatial interaction modeling in geography. However, researchers from different fields tend to employ their own unique research paradigms and lack interdisciplinary communication, preventing the cross-fertilization of knowledge and the development of novel solutions to challenges. This article presents a systematic interdisciplinary survey that comprehensively and holistically scrutinizes OD flows from utilizing fundamental theory to studying the mechanism of population mobility and solving practical problems with engineering techniques, such as computational models. Specifically, regional economics, urban geography, and sociophysics are adept at employing theoretical research methods to explore the underlying mechanisms of OD flows. They have developed three influential theoretical models: the gravity model, the intervening opportunities model, and the radiation model. These models specifically focus on examining the fundamental influences of distance, opportunities, and population on OD flows, respectively. In the meantime, fields such as transportation, urban planning, and computer science primarily focus on addressing four practical problems: OD prediction, OD construction, OD estimation, and OD forecasting. Advanced computational models, such as deep learning models, have gradually been introduced to address these problems more effectively. Finally, based on the existing research, this survey summarizes current challenges and outlines future directions for this topic. Through this survey, we aim to break down the barriers between disciplines in OD flow-related research, fostering interdisciplinary perspectives and modes of thinking.Comment: 49 pages, 6 figure

    Big Data for Urban Sustainability: Integrating Personal Mobility Dynamics in Environmental Assessments.

    Full text link
    To alleviate fossil fuel use, reduce air emissions, and mitigate climate change, “new mobility” systems start to emerge with technologies such as electric vehicles, multi-modal transportation enabled by information and communications technology, and car/ride sharing. Current literature on the environmental implications of these emerging systems is often limited by using aggregated travel pattern data to characterize personal mobility dynamics, neglecting the individual heterogeneity. Individual travel patterns affect several key factors that determine potential environmental impacts, including charging behaviors, connection needs between different transportation modes, and car/ride sharing potentials. Therefore, to better understand these systems and inform decision making, travel patterns at the individual level need to be considered. Using vehicle trajectory data of over 10,000 taxis in Beijing, this research demonstrates the benefits of integrating individual travel patterns into environmental assessments through three case studies (vehicle electrification, charging station siting, and ride sharing) focusing on two emerging systems: electric vehicles and ride sharing. Results from the vehicle electrification study indicate that individual travel patterns can impact the environmental performance of fleet electrification. When battery cost exceeds 200/kWh,vehicleswithgreaterbatteryrangecannotcontinuouslyimprovetravelelectrificationandcanreduceelectrificationrate.Atthecurrentbatterycostof200/kWh, vehicles with greater battery range cannot continuously improve travel electrification and can reduce electrification rate. At the current battery cost of 400/kWh, targeting subsidies to vehicles with battery range around 90 miles can achieve higher electrification rate. The public charging station siting case demonstrates that individual travel patterns can better estimate charging demand and guide charging infrastructure development. Charging stations sited according to individual travel patterns can increase electrification rate by 59% to 88% compared to existing sites. Lastly, the ride sharing case shows that trip details extracted from vehicle trajectory data enable dynamic ride sharing modeling. Shared taxi rides in Beijing can reduce total travel distance and air emissions by 33% with 10-minute travel time deviation tolerance. Only minimal tolerance to travel time change (4 minutes) is needed from the riders to enable significant ride sharing (sharing 60% of the trips and saving 20% of travel distance). In summary, vehicle trajectory data can be integrated into environmental assessments to capture individual travel patterns and improve our understanding of the emerging transportation systems.PhDNatural Resources and Environment and Environmental EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113510/1/caih_1.pd
    corecore