
VU Research Portal

Natural Experiments in Environmental and Transport Economics

Klingen, Joris Johannes

2021

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Klingen, J. J. (2021). Natural Experiments in Environmental and Transport Economics.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 23. May. 2021

https://research.vu.nl/en/publications/078c2307-10d8-4fdf-af36-7218707d5463


Joris Klingen

Vrije Universiteit Amsterdam

N
atural Experim

ents in Environm
ental and Transport Econom

ics                  Joris Klingen

778

Natural Experiments in
Environmental and Transport
Economics

This thesis provides a collection of five natural experiments in environmental 
and transport economics. Chapter 1 introduces the topics and offers the 
methodological context. Chapter 2 tests the hypothesis that particulate 
matter has a direct effect on human decision-making. It uses chess games as 
a natural experiment and demonstrates that air pollution causes individuals 
to take less risk. Chapter 3 assesses whether ozone air pollution affects 
human physical activity. Findings show that ozone reduces cycling speed, 
even for concentrations below current air quality standards. Chapter 4 finds 
that public rental bicycles are a local net substitute for metro service and 
that these bicycles can alleviate time losses stemming from interruptions 
in public transport. Chapter 5 focuses on New York City and estimates the 
causal effect of protected bike lanes on traffic speed, flow, and road safety. 
Bike lanes seem to improve cyclists’ safety both on streets and at junctions, 
while having no statistically significant effect on traffic speed and traffic 
flow. Chapter 6 investigates to what extent smartphones play a role in the 
number of road accidents. The results indicate that smartphone distraction 
can explain 10% of accidents and that phone-related accidents mainly happen 
on local urban roads.
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1
Introduction

Sometimes, a determined researcher wants to test a hypothesis for which no accepted
theory exists. This was the case in 1848 in London when physician John Snow hy-
pothesised that cholera was transmitted through contaminated water. Despite his
conviction and the urgency to reduce cholera cases, John Snow could not test his
hypothesis for several years. First of all, his conjecture was not supported by any
major theory. At the time, the dominant thought was that diseases transmit through
inhaling bad air. Also, running an actual experiment was considered unethical. It
would require him to define a control group with participants drinking freshwater,
and, more problematically, a treated group that would have to drink contaminated
water.

After six years, in 1854, John Snow found a way to test his hypothesis, using the local
cholera outbreak in the neighbourhood of Soho. He realised that this outbreak was a
large scale natural experiment and he wrote:

No fewer than three hundred thousand people of both sexes, of every age
and occupation, and of every rank and station, from gentlefolks down to
the very poor, were divided into groups without their choice, and in most
cases, without their knowledge; one group being supplied with water con-
taining the sewage of London, and amongst it, whatever might have come
from the cholera patients; the other group having water quite free from
such impurity (Snow, 1855, p. 75).

The cholera outbreak in Soho allowed John Snow to compare the naturally emerged
treated and control groups. Thereby, he could show that it was indeed contaminated
water that transmitted the disease. This finding was not only a breakthrough in the
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Chapter 1. Introduction

science of epidemiology, but it is also seen as the birth of natural experiments as a sci-
entific method to identify causal effects from observational data (Freedman, 1999).

Researchers now widely use natural experiments for causal inference. The increasing
availability of data, advances in statistical knowledge, and ever-increasing computer
power, make analysing natural experiments an effective tool in case a classic exper-
iment is unethical or simply too expensive. In addition, because the size of a labo-
ratory does not bound the scale of natural experiments, they also allow researchers
to study more subtle effects, that require large statistical power, i.e. many observa-
tions.

This thesis is a collection of studies in the spirit of John Snow. Not because their re-
search questions are as urgent as understanding cholera transmission, but because
they too rely on natural experiments with large groups of ‘participants’. The exper-
iments analysed in this thesis are natural because the researcher did not induce the
identifying variation, nor assigned participants randomly over the treatments. In-
stead, the variations come from: weather conditions (chapters 2, 3), technical fail-
ures (chapter 4), or a change in policies (5 and 6). These settings are then applied to
understand the immediate effects of air pollution, road safety, road congestion, and
substitution between metro and public rental bicycles.

Chapter 2 tests the hypothesis that particulate matter has a direct effect on human de-
cision making. Medical research suggests that particulate matter (PM) increases stress
hormones, therefore increasing the feeling of stress, which has been hypothesised to
induce individuals to take less risk. As a natural experiment, this study focuses on
whether PM increases the probability of drawing in chess games using information
from the Dutch club competition. The ideal experimental setup to estimate the causal
effect of pollution on the probability to make a draw is to examine the outcome of
games of players that are randomly assigned to play against each other at different
locations with different levels of pollution. The Dutch chess competition comes close
to that setup, because teams belonging to the same league play at different locations
on the same day, and all teams play each other during a season. The results provide
evidence of a reasonably strong effect: A 10µg increase in PM10 (33.6% of mean con-
centration) leads to a 5.8% increase in draws. This chapter, therefore, demonstrates
that air pollution causes individuals to take less risk.

Chapter 3 estimates how air pollution in general, and ambient ozone in particular,
affects human physical activity through impaired lung functioning. The study pro-
vides novel evidence of the immediate impact of air pollution on time delays in urban
outdoor activities. This effect is estimated on cycling speeds in London using several
estimation strategies. The results show that ozone reduces speed for concentrations
above 20 ppb, which is far below the minimum threshold suggested by other stud-
ies. A 10 ppb increase in ozone concentration leads to a 0.3-0.4% reduction in cycling
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speed, despite that most cycling trips are short so that exposure to ozone tends to be
short. It seems plausible that ozone induces time losses of similar magnitude of other
outdoor activities, such as walking.

Chapter 4 studies how public transport and cycling are related in a dense urban net-
work. Specifically, it focuses on how demand for public rental bicycles is affected by
local and temporary metro interruptions in Paris. A unique dataset is constructed
by linking metro interruptions announced on Twitter by the Parisian metro operator
to usage data on the Vélib’ public rental bicycles. The results show that, as a direct
consequence of a metro interruption, the consumption of bicycles within 100 metres
of metro stations increases by 0.72 bicycles per hour per docking station on average,
and with 1.54 bicycles per hour per docking station during the first 20 minutes; an
increase of approximately 11% and 22% respectively. Due to their effects on demand,
metro interruptions increase the probability of empty stocks at docking stations with
15%. The findings highlight that cycling is a local net substitute for metro service,
and that public rental bicycles can alleviate time losses stemming from interruptions
in public transport.

Chapter 5 focuses on Manhattan in New York City and estimates the causal effect of
bike lanes on congestion and road safety. Because a street-level analysis is prone to
biases due to treatment-induced rerouting, aggregated observations of streets in the
same direction within narrowly defined areas on Manhattan are used. Thereby, Man-
hattan’s elongated shape and grid-structured street network are exploited to assure
causality, but also to obtain policy-relevant area-level estimates. Bike lanes are found
to improve safety for cyclists both on streets and at junctions. Once an area can be
completely traversed on a protected bike lane, accidents with cyclists involved are
estimated to be reduced by 34%. The results further indicate that bike lanes have no
statistically significant effect on overall road safety at junctions, but reduce accidents
away from junctions by 59% for all modes in the whole area. Using taxi trips as an
accurate proxy for traffic indicators, bike lanes appear to have no statistically signifi-
cant effect on traffic speed of traffic flow at the area-direction level. However, traffic
speed on streets with bike lanes is 1.3% lower compared to streets in the same direc-
tion in the same area. At the same time, the results indicate that streets with a bike
lane accommodate a 2.3% higher throughput.

Chapter 6 investigates to what extent smartphones play a role in the number of road
accidents. The study exploits variation in phone usage fees in the Netherlands fol-
lowing the European Union (EU) roaming regulations in 2017, which abolished all
roaming surcharges for EU residents. This change is used to estimate a difference-
in-differences model where non-Dutch drivers from the EU are treated, while Dutch
drivers serve as a control group. Phone use patterns show that the growth rate of mo-
bile calls, texts, and particularly data usage increased substantially after the change
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Chapter 1. Introduction

in roaming regulations, making roaming phone use more in line with usage in home
countries. While actual phone use of drivers is not directly observed, the overall
phone use is likely to (partly) carry over to phone use while driving. The results then
suggest that 10% of road accidents can be explained by smartphone distraction. Un-
der plausible assumptions, the preferred estimate implies a crash risk odds ratio of
around 3.8, which indicates that that within-vehicle smartphone use makes an acci-
dent almost four times more likely to occur. The findings further indicate that phone
distraction increases accidents of all severity levels by a similar magnitude, and that
phone-related accidents mainly happen on local urban roads.

Chapter 7 concludes the thesis with a summary of the studies and a brief discussion
on why natural experiments are particularly useful in answering the research ques-
tions in this thesis.
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2
Risk-taking and air pollution:

Evidence from chess

2.1 Introduction

Particulate matter (PM) is found to increase stress hormones and blood pressure,
therefore increasing the feeling of stress, which has been hypothesised to induce in-
dividuals to take less risk (Duflo and Banerjee, 2011). To examine this, we study the
effect of PM on risk outcomes of the game of chess, i.e. the probability to draw.

The literature mainly focuses on long-term health effects of PM and other air pollu-
tion (see e.g. Chappie and Lave, 1982 and Beach and Hanlon, 2018). In contrast, we
focus on the immediate effect of air pollution, for which there is growing attention
(Graff Zivin and Neidell, 2018). We now know that pollution also has an immediate
detrimental effect on physical health and therefore on economic and social activities

This chapter is based on Klingen and van Ommeren (2020a). The authors like to thank Koos Stolk of
the Royal Dutch Chess Federation for help with the data. Moreover, we would like to thank Hans
Koster, Erik Verhoef, Francis Ostermeijer, Devi Brands, Jesper de Groote, and seminar participants
at University of Birmingham and VU Amsterdam.
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Chapter 2. Risk-taking and air pollution

which depend on physical health (e.g. labour productivity, cycling to work).1

It is less well-known that the immediate effects of PM are more subtle and
widespread. PM affects cognitive ability, and therefore reasoned judgement and
decision-making (see e.g. Hamanaka and Mutlu, 2018). Medical studies show
that PM increases stress hormones (such as cortisol) as well as blood pressure (Li
et al., 2017; Barbosa et al., 2012). In other contexts, PM negatively affects important
activities which require cognitive performance, including educational achievement
(Ebenstein et al., 2016), high skill work (Kahn and Li, 2019) and investment decisions
(Huang et al., 2017). Traders on Wall Street have lower returns on days with higher
PM concentrations (Heyes et al., 2016), while baseball referees underperform given
higher levels of PM (Archsmith et al., 2018). Finally, Künn et al. (2019) find that
chess players make more meaningful errors due to PM, especially when under time
pressure.

Several recent studies show individuals’ decision-making effects of PM that point
at the possibility that PM reduces risk-taking (Lu, 2019). For example, Heyes et al.
(2016) argue that one possible interpretation of their findings for lower returns for
Wall Street traders is that PM induces these traders to take less risk.2 This is in line
with papers on PM and crime that suggest that anxiety increases with PM. (Herrn-
stadt et al., 2016; Burkhardt et al., 2019). There is also evidence that daily higher PM
levels increase the probability of buying health insurance (Chang et al., 2018), and
reduce the sales of lottery tickets (Bondy et al., 2019).3

These studies estimate PM effects that are likely the result of several behavioural fac-
tors (notably skills, discounting, and risk-taking). It is still unclear which behavioural
mechanisms underlie previous findings. More specifically, we do not know whether
PM directly affects risk attitude. In contrast to existing studies, we study the effect
of PM on an indicator of risk-taking, using the game of chess. Thereby, we can pro-
vide field evidence on the often stated hypothesis that PM air pollution induces in-
dividuals to take less risk, and thereby reduces the expected pay-offs of the strongest

1Zivin and Neidell (2012) show that agricultural workers are less productive on days with high ozone
levels. Lichter et al. (2017) identify a small effect of PM on some productivity indicators of profes-
sional players in football. Chang et al. (2016), Chang et al. (2019a) study productivity of pear pack-
ers and call centre employees and find adverse effects of PM pollution on productivity. Klingen
and van Ommeren (2020b) show that ozone reduces cycling speed.

2An alternative explanation is that these traders lose or adapt their discount rate. Furthermore, Chew
et al. (2019) also suggest that PM makes individuals more risk averse. PM increases car accidents
(Sager, 2019) as well as crime (Bondy et al., 2019), but these studies show that these results are
unlikely due to higher levels of risk-taking.

3The benefits of health insurance and lottery gains are in the future, so an alternative explanation
is that PM affects the discount rate. Projections bias may also play a role. Projection bias is the
tendency for individuals to exaggerate the degree to which their future tastes will resemble current
tastes, which is likely affected by pollution.
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player.

Risk-taking is essential to the game of chess. The main advantage of focusing on chess
is that it offers a direct measure of risk: the variance of game outcomes reflects risk-
taking, as many games end in a draw. Furthermore, the time horizon of a chess game
is short (a few hours), so estimates are not affected by the effects of PM on discount
rates or projection bias (Heyes et al., 2016; Bondy et al., 2019). Consequently, the
effect of PM on risk-taking can be examined by analysing its effect on the probability
of making a draw.4

The ideal experimental setup to estimate the causal effect of pollution on the probabil-
ity to make a draw is to examine the outcome of games of players that are randomly
assigned to play against each other at different locations with different levels of pollu-
tion. We come close to that set up by analysing games played in the Dutch team club
competitions, where teams belonging to the same league play at different locations
and all teams play each other (as is common in most national team sports competi-
tions).5 Ideally, one would also analyse the exact chess moves for each game. We only
observe moves for a subsample from the highest league. However, due to the subtlety
of the effect, the full sample is required to obtain sufficient statistical power.

All games take place at the same time (on Saturdays at 1 pm), and are scheduled
in advance, so that our results are not driven by any extensive margin decisions, as
would for example be the case for online chess games. Because pollution levels do not
vary randomly over time and space, we control for time-specific as well as location-
specific unobserved factors using a fixed-effects strategy.6

In our estimation approach, we pay special attention to measurement error in PM due
to the distance between the pollution monitor and the chess location. Measurement
error in pollution levels usually causes attenuation bias. One way to deal with this
is to use instrumental variables, which is the preferred strategy in the literature. In
particular, it is common to use temperature inversion as an instrument (Jans et al.,
2018). Although this strategy is attractive, there are also disadvantages with its use.7
We follow a different route. We focus on chess locations close to PM monitoring

4We will discuss alternative explanations for finding an increased number of draws due to PM, such
as the length of a game or reduced cognitive performance.

5For that reason, we concentrate on the Dutch national competition, but ignore information from
other countries (e.g. Germany, UK), where players tend to play at the same location, hence there is
little or no spatial variation in those contexts.

6The probability of a draw depends on the strength of the players. Therefore, we can improve the
efficiency of our estimates by controlling for Elo rating, which very accurately measures player
strength at the time of playing (Regan and Haworth, 2011).

7It is plausible that the instrument affects a range of pollutions, and not only PM, so it is difficult
to interpret the IV estimate as a causal estimate of PM. In addition, confidence intervals of the IV
estimates are much larger (and tend not to differ from OLS estimates using Hausman tests).
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Chapter 2. Risk-taking and air pollution

stations. Furthermore, we will show how the PM effects decrease with distance to the
pollution monitor.

There may be alternative explanations of our finding of increased draws due to PM.
Most notably, one may think that because PM negatively affects the cognitive perfor-
mance of chess players, this would increase the probability of making a draw. We
show that this alternative hypothesis does not hold by demonstrating that weaker
players make fewer draws, which implies that reduced cognitive performance can
only induce a negligible downward bias. Furthermore, as shown by Künn et al.
(2019), PM seems to only increase meaningful errors (i.e. blunders), which make
draws even less likely. Another possible explanation is increased fatigue due to PM,
which may induce players to offer or accept draws earlier in the game. We cannot
completely rule out this explanation, but we note that players can also end games
earlier by resignation, which is very common in chess. Therefore, a preference for
shorter games does not per se imply more draws, as it is plausible that both resigna-
tions and draw-offerings increase. Overall, our preferred interpretation for finding
more draws is, therefore, a reduction in risk-taking.

In conclusion, we will provide evidence that PM10 reduces risk-taking.8 A 10µg in-
crease in PM10 (33.6% of mean concentration) leads to a 5.8% increase in draws. We
do not find any effect of PM when measured at the location of the visiting club, or
of effects of PM on previous days, which implies that the PM effect is immediate.
This finding supports and complements other studies that show the effect of pollu-
tion on decision taking, but which offer several explanations to explain their findings
or projection bias (Heyes et al., 2016; Bondy et al., 2019).

This paper proceeds as follows. Section 2.2 explains the methods employed. Section
2.3 describes the data and descriptive statistics. Section 2.4 presents results. Section
2.5 concludes.

8We use a daily measure of PM10 rather than a measure of PM2.5 observed during the game, which
may be a slightly better measure from a theoretical point of view. However, PM2.5 is roughly
1/30 of the diameter of a human hair, it may go through walls, and as result outside and inside
concentration levels are usually the same. We observe the latter only for a short period. This is
not problematic, as the attenuation bias of using PM10 rather than PM2.5 is small, as the correlation
between those two measures is 0.90.
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2.2 Empirical method

2.2.1 Identification

Chess is a zero-sum perfect information game between two players, with two possible
outcomes: either one of the players wins, or there is a draw. In chess, the players’
moves are strongly related to level of risk they take (these determinants are discussed
later on). For example, players choose between safe and risky openings, which affects
the probability of a draw. Players can also choose risky moves, i.e. moves that reduce
the probability of a draw.9

In the (financial and economics) literature on risk-taking, a common measure of risk-
taking outcomes is the standard deviation (e.g. the standard deviation of the return
of a portfolio), and therefore the outcome variance. The variance of chess outcomes
is a one-to-one linear negative function of the proportion of draws.10 Let Dict be a
dummy indicator of whether a game i in location c on day t ends in a draw. The level
of PM in location c on day t is denoted by PMct. We aim to estimate the causal effect
of PMct on Dict. Because draws are common (32% in our sample) we use a linear
probability model. 11

The first main econometric issue when aiming to estimate a causal effect of PM on
the probability of a draw, is that PM does not randomly vary over time, but there are
strong time trends in levels of PM (as air pollution tends to decrease over this time).
Furthermore, PM is not randomly allocated across space but is concentrated in certain
cities. It is also possible that certain cities attract players with different propensities
of making a draw.

The ideal way to address these issues is to compare outcome of games of players
that are randomly allocated to other players at different locations for different time
periods. By using the universe of chess games of a national competition for longer pe-
riods, combined with a day and location fixed effect regression design, we approach
this ideal setup. In the national competition, players play half of all games at their
home location and the other half at another location. Hence, in essence, we use vari-
ation in PM at different locations within the same day. For reasons of efficiency, we
include two game-specific control variables: the difference in ELO rating between the

9Players are often categorised as those with a high risk attitude (e.g., the 1985-2000 world champion
Kasparov) or with a less risky attitude (e.g., the 1963-1969 world champion Petrosian).

10The outcome variance is equal to (1 - proportion of draws)/4.
11The estimates results hardly change when estimating using similar specifications with a logit model.
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Chapter 2. Risk-taking and air pollution

players, as well as the average rating of the players.12 We will control for weather
conditions that potentially confound the effect of PM, as studies such as Wang (2017)
and Heyes and Saberian (2019) show that temperature has an effect on decision mak-
ing.

Consequently, we will estimate the following fixed-effects regression:

Dict = ↵c + ↵t + � · PMct + � ·Xict + � · zct + "ict, (2.1)

where ↵c and ↵t denote location and day fixed effects. Here, Xict denotes control vari-
ables that capture players’ strength and zct denotes (time-varying) location-specific
control variables, such as weather conditions.

We have not yet been specific about the type of location fixed effects used. To elab-
orate on this, we use three types of location fixed effects. We use one fixed effect for
the club of the home player, one fixed effect for the club of the visitor player, and one
fixed effect for the PM monitor. In the analysis, we will cluster the standard errors at
the level of the PM monitor as well as day t.

One of the strengths of the design is that we will see that inclusion of the location
fixed effects as well as the weather control variables does not affect the results, which
makes it more plausible that the variation in PM is exogenous.13 This also makes
sense, as the Netherlands is a geographically small country, hence the distance be-
tween these locations is small (the average distance is only 70km, where we weigh
by number of games per location).14 Hence, by including day fixed effects, we al-
ready almost perfectly control for differences in weather conditions (e.g. differences in
temperature and sunshine are negligible).

The second econometric issue is that PM reduces the ability of players to play well,
resulting in more mistakes (Ebenstein et al., 2016; Künn et al., 2019). This does not
imply that this will induce more draws. An important feature of chess, for which
we will provide ample evidence, is that the probability of making a draw is a non-
decreasing function of players’ ability level. Even better, we show that the probability
to make a draw does not depend on the level of the player, except for very strong

12It is straightforward to show that this specification implies that we control for the rating of the
strongest player and the rating of the weakest player, where we allow the effects of these variables
to differ.

13Because our results also hold without location fixed effects, our estimates hold with one-way
fixed effect models, we do not have the issue that two-way fixed effects models have difficulties
addressing heterogeneity of estimates, resulting in inconsistent estimates (de Chaisemartin and
d’Haultfoeuille, 2020).

14For example, the distance between Amsterdam and Rotterdam, the two largest cities of the Nether-
lands, is only 65 km, whereas a number of cities, such as the Hague, Delft and Leiden, are located
in between.

10



players (who are rare in our dataset) who make more draws.15 Hence, the effect of
PM on the probability of draws through its effect on ability is negligible. Furthermore,
we will demonstrate that even if we assume that PM has (unreasonably) large effects
on the ability of both players (i.e. an unreasonable large drop in their Elo ratings),
then this assumption cannot explain our findings.

The third econometric issue is measurement error, as the spatial density of PM moni-
tor stations is usually rather low, which causes attenuation bias. To avoid this, we use
to our advantage that in the Netherlands many chess clubs, and in particular large
clubs with many players, are located in larger cities which have several monitoring
stations. Subsequently, we will focus on chess games within a maximum distance
of 5 km of a monitoring station, so the average distance between the chess location
and the monitoring station is small and slightly more than 2 km. In our sensitivity
analysis, we will show that increasing the maximum distance indeed results in lower,
but still statistically significant, estimates, whereas reducing the maximum distance
results in somewhat higher point estimates but larger confidence intervals.16

The fourth econometric issue is whether the effect of PM is dynamic. The medical
literature does not answer the question whether the effect of PM is immediate or also
with a delay.17 The latter is theoretically possible, because PM remains in the blood
circulation. For that reason, we will also measure PM on the day before the match,
as well as at the location of the visiting club. The idea of the latter PM measure is
that chess players typically live close to their club, and hence visitor players might be
treated in the night or morning before travelling to the game. As a placebo check, we
will additionally examine the effects of PM measured on the day after the game.

2.3 Data

We observe the universe of outcomes of (classical) chess games for the Dutch national
team competition from 2002 until 2018, played at locations as shown on the map
in Figure 2.1.18 Each year, there are about 15 different leagues, in which between

15This makes sense. Stronger players are better able to calculate the consequences of their moves, and
therefore have more control over the game outcome.

16It is not an issue that we do not measure PM inside buildings, as environmental policies use infor-
mation from outside monitoring stations, so the preferred measures, from a policy point of view, is
the measure used by us.

17Our main source of effect of PM in this literature is Li et al. (2017). In this study, participants are
treated with PM for a number of days, but dynamic treatment effects are not investigated.

18The Dutch league follows the rules of the World Chess Federation FIDE: players receive 90 minutes
for the first 40 moves, and an additional 30 minutes for the rest of the game. For each move played,
the player receives an additional 30 seconds. A player who exceeds the time limit loses the game.
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Chapter 2. Risk-taking and air pollution
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Figure 2.1: Locations of chess clubs, weather stations and PM monitoring stations.

Notes: Greyed out chess locations are excluded because of a too large distance to PM or weather mon-
itoring stations. Some of these locations are used for sensitivity analyses.

8 and 10 teams compete. For games played in the highest league, we also observe
the moves of the full game. Teams have 8 or 10 players and play either at home
or away (similar to, for example, soccer). Although chess players play for a team,
individual chess outcomes are relevant for players, as the outcome influences their
Elo-rating. A competition year contains 9 rounds, played on Saturday afternoons
(from September until May). Typically, there is one month between two consecutive
rounds. In a round, each player plays one game (a game takes about 4 hours).19

To reduce measurement error in PM measurements, we focus on games within 5km

19When chess clubs have several teams in the national competition, and the team plays at home, then
all games are played at the same location.
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Table 2.1: Descriptive statistics

Statistic N Mean St. Dev. Min Max
Draw 4,415 0.32 0.47 0.00 1.00
Mean rating game (100 points) 4,415 21.06 1.56 16.80 26.26
Abs. rating difference game (100 points) 4,415 1.11 0.94 0.01 8.08
Distance to PM monitor (km) 4,415 2.33 1.03 0.27 4.96
Distance to weather station (km) 4,415 10.86 6.95 0.65 36.77
Distance between home and visitors (km) 4,415 68.75 43.06 20.22 266.54
PM10 (10 µg/m3) 4,415 2.91 1.41 0.57 13.77
Temperature (Celsius) 3,897 7.71 4.72 �7.80 20.10
Radiation (Watt/m2) 3,897 0.68 0.54 0.02 2.32
Air Pressure (1000 hPa) 3,887 1.02 0.01 0.98 1.04

of a PM station (we come back to this in the sensitivity analysis). Furthermore, we
exclude a limited number of games further than 50km of a weather station. We also
make another selection, which is not essential, but improves interpretation. To reduce
correlation between PM observations measured at the home club and the visitors
club, we concentrate on games with a minimum distance between home location and
visitors location of 20km. We also require the presence of a PM station within 20km
of the visitor club’s location. Given these restrictions, the average distance to the PM
monitor is slightly above 2 km, hence the distance to the nearest weather station is
small and about 11 km.20 The share of draws is 0.32. The average PM level is about 30
µg/m3. Given these restrictions, we have almost 20k games played by 3,326 players
at 81 different locations (see Table 2.1). We do not always observe weather conditions.
When we focus on games for which we observe weather conditions, we observe more
than 17,000 games for more than 1,000 clusters, defined as unique PM location-day
observations.

For each player, we observe the so called Elo rating at the time of playing, which is an
accurate numerical representation of a player’s strength (Regan and Haworth, 2011).
The average rating is about 2100, with a standard deviation of 157. Almost all players
have a rating between 1800 and 2400. In Figure 2.A.1a in the Appendix, we provide
the rating distribution. Taking risks may be perceived differently by two players who
play a game depending on the difference in strength. Figure 2.A.3 shows a histogram
of the (absolute) difference in rating as well as the probability that the player with the
highest rating will win, draw, or lose. The difference in ratings is usually less than
300 points (less than two standard deviations), and up to that level, the weaker player

20The correlation between PM measurement stations for a sample with the same average distance as
our main sample, is about 0.77, suggesting that attenuation bias will be about 40%. Here we use
the formula 1 � ⇢

2 = 1 � 0.772 = 0.40, derived from Cameron and Trivedi (2005), where ⇢ is the
correlation between PM at the measured location and PM at the chess location.
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Chapter 2. Risk-taking and air pollution

still has a reasonably high chance of winning the game.

We use daily PM10 measured at 63 locations provided by Netherlands National Insti-
tute for Public Health and the Environment (2019), see Figure 2.1. In addition we use
daily weather observations from Royal Netherlands Meteorological Institute (2019),
which include temperature, solar radiation, rain and atmospheric pressure.

2.4 Results

2.4.1 Main results

We show in Table 2.2 the estimated effects of PM on draws for a range of specifications
based on equation (2.1). In specification (1), we show the effect when we control for
day fixed effects, the average rating (per game) and the difference between the rating
of the players. We find a positive effect of PM. The point estimate is equal to 0.015
(with a standard error of 0.005), which implies that one standard deviation increase
in PM increases the probability of a draw with 2.4 percentage points. Furthermore,
we find a weak (but positive) effect of the mean rating (later on we will see that this
effect is entirely due to the games with higher ratings), whereas we find a rather
strong effect of the difference in rating.

One criticism of this specification is that it does not control for unobserved character-
istics. We deal with this in specification (2), where we include PM locations and club
fixed effects. The results become somehow more pronounced.21 We have additionally
estimated models with player fixed effects. This does not change the estimates (as we
control for club fixed effects, and for rating.) Another criticism is that it may provide
an underestimate of the overall effect of PM, because visitors are treated for a shorter
period (i.e. only during the game) than home players, who are treated before they
arrive, because they tend to live locally. In line with that, we find a slightly stronger
effect when we control for PM at the visitor’s location, see specification (3).22

In specification (4), which is our preferred specification, we also control for weather
conditions. As the Netherlands is small, it appears that these additional control vari-
ables do not have any effect on the estimated effect of PM. In the last two specifica-
tions, we further investigate the effect of PM on the previous day, as well as on the
next day. In specification (5), we find a small positive effect of lagged PM (about half),

21We have also estimated models with different restrictions on the distance between home and visitors
team locations. The results are not sensitive to that.

22Consistent with this reasoning, the point estimate of visitor’s PM is negative (but not statistically
significant).
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Table 2.2: Regression results.

Draw

(1) (2) (3) (4) (5) (6)
PM10 0.0151⇤⇤⇤ 0.0183⇤⇤⇤ 0.0186⇤⇤⇤ 0.0197⇤⇤⇤ 0.0193⇤⇤⇤

(0.0045) (0.0050) (0.0051) (0.0053) (0.0064)
PM10 (visitors) -0.0035 -0.0052 -0.0037

(0.0048) (0.0051) (0.0067)
PM10 lag 0.0121⇤ 0.0029

(0.0062) (0.0071)
PM10 lag (visitors) -0.0036 -0.0004

(0.0061) (0.0076)
PM10 lead -0.0020

(0.0075)
PM10 lead (visitors) -0.0031

(0.0074)
Mean rating (100 pts) 0.0088⇤⇤⇤ 0.0081⇤⇤⇤ 0.0081⇤⇤⇤ 0.0106⇤⇤⇤ 0.0107⇤⇤⇤ 0.0107⇤⇤⇤

(0.0022) (0.0027) (0.0027) (0.0030) (0.0030) (0.0030)
Abs. diff. rating (100 pts) -0.0488⇤⇤⇤ -0.0507⇤⇤⇤ -0.0507⇤⇤⇤ -0.0489⇤⇤⇤ -0.0488⇤⇤⇤ -0.0489⇤⇤⇤

(0.0031) (0.0033) (0.0033) (0.0036) (0.0036) (0.0036)
Loc. & club FE Yes Yes Yes Yes Yes
Weather dummies Yes Yes Yes
Time FE Day Day Day Day Day Day
Clusters 1137 1137 1137 1029 1028 1028
Observations 19,763 19,763 19,763 17,327 17,310 17,310
R2 0.0172 0.0378 0.0378 0.0432 0.0428 0.0432

Notes: PM10 variables are rescaled to 10µg/m3. Location fixed effects are at the level of a monitoring
station. Club fixed effects contain separate controls for playing at home or as visitor. Robust standard
errors in parentheses are clustered at the level of day⇥monitoring station. ⇤⇤⇤, ⇤⇤, ⇤ indicate signifi-
cance at 1%, 5%, and 10%.

but no effect for lagged visitors PM when we do not control for PM on the day itself.
In specification (6) we show that this lagged PM effect is spurious (and entirely due
to positive autocorrelation of PM). Specification (6) includes two additional placebo
variables, PM and visitor PM on the next day, which are both highly statistically in-
significant.

One may argue that our results are driven by reduced cognitive ability and not by re-
duced risk-taking. This could be the case if PM reduces the playing strength of chess
players (which is very plausible) and the probability of a draw depends on players’
strength. To examine the latter, we first show in Figure 2.A.1b in the Appendix the
probability of a draw as a function of the players’ rating. It clearly shows that the
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Chapter 2. Risk-taking and air pollution

probability of a draw does not depend on the rating level, except for low (below 1800)
and high ratings (above 2350), which occur infrequent in our data (in less than 14% of
the data). This figure is slightly misleading as it ignores that the players’ probability
of a draw does not only depend on the player’s rating, but also on the opponent’s rat-
ing (and the opponents’ ratings are positively correlated). We therefore show Figure
2.A.2 in the Appendix, where we show the effect of the rating on the probability of
a draw, while controlling for the difference in rating between opponents. This figure
confirms the previous message and even shows that there is only an effect of rating
for players with a rating above 2350, which occur seldom in our data (less than 9 per-
cent). Hence, our estimates may be slight underestimates. Notice however, that the
effect of mean rating is very small, implying that even if the stronger player would
play much weaker, the underestimate is still negligible.

For policy, an important question is whether the marginal effect of PM is constant, as
implied by the linear specification.23 We investigate this in several ways. An analysis
using dummy indicators suggests a linear response. This is confirmed by an analysis
using polynomials, see Table 2.B.1 in Appendix B. These estimates imply that the
marginal effect is constant (i.e. the quadratic term is highly insignificant, whereas the
linear term remains statistically significant). Hence, we do not reject linearity.

In conclusion, we find robust evidence of the effect of PM for a range of specifications,
whereas placebo tests confirm that these results are unlikely by chance. Furthermore,
we have demonstrated that this effect captures a reduction in risk-taking and cannot
be explained by the alternative hypothesis that players make more draws because of
weaker play. If anything, our estimates are underestimates of the true effect.

2.4.2 Sensitivity analysis

2.4.2.1 Distance to the PM monitor

We perform several other analyses to examine the robustness of our results to mea-
surement error induced by the distance between the chess location and PM monitor.
In particular, we have examined how the results in Table (2.2) change when we depart
from 5km as maximum distance between chess location and PM monitor stations.
The 5km maximum distance implies an average distance of about 2.3km, see Figure
2.2. It shows that the PM point estimate becomes smaller if we increase the maximally
allowed distance, and therefore the average distance. Conversely, the coefficient in-
creases if we reduce the maximum distance, but the confidence interval also increases

23On theoretical grounds, one may expect a convex function, for example as PM has to surpass a
certain threshold, or a concave function, for example because a saturation level of PM kicks in.
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Figure 2.2: Sensitivity to distance between chess game and air quality monitoring station (er-
ror bars indicate 95% confidence intervals).

because of the reduction in observations. Hence, our preferred specification is a con-
servative estimate of the effect of PM on risk-taking.

2.4.2.2 Heterogeneity

One relevant sensitivity analysis is to distinguish between the effects of different rat-
ing levels. In Table 2.3, using our preferred specification, it is shown that the point
estimates are positive when we distinguish between three rating subgroups (see the
first three specifications), but we do not have enough power to distinguish between
the PM effect of these subgroups. These estimates also confirm that, except for the
subgroup of strongest players, there is no effect mean rating, and therefore of play-
ers’ strength, on the probability to make a draw. Consequently, one may argue that
the estimates based on samples excluding the strongest players subgroup are more
accurate if one is interested in the effect of PM on risk outcomes. If one accepts this
view, then the estimated effect in Table 2.2 is a slight underestimate of the effective
PM on risk-taking. We come to the same conclusion if we do not control for visitors
PM (see the last three specifications).

Another form of heterogeneity that may be interesting to examine, is whether the
effect of the PM varies between players, because PM exacerbates existing stress levels.
We cannot directly test this. However, it may be the case that stress levels are related
to the difference in ratings between players. Additional analysis indicates that the
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Chapter 2. Risk-taking and air pollution

Table 2.3: Regression results using ELO subsamples.

Draw

(1) (2) (3) (4) (5) (6)
PM10 0.0132 0.0266⇤⇤⇤ 0.0100 0.0132 0.0255⇤⇤⇤ 0.0101

(0.0115) (0.0081) (0.0096) (0.0115) (0.0081) (0.0097)
PM10 (visitors) 0.0006 -0.0149⇤ 0.0042

(0.0095) (0.0082) (0.0114)
Mean rating (100 pts) -0.0023 0.0049 0.0419⇤⇤⇤ -0.0023 0.0046 0.0419⇤⇤⇤

(0.0128) (0.0103) (0.0111) (0.0128) (0.0103) (0.0111)
Abs. diff. rating (100 pts) -0.0414⇤⇤⇤ -0.0460⇤⇤⇤ -0.0698⇤⇤⇤ -0.0415⇤⇤⇤ -0.0460⇤⇤⇤ -0.0697⇤⇤⇤

(0.0067) (0.0058) (0.0081) (0.0067) (0.0058) (0.0081)
Loc. & Club FE Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes
Weather dummies Yes Yes Yes Yes Yes Yes
ELO subsample <2000 2000-2200 >2200 <2000 2000-2200 >2200
Clusters 883 1009 760 883 1009 760
Observations 4,942 8,191 4,322 4,942 8,191 4,322
R2 0.1000 0.0680 0.1118 0.1000 0.0677 0.1117

Notes: PM10 rescaled to 10µg/m3. Location fixed effects are at the level of a monitoring station. Club
fixed effects contain separate controls for playing at home or as visitor. Robust standard errors are
clustered at the day⇥monitoring station. ⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.

marginal effects of PM does not depend on the Elo rating difference.24

2.4.2.3 Other dependent variables

In Table 2.4 we perform consistency checks by analysing the effect of PM on the prob-
ability that the stronger player wins and on the probability that the weaker player
wins using linear probability models.25 Given the reasonable assumption that play-
ers maximize expected outcome (and hence their rating) the stronger players win less
due to PM (because the stronger player reduces the outcome variance by taking less
risk, which comes at the cost of having fewer wins). Additionally, the weaker player
cannot win more due to PM (because a draw exceeds the expected outcome for this
player). This assumption also implies that the stronger player’s effect on the proba-

24We have also estimated logit models using the same specification. The average marginal effects are
almost identical to those in the linear model. Because the difference in Elo ratings between players
strongly reduces the probability of a draw, the relative effect of PM becomes stronger when the
absolute difference in Elo ratings increases.

25We have also estimated a multinomial logit models with three outcomes (stronger player wins, draw,
weaker player wins). Results are almost identical to the results in Table 2.4.
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Table 2.4: Regression results for game outcomes.

Draw Stronger wins Weaker wins Home wins Away wins

(1) (2) (3) (4) (5)
PM10 0.0183⇤⇤⇤ -0.0118⇤⇤⇤ -0.0062 -0.0172⇤⇤⇤ -0.0011

(0.0050) (0.0044) (0.0040) (0.0056) (0.0061)
Mean rating (100 points) 0.0081⇤⇤⇤ 0.0000 -0.0080⇤⇤⇤ -0.0111⇤⇤⇤ 0.0030

(0.0027) (0.0028) (0.0022) (0.0028) (0.0028)
Abs. diff. rating (100 points) -0.0507⇤⇤⇤ 0.1265⇤⇤⇤ -0.0732⇤⇤⇤ 0.0407⇤⇤⇤ 0.0100⇤⇤

(0.0033) (0.0036) (0.0026) (0.0044) (0.0041)
Loc. & Club FE Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes
Clusters 1137 1137 1137 1137 1137
Observations 19,763 19,763 19,763 19,763 19,763
R2 0.0378 0.0797 0.0551 0.0405 0.0327

Notes: ..⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.

bility of winning must be stronger than the weaker player’s effect on the probability
of winning in absolute value, i.e. increased number of draws should mainly come
at the cost of the strongest player’s wins (otherwise taking less risk as the stronger
player would be a dominant strategy i.e. less risk and more wins).26 Columns (2) and
(3) confirm these predictions and support our claim that PM induces less risk-taking.
It suggests that people are willing to trade off a lower expected pay-off with a safer
approach, in line with Duflo and Banerjee (2011). It thus appears that players take
less risk than what they would prefer without PM.

In columns (4) and (5) we test whether there is a difference of the PM effect for home
and visiting players. It appears that home players are affected more strongly by PM
pollution. This makes sense and suggests that PM exposure prior to the game (but on
the same day) has a detrimental effect in addition to the exposure during the game
itself.

Finally, for games played in the highest league (about 10 percent of our sample), we
know the moves. This offers alternative ways of doing a sensitivity analysis, because
if PM induces players to make more draws, then it must be true that they either play
less risky moves or they are more likely to agree to a draw (which nullifies the risk of
losing), which will result in shorter games (i.e. games with less moves), given higher

26Conversely, the weaker player should not win more often due to PM. It is however possible that
there is no effect on the number of wins of weaker player, as increased draws are favourable for the
weaker player.
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Chapter 2. Risk-taking and air pollution

levels of PM. We find evidence of both mechanisms.27 However, the results are not ro-
bust with respect to specification (e.g. controlling for weather) and sample selection,
which is not surprising given that we have a small subsample. Most importantly, for
all specifications, we either find no effect (due to large standard errors), or we find
statistically significant results that support that PM reduces risk-taking.

2.5 Conclusion

Air pollution has been shown to affect cognitive ability and is hypothesized to de-
crease an individual’s risk-taking. This hypothesis emerged from earlier literature
that finds detrimental effects of particulate matter on composite decision outcomes
(e.g. stock market returns in Heyes et al., 2016). Because it is unclear which mecha-
nism drives these results, in this paper, we focus specifically on risk-taking using the
game of chess as a natural experiment.

We estimate the effect of PM on the probability that chess players make a draw,
which directly reflects the variance of game outcomes, and is a clean indicator for
risk-taking. We use information from the Dutch national team league, where games
are played at the same time in different locations. This setting comes close to the ideal
experimental setup, as air pollution levels vary over time and space.

Our results show that PM induces chess players to make more draws. We find that
A 10µg increase in PM10 (33.6% of mean concentration) leads to a 5.8% increase in
draws. We do not find any effect of PM when measured at the location of the vis-
iting club, or of effects of PM on previous days, which implies that the PM effect is
immediate. Our results demonstrate that air pollution reduces risk-taking.

27We have classified risky play using several measures distinguishing between opening risk, where
risk is based on the opening’s share of draws, opposite castling, and white plays G4 in the opening.
We also demonstrate that these measures are valid measures of risk-taking as they are strongly
related to the probability of making a draw. Results can be received upon request.
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Appendix 2.A Additional descriptives
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Figure 2.A.1: Frequency of Elo rating and draw per rating.
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ference in rating.
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Appendix 2.B Additional results

Table 2.B.1: Regression results with higher order polynomial terms.

Draw

(1) (2) (3)
PM10 0.0183⇤⇤⇤ 0.0243⇤⇤ 0.0173

(0.0050) (0.0115) (0.0252)
(PM10)2 -0.0006 0.0009

(0.0009) (0.0045)
(PM10)3 -0.0001

(0.0002)
Mean rating (100 points) 0.0081⇤⇤⇤ 0.0081⇤⇤⇤ 0.0081⇤⇤⇤

(0.0027) (0.0027) (0.0027)
Abs. diff. rating (100 points) -0.0507⇤⇤⇤ -0.0507⇤⇤⇤ -0.0507⇤⇤⇤

(0.0033) (0.0033) (0.0033)
Loc. & team FE Yes Yes Yes
Weather dummies Yes Yes Yes
Day FE Yes Yes Yes
Clusters 1137 1137 1137
Observations 19,763 19,763 19,763
R2 0.0378 0.0378 0.0378

Notes: PM10 variables are rescaled to 10µg/m3. Location fixed effects are at the level of a monitoring
station. Club fixed effects contain separate controls for playing at home or as visitor. Robust standard
errors in parentheses are clustered at the level of day⇥monitoring station. ⇤⇤⇤, ⇤⇤, ⇤ indicate signifi-
cance at 1%, 5%, and 10%.
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3
Urban air pollution and time losses

Evidence from cyclists in London

3.1 Introduction

Urban air pollution is of growing concern for policy makers in cities across the globe.
Nitrogen oxides, NOx, particulate matter, PM, and ambient ozone, O3, are pollu-
tants of primary focus. NOx are predominantly emitted by motorized traffic, whereas
ambient ozone forms more slowly after complex interactions between NOx, volatile
organic compounds, solar radiation and heat (Krupa and Manning, 1988; Sillman,
1999).

Ambient, or tropospheric, ozone (henceforth ozone) is present at ground level and is
linked to negative health outcomes (Goldberg et al., 2001; Fann et al., 2012).28 NOx are

This chapter is based on Klingen and van Ommeren (2020b) as published in Regional Science and Ur-
ban Economics. For this chapter I would like to thank Erik Verhoef, Paul Koster, Devi Brands, Yann
Delaprez, Gerben de Jong, Francis Ostermeijer, Jiska Klein, Hans Koster, Thomas de Graaff, Felipe
Carozzi, Matthew Neidell, Gabriel Ahlfeldt (editor), and two anonymous referees for their helpful
comments. I also thank seminar and conference participants in Amsterdam (Eureka, Cycling Re-
search Board), New York City (UEA), Düsseldorf (UEA), Paris (ITEA), and Nicola Franks from TfL
for providing the traffic counter data

28Ozone pollution as analysed in this paper should not be confused with stratospheric ozone—known
as the ozone layer—that is linked to positive health outcomes due to its capacity to absorb ultravi-
olet radiation.
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Chapter 3. Urban air pollution and time losses

precursors of ozone and therefore core contributors to poor health outcomes induced
by pollution from road traffic (Hamra et al., 2015; Rice et al., 2015).

Much of the literature focusses on long-term health consequences of ozone and other
air pollution (see e.g. Chappie and Lave, 1982 and Beach and Hanlon, 2018). In con-
trast, we focus on the immediate effect, for which there is growing attention in the
literature (Graff Zivin and Neidell, 2018). Recent controversy surrounding emission
tests of diesel vehicles and NOx inhalation studies further highlights that the imme-
diate effects of air pollution are at the centre of policy and scientific attention (i.e.
‘dieselgate’, see e.g. Anenberg et al., 2017 and Ewing, 2018).29 Medical research us-
ing laboratories shows that ozone affects the respiratory function of lungs, such that
exercise capacity is temporarily reduced (Cakmak et al., 2011; Adams et al., 1987), es-
pecially in a hot environment (Gong et al., 1986). It is therefore plausible that ozone
pollution impedes physical activity of individuals recently or currently exposed to
ozone.30

One immediate effect of ozone is on labour productivity. We are aware of two studies
that assess the effect of ozone pollution on productivity in the field (see the review of
Neidell, 2017). Zivin and Neidell (2012) show that agricultural workers in California
are less productive on days with high ozone levels. They estimate that a 10 ppb in-
crease in ozone leads to a 5% reduction in productivity for higher ozone levels (above
42 ppb). Lichter et al. (2017) do not find an effect of ozone, but identify a small effect
of PM pollution on some productivity indicators of players in the German football
league.31

We hypothesise that ozone pollution slows down all outside activities which require
a minimal physical effort, for example when walking or cycling is involved. The
effect of ozone would then apply to activities such as pedestrian shopping, which
is in many countries the dominant walking activity (Koster et al., 2019), but in some
cities also to commuting, as walking or cycling are an important part of the commute.
For example, in London about 20 percent of commuters exclusively walk or cycle to
and from work. For non-commuting trips, the share of walking and cycling is even

29One important question is the total burden of NOx pollution. Because NOx are precursors for ozone,
the immediate effect of ozone is of interest when estimating this burden.

30In addition, it is well known that for elderly, walking speed is a very strong predictor of survival
rates (Studenski et al., 2011), but also for younger persons, walking speed is an important indicator
of health (Martin et al., 1992). Therefore, in addition to time losses in themselves, the lower cycling
speeds that we find might also be indicative of general health losses caused by ozone.

31There are related studies that focus on PM pollution. Chang et al. (2019b; 2016) study productiv-
ity of pear packers and call centre employees and find adverse effects of PM pollution on their
productivity.
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higher (Transport for London, 2016, 2018c).32

Consequently, one expects that the ozone effects are much more generic then sug-
gested by studies focusing on labour productivity of outside workers, which applies
to a limited number of workers in modern economies. There are also other important
differences. In contrast to workers, individuals involved in most outdoor activities
(such as commuters who cycle to work) are not exposed to ozone for a full working
day, and exert physical effort for a much shorter amount of time. As ozone effects
seem to increase in exposure and exercise duration, it is plausible that the size of the
effect of ozone on travel time losses of most outside activities is (much) smaller than
for workers.

The current paper sheds further light on effects of air pollution, by inferring a causal
effect of ozone on cyclists’ speed in London for the years 2013-2017, while using
hourly measures of air quality and over 40 million trips made on public rental bi-
cycles.33 About 40% of these trips are made for commuting purposes.34 Our study
contributes to the existing air pollution literature in four ways.

First, we provide non-experimental field evidence of health effects of local air pollu-
tion. By focusing on time losses during cycling, we estimate the effect of air pollution
on the outcome of a common, non-specialized, and rather light, type of effort (with
plausible generalization to other physical activities). The question is here whether
the large effect sizes reported by productivity studies also hold for other physically
less-demanding activities.35

Second, to our best knowledge, this paper is the first to investigate the immediate
effect of ozone pollution in an explicitly urban context, where due to high levels of
air pollution and large concentrations of persons, negative externalities related to air
32These shares generally underestimate the total amount of walking and cycling in cities. For instance

for London, where distances between underground stations are large, many public transit com-
muters walk quite extensively, whereas in cities such as Amsterdam, many public transit users
cycle from their home to public transit stations.

33We use other pollutants, such as NOx and PM, as control variables, but we do not aim to estimate
the causal effect these pollutants, because we are not aware of medical research showing a direct
effect of other pollutants than ozone on physical effort of healthy individuals. Furthermore, it
remains unclear how one convincingly may estimate a causal effect of NOx or PM, due to possible
confounding effects from car traffic.

34This estimate is based on information in Transport for London (2018b,c) which indicate that 60% of
trips are made by members, of which 72% uses the rental bicycles for commuting.

35 The effect of ozone on cylists’ power output has been shown in the laboratory by Gong et al. (1986),
who find a 8% reduction in output power given exposure to 200 ppb. The external validity of that
result to other physical activities may be limited, because it focuses on 17 elite cyclists who exercise
intensively for more than an hour and who were exposed to ozone concentrations of 120 and 200
ppb, more than twice the maximum level observed in London. Remarkably, when we extrapolate
our results to 200 ppb, we also find a point estimate of around 8% reduction in cycling speed.
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Chapter 3. Urban air pollution and time losses

pollution are most urgent.

Third, in contrast to above-mentioned studies that identify effects using daily ob-
servations, our hourly data allow for a wider range of identification strategies. We
exploit within-day and between-day variation, as well as spatio-temporal variation
in ozone levels. Having hourly data not only allows for many robustness checks, it is
also informative about the impact of within-day pollution peaks. The latter is espe-
cially relevant for environmental regulation, which may concentrate either on daily
averages or on peak pollution.

Fourth, due to our large sample, we identify an effect of ozone at much lower levels
of ozone than suggested by previous studies. We are able to find a minimum ozone
threshold at concentrations as low as 20 ppb, far below EU air quality standards set
above 50 ppb (European Environmental Agency, 2019).36 These figures make it plau-
sible that previous studies severely underestimate the extent of the effect of ozone.

This paper relates to a rich urban economics literature that investigates the relation
between density and air pollution (Ahlfeldt and Pietrostefani, 2019). Theoretical
and empirical contributions highlight that inhabitants of compact cities usually face
higher local air pollution levels (Borck and Tabuchi, 2018; Carozzi and Roth, 2020;
Borck and Schrauth, 2019). Related recent work suggests that a shift towards public
transport can alleviate pollution levels in cities (Borck, 2019).

Our paper also fits within an urban transport economics literature, where the focus
is on speed, which is (optimally) chosen by travellers (Verhoef and Rouwendal, 2004;
Fosgerau, 2005; Van Ommeren and Dargay, 2006; Couture et al., 2018). In line with
that literature, we assume that cyclists choose speed by maximising their utility with
respect to travel time, conditional on travel distance.37

Utility is then defined by the (negative) of the sum of effort cost, c(t, z), a decreasing
and convex function of travel time, which in turn is an increasing and convex function
of ozone, and travel time costs, (w+ p)t, where w denotes the value of time, p denotes
the rental fee per unit of time, z denotes ozone, and t denotes the individual’s travel
time. The cyclists that we study thus have two incentives to increase their cycling

36Our threshold is also much lower than 100µg/m3 (⇡ 50 ppb) set as air quality guideline by World
Health Organization (2006). These guidelines do mention, however, that some health effects may
be visible for lower concentrations, which are not further specified. In here, we use an approximate
conversion rate of 1 ppb ⇡ 2µg/m3, which depends on temperature and pressure (Levy et al.,
2005).

37One might argue that ozone directly affects cycling decisions, for instance because of individuals’
health concerns related to exposure. However, we find no evidence that ozone affects the decision
to cycle, or trip distance. See Section 3.3 for further details. Therefore, it seems reasonable to
abstract from health concerns.
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speed: through the rental fee p and through their value of travel time w.38 These
incentives highlight that our context is comparable to studies based on work-related
observations, although the exact incentive schemes differ. It seems further reasonable
to assume that the marginal effort cost of travel time is an increasing function of
ozone, denoted by z, so dc/dz > 0, because of decreased lung capacity. It is then
straightforward to show that dt⇤/dz > 0, so optimally chosen travel time, t⇤, is an
increasing function of z. Consequently, it follows that speed falls in ozone.

This paper proceeds as follows. Section 3.2 describes the data and presents descrip-
tive statistics. Section 3.3 explains the methods employed. Section 3.4 discusses the
results and robustness checks. Section 3.5 concludes.

3.2 Data

We combine data on air quality, weather, traffic, and cycling trips from Inner London
for five years, from January 2013 to December 2017. The map in Figure 3.1 indicates
where the data is collected, and shows the locations of the air quality monitor sites,
bicycle docking stations, and automatic traffic counters (ATCs).

3.2.1 Cycling data

We use publicly available data from London’s rental bicycle system Santander Cycles,
provided by Transport for London (2019).39 The pricing scheme works as follows. In-
dividuals can choose between an annual subscription (which costs £90) or a daily
subscription (which costs £2), that both allow for unlimited bike hires under 30 min-
utes. For trips exceeding 30 minutes, users pay additionally £2 for each additional 30
minutes or less. There is no price differentiation over time or space, and users cannot
pause a trip other than by docking a bike in a station.

About 60% of trips are made by members, who get a special key to unlock bikes.
Most of these members are men (78%) and between 25 and 54 years old (84%). About

38We are not aware of any study estimating the value of time for cyclists in London, w, but a Swedish
study suggests it is about £10 per hour for cycling commuters (Börjesson and Eliasson, 2012). Pre-
sumably, the value of time is less for leisure trips. In London, the rental fee per unit of time is not
constant. For trips shorter than 30 minutes, the marginal fee is zero, as renters only pay an initial
fee (usually £2) regardless of the trip duration, provided it is under 30 minutes. 11.56% of trips
last longer than 30 minutes. For those trips, the marginal fee p is approximately £4 per hour. See
Section 3.2.1 for further details.

39This is the only public bicycle system in London that has docked bikes, and the only major bicycle
rental scheme active in London.
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●
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●

Figure 3.1: Location of bicycle docking stations and air quality monitor sites.

Notes: ⇥, •, and N represent bicycle docking stations, air quality monitoring stations, and automatic
traffic counters respectively. The circles surrounding the monitoring stations demarcate the five zones
with 2km radius used in the spatio-temporal analysis (see Section 3 in Appendix B). Map tile by Stamen
Design, under CC BY 3.0, base layer data by OpenStreetMap, under CC BY SA.

70% of members use the public bicycle scheme mainly for commuting, and about half
use a rental bicycle for more than three days a week (Transport for London, 2018b,c).
About two thirds of non-members, i.e. ‘casual users’, live in London, which high-
lights that only a minority of cyclists are tourists (maximally 15%). Roughly a quarter
of cyclists start their trip around a rail or metro station, which makes it plausible
that cycling is often part of larger trip that includes public transport (Transport for
London, 2018a).

We observe 73.23 million time-stamped origin-destination pairs, covering the uni-
verse of cycling trips made on rental bicycles from 2013 to 2017. Because the exact
routes are not observed, we infer a measure of speed for each trip by using the trip
duration and distance, calculated as the shortest path over the road network.40. Fig-
ure 3.A.2 in Appendix A shows the inferred routes, and highlights the central areas

40We calculate the shortest paths over the bicycle infrastructure using the algorithm developed by
Padgham (2019), that we use within our main analysis tool (R Core Team, 2019).
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Figure 3.2: Public rental bicycle descriptives.

have the highest flows.

Because cyclists might not take the shortest route, our indicator for speed is an un-
derestimate of the actual speed.41 The estimated effect on speed in levels is therefore
a conservative estimate (but the estimated effect on speed relative to mean speed is
still accurate).

We exclude individual trips with zero distance, i.e. cyclists who return their bicy-
cle to the same docking station (3.81% of observations).42 Further, we exclude trips
with a speed exceeding 30 km/h or less than 0.1 km/h (0.16% and 0.09% of obser-
vations). Our cycling data then contains 70.26 million observations (95.94% of initial
amount).

In total, we observe 21.42 million cycle hours and 191.83 million cycle kilometres. The
average trip distance is 2.73 kilometres, and the vast majority of trips is below 5 kilo-
metres, see Figure 3.2a. Trips take on average 18.29 minutes, during which travellers

41In addition, a trip may include stopping at traffic light, so we underestimate cruising speed. This is
non-problematic because most physical activities (e.g. outside physical labour) also include stops
and breaks.

42This includes round trips and hires of bicycles with a technical failure that are returned immediately.
17.48% of zero-distance observations have a duration of less than 10 minutes.
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have an average speed of 11.97 km/h.43 Figure 3.2b shows that the distribution of
speed is slightly skewed to the left and that observations with speeds above 25km/h
are rare (0.33%). Figure 3.2c shows that there are clear peaks of bicycle activity dur-
ing rush hours, while Figure 3.2d indicates that there are slightly more trips during
weekdays.

For a robustness check using a spatio-temporal estimation (see Appendix 3), we con-
struct five circular zones, each surrounding one of the air quality monitoring stations
in London (see the map in Figure 3.1). To avoid overlap between the zones, we set the
radius of the zones to two kilometres. We then assign a trip to a zone if both the origin
and destination are within that zone. This leaves us with a subsample containing 8.51
million observations, 12% of the initial sample.

3.2.1.1 Constructing a panel of cyclists

The cycling data does not provide us with an identifier for individuals. Here, we
show how we construct a panel of cyclists using regular patterns in departure times
for each origin-destination pair (henceforth route). Our starting point is that most
commuters make the same trip around the same time on different days of the week
(Noland and Small, 1995). Identifying individual cyclists is possible because most
routes in our data are very ‘thin’: for roughly 75% of all trips there is not even one
other cyclist who cycles the same route within the same hour. For longer distances,
this percentage is even higher (see Figure 3.A.3 in Appendix A). This makes it plau-
sible—but not certain—that trips observed around the same time on different days
within a time window, e.g. a month, are made by the same individual.

To identify individuals, we construct a panel of cyclists by first selecting trips for
which no other cyclist is observed who takes the same route within the same hour
(only in these cases it is possible to identify individuals). We then make several fur-
ther data selections based on the idea that, for a given route, trips on different days
with departures around the same time (i.e. within the same hour of the day), are more
likely to come from the same cyclist than from a random group of several cyclists. To
implement this idea, we apply the following data selection steps.

First, for each route we select sets of recurring trips in one month: trips that are made
on different days with departures within the same hour of the day. For instance, such
set may consist of three trips, made on three different days, with departures on 9:12,
9:14, and 9:16, in March 2017, from Kennington Station to Tower Gardens.
43This is well within the range of 11-14 km/h as observed by Jensen et al. (2010) for Lyon (using

odometers). This suggests that most cyclists take a route that is at most slightly longer than the
shortest path, which makes it plausible that observed speed is hardly an underestimate of the
actual speed.
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Figure 3.3: Distribution of standard deviations of departure time.

Second, for each of those sets we calculate the standard deviation of departure time.
We compare this standard deviation with one from (simulated) random draws from
the departure time distribution of all departures in the selected sample (see Figure
3.A.4 in Appendix A for the histogram of departure time).44 Figure 3.3 shows that the
distribution of observed standard deviations has much more mass to the left com-
pared to the one based on random departures.45 The average observed standard de-
viation is 11.9 minutes, rather than the 17 minutes standard deviation from random
departures. This indicates that a large part of our observations comes from the same
individuals’ recurrent trips. Observations with a relatively large standard deviation
(e.g. 20 minutes) are still likely to come from the same person—recall that we focus
on very thin routes—but less likely than those with a small standard deviation.

Third, we select sets with a small standard deviation. To be more precise, we select a
subsample of sets that have a standard deviation below a threshold, that is set in such
a way that maximally 5% of observations might be erroneously identified as part of
a single-person set.46 After this selection, the average standard deviation is only 4.6
minutes, much lower than the standard deviation of 17 minutes of a random group.

The resulting panel contains 2.58 million trips (3.7% of initial sample), made by 0.31

44This distribution resembles a uniform distribution and has a mean of 30 minutes and a standard
deviation of 17 minutes. Both moments of the empirical distribution are the same as the theoretical
moments of a uniform departure time distribution within a 60 minutes interval.

45For this figure, we have excluded sets with less than 4 trips per month, as these observations are
not part of the resulting panel, because there is hardly any power to distinguish between random
departures and those coming from the same cyclists for sets with less than 4 trips.

46The standard deviation depends on the number of trips in a set, so we calculate the cumulative
distribution function for both the observed and random standard deviations separately for each
number of trips. We then determine threshold values of standard deviations at which the ratio
between random and observed mass exceeds the cut-off of 5%. Sets with an observed standard
deviation above the threshold (i.e. cyclists with too much variability in their departure time) are
excluded.
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Figure 3.4: Descriptive statistics of cyclist panel.

million cyclists, who cycle at least four times, and on average more than eight times,
per month. The cyclists in the panel differ from the overall population of cyclists in
several respects. Figures 3.4a and 3.4b show that for this subsample, cycling speed
and trip distances tend to be higher than for the full population. Figures 3.4c and 3.4d
show that the large majority of trips takes place during peak hours on weekdays. We
observe more trips in the morning than in the afternoon in our panel, which is not
the case for the whole sample. The asymmetry stems from selection based on a small
standard deviation of departure time, which is more common in the morning. This
makes sense, as it is plausible that commuters have a relatively fixed schedule in the
morning, whereas the timing and destination of the return trip is more variable. For
instance, if commuters depart later due to overtime work, or go to a pub after work,
their trips are excluded from the panel. Overall, these figures are highly suggestive
of having a subsample that mainly consists of commuters, rather than recreational
cyclists.

3.2.2 Air quality and weather data

We use hourly environmental data that is publicly available through London Air
(2019). For each of the five monitoring sites we observe: ozone (O3), particulate mat-
ter (smaller than 2.5µm, PM2.5), and nitrogen oxides (the sum of NO and NO2, hence-
forth NOx). We calculate the city average using the same weight for each station. In
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Figure 3.5: Histograms of ozone concentrations.

addition, we have city-wide hourly measures of the following weather characteristics:
temperature, relative humidity, rainfall, wind speed, wind direction and atmospheric
pressure.47 We obtain solar radiation from two stations outside Inner London.48

Figure 3.5 shows that hourly and daily ozone concentrations rarely exceed 40 and 30
ppb respectively. These levels are much lower than in California during the summer
months (Zivin and Neidell, 2012), but only slightly lower than in Germany during
the football season (Lichter et al., 2017).49 Appendix A presents further descriptives
of the (spatial) variation of ozone.50

3.2.3 Traffic data

We observe hourly traffic flows for the full 2013–2017 period as collected by Transport
for London (TfL). These flows are measured at six different automatic traffic counters
(ATCs) and data is extracted from TfL’s Patched ATC Database. The map in Figure
3.1 shows the locations of the ATCs. If a counter is located at bidirectional streets
(all but one), then it reports traffic for both directions separately. We standardize the
observations per counter and direction (using mean traffic intensity) and include the

47Because for most analyses we use city averages, it is non-problematic that we observe weather not
for each monitoring station separately. Further, because for the spatio-temporal robustness check
we use daily averages and our context is rather small geographically, it seems hardly restrictive to
assume that weather conditions are comparable across zones.

48These stations are located in Romfort and Stanmore, see Figure 3.A.1 in Appendix A.
49Less solar radiation and stronger winds—ozone is transported vertically—explain lower ozone con-

centrations in London. Ozone forms after complex interactions between NOx, volatile organic
compounds, solar radiation and heat (Krupa and Manning, 1988; Sillman, 1999) and is transported
horizontally by air currents (Lelieveld and Dentener, 2000). Therefore, ozone concentration varies
over time and space.

50Table 3.A.1 in Appendix A shows spatial correlations for ozone measurements of different monitor
sites. These correlations are high, which explains why identification based on spatio-temporal
variation results in relatively large standard errors. The autocorrelation of ozone concentration is
high within days, but moderate between days, see Table 3.A.2.
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Figure 3.6: Ozone, NOx, and car traffic levels per hour of the day.

(unweighted) city average as our measure for traffic.51

Figure 3.6 shows that traffic intensity is usually high between 8am and 8pm, and that
NOx levels tend to peak around rush hours (consistent with the idea that during peak
hour, the density of motor vehicles is particularly high). In contrast, ozone concen-
tration is generally high in the afternoon and low during mornings, which suggests
that ozone is hardly related to traffic.

In Appendix 1 we analyse the relation between traffic and air pollution in a more
rigorous way. We demonstrate that, conditional on controls, NOx are directly related
to traffic intensity, but ozone is not (see Tables 3.B.1 and 3.B.2 in Appendix B).

3.2.4 Hourly descriptives

Our analysis uses hourly and daily variables. We present descriptives at the hourly
level in Table 3.1 (at the daily level are shown in Table 3.A.4 in Appendix A). The
five-year sample provides us with a total of 43,831 hourly observations. We note that
there is substantial variation in the number of trips (and bicycle traffic), which makes
this variable an attractive indicator for sorting (discussed below).

3.3 Empirical methods

Our aim is to identify the causal effect of ozone pollution on cycling speed using
observations of ozone (by hour and by zone) and cycling (location and timing of de-
parture and arrival). Let us suppose one regresses cycling speed on ozone. There are
then two main econometric challenges: omitted variable bias and sorting. Omitted
51We also run a robustness check where we include measurements from each ATC as a separate con-

trol.
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Table 3.1: Descriptive statistics per hour.
Statistic Mean St Dev. Min Max
Number of trips 1065 1090 5 12188
Speed (km/h) 11.94 1.64 2.30 17.17
Duration (min) 18.41 6.66 6.83 329.00
Distance (km) 2.73 0.27 1.32 4.98
Bicycle traffic (km) 6167 3208 10 48211
Road traffic (vehicles per counter) 491 145 47 897
Ozone (O3, ppb) 18.21 10.65 0.05 72.10
Nitrogen oxides (NOx, ppb) 43.95 34.49 1.35 500.97
Particulate matter (PM2.5, ppb)) 13.05 11.02 0.00 114.86
Sulphur dioxide (SO2, ppb) 10.61 9.70 0.00 912.00

Note: 43,831 hour observations, cycle variables are city wide hourly means of 70.26 million observa-
tions. Mean and standard deviation are weighted for the number of trips per hour.

variable bias will occur, for example, if ozone is positively correlated with intensity of
motorized traffic, which may hamper cyclists, and therefore reduces cycling speed.
Sorting will occur, for example, if ozone is positively correlated with nice weather,
which induces additional, and likely different types of cyclists on the road. To over-
come these challenges, we employ a within-day and a between-day estimation strat-
egy.52 We will also focus on a panel of cyclists that appear to be (predominantly)
commuters.

3.3.1 Within-day estimation

Let us first ignore spatial variation in ozone and identify the effect of ozone using
hourly averages in the city. We regress average cycling speed, speedwdh, on ozone
concentration, ozonewdh, at hour h of day d in week w, while controlling for weather
conditions, other pollutants, and several types of time fixed effects. We start with the

52We also applied two alternative strategies. In Appendix 3 we discuss a spatio-temporal strategy and
show that the results are robust to such a specification. We do not show results of another alter-
native strategy which uses night-time thermal inversion as an instrumental variable for ozone, as
used for other pollutants by Arceo et al. (2016). This approach works well for first-order pollutants
(i.e. that are directly emitted) such as NOx. However, because ozone forms after complex atmo-
spheric interactions, thermal inversion appears a weak instrument in our data (with a first-stage
F-test of about 3), despite having an observation period of five years.
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Chapter 3. Urban air pollution and time losses

following within-day specification:

speedwdh = �ozonewdh + �Wwdh + ⇣Twdh + �Ewdh + wd + ⌘dh + "wdh, (3.1)

where w = 1, . . . ,W , d = 1, . . . , 7, h = 1, . . . , 24 denote week, day of the week, and
hour of the day respectively.53 We include sets of control variables for weather con-
ditions, Wwdh, car and bicycle traffic, Twdh, and other environmental pollutants, Ewdh

(all discussed in detail below). Furthermore, we include wd, a day fixed effect, and
⌘dh, an hour-of-the-week fixed effect. Including day fixed effects has the advantage
that we identify our parameters within a day, and thereby control for unobserved
day characteristics. Given these controls, we will argue below (see sections 3.3.1.1
and 3.3.1.2) that ozone is uncorrelated with the disturbance "wdh and hence we can
estimate (3.1) with ordinary least squares. Because we are interested in the effect of
ozone on cycling speed per trip we use weighted least squares with the number of
trips per hour as weights.

3.3.1.1 Omitted variable bias

Weather conditions may lead to omitted variable bias, because they correlate with
ozone and also affect cycling speeds directly, for instance when higher temperatures
reduce exercise capacity. To solve this issue, we use Wwdh that contains flexible con-
trols for temperature (1°C dummy indicators), atmospheric pressure, relative humid-
ity, rainfall, solar radiation (100 W/m2 dummy indicators), solar radiation dummies
interacted with temperature dummies, wind speed, wind direction (8 dummy indica-
tors), and 8th hour lags of temperature and rain. Importantly, these flexible controls
reduce biases that arise if cyclists take a detour or a break when the weather is nice.
Because we do not observe the exact routes, nor stopping times, we cannot com-
pletely rule out this identification threat. However, flexible weather controls and day
fixed effects should largely account for this issue.54

Air pollution and traffic intensity are in general positively related (Kelly et al., 2011;
He et al., 2019). We emphasise that we will show that this does not hold for ozone
as it is usually formed in the afternoon before the evening rush hour. Nevertheless,
to avoid any omitted variable bias due to cyclists slowed down by traffic, we use
several traffic controls in Twdh. For car traffic, we include road vehicle count data from
automatic traffic counters, which we aggregate into a standardized city average. For
bicycle traffic, we include the city-wide total distance cycled as control.
53For our sample of five years W ⇥ 7⇥ 24 = 5⇥ 52⇥ 7⇥ 24 = 43, 800 in case no observations would

be missing. Observations of environmental data are sometimes missing, so that we have just under
40k observations.

54When we use a panel dataset which largely consist of commuters (discussed below), detours and
stopping are much less likely an issue due to the nature of the trip.
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Finally, we take into account that our road traffic controls may not cover all roads typ-
ically used by cyclists. Therefore, to further improve the control for car traffic, we also
use environmental data, in Ewdh, as a proxy for traffic intensity and congestion. For
this purpose NOx are especially suitable as they are—in contrast to ozone—directly
emitted by combustion engines, and therefore strongly related to traffic intensity
(Carslaw and Beevers, 2004; Farias and ApSimon, 2006). Vector Ewdh contains SO2

and flexible controls for NOx and PM2.5 using 10 ppb dummy indicators. These indi-
cators not only serve as additional controls for traffic intensity, but also ensure that �
is not capturing effects of other pollutants.55

3.3.1.2 Sorting

Ozone forms when there is sufficient heat and solar radiation, and is, therefore,
strongly correlated with ’nice weather’, which affects the decision to cycle. For
example, bicycle commuters are typically less sensitive to weather circumstances
than recreational cyclists. Hence, during good weather the total number of cyclists
increases, of which a higher proportion is recreational. As a consequence, the
composition of cyclists changes (i.e. sorting), which may bias our estimates.56

We address a potential bias due to sorting as follows. First, we include a range of
time fixed effects. Hour-of-the-week fixed effects control for typical differences in
the population of cyclists during a week. Day fixed effects control for unobserved
events that cause for a one-day change in the composition of the cycling population
(e.g. national holidays or strikes). Second, flexible controls for weather and other
pollutants, in Wwdh and Ewdh, account for sorting that can arise if certain types of
travellers decide to use a bicycle conditional on weather conditions. These controls
include the 8th hour lag of rain and temperature, which account for sorting during
afternoons induced by nice weather earlier on the day.

Finally, and importantly, we test for sorting by estimating the effect of ozone on the
number of bicycle trips and average bicycle-trip distance. Because these regressions
show that there is no observable sorting when we exclude weekends, we estimate

55Note that if � captures the effect of other pollutants, then this would be detrimental to our conclusion
that ozone reduces speed, but would not affect our conclusion that air pollution reduces speed.

56In general, local air pollution (like particulates or SO2) is found to directly affect extensive margins
(Graff Zivin and Neidell, 2013; Aragón et al., 2017). There is, however, no evidence that this also
holds for ozone (e.g. Zivin and Neidell (2012) do not find an effect on the extensive margin of labour
supply). It is thus more likely that weather conditions correlated to ozone are the determining
factor for sorting.
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(3.1) using weekday observations.57

We note that our sorting tests may not completely rule out sorting. Even if ozone does
not affect the trip distance or the number of cycling trips, one might argue that there
may still be compositional changes in the cyclists population, for instance induced by
nice weather. This argument is however implausible, as it implies that weather con-
ditions that attract certain cyclists (e.g. recreational), repel other cyclists at the same
time (and with the same magnitude). Instead, it seems more plausible that weather
conditions favourable to some groups (e.g. commuters), will also be favourable to
other groups (e.g. tourists). Nevertheless, we will also include an approach with cy-
clist fixed effects, which rules out sorting (see Section 3.3.3).

3.3.2 Between-day estimation

One disadvantage of the above approach is that it assumes that the effect of ozone is
immediate. We will therefore also follow a strategy comparable to Zivin and Neidell
(2012) where we employ daily variables to estimate � as the between-day estimator
in the following model:

speedd = �ozoned + �W d + ⇣T d + �Ed + ↵m + ⌘d̂ + ✏d, (3.2)

where a bar indicates a daily average (e.g. ozoned =
P23

h=0 ozonewdh), and m = 1, . . . , 5⇥
12 and d̂ = 1, . . . , 7 denote year⇥month and day of the week respectively. Here,
↵m and ⌘d̂ are year-month and day-of-the-week fixed effects, whereas W d, T d, and
Ed refer to daily averages of controls for weather, traffic, and other pollutants (as
discussed above). As before, to test for sorting, we use a variant of (3.2) where we
estimate the effect of ozone on average cycling distance and on number of bicycle
trips per day. We will see that this approach gives similar result as the within-day
approach, but tends to give (much) larger standard errors.

3.3.3 Cyclists panel estimations

A remaining disadvantage of the previous approaches is that we can not completely
rule out a bias from sorting. To address this, we exploit recurrent patterns in the
cycling data to construct a panel of cyclists, which allows us to use cyclists fixed

57We find a borderline significant (at the 10 percent level) positive effect of ozone on number trips and
distance when including weekends. This makes sense, because during weekends the population
consists mainly of recreational cyclists who’s decision to cycle is highly dependent on weather
conditions. When we include weekends in the analysis of (3.1), the estimates hardly change.

40



effects.58 As discussed above, this sample appears to consist mainly of commuters
(see Section 3.2.1.1). We consider the following model:

speedih = �ozoneh + �Wh + �Eh + �Th + ⌘d̂ + i + "ih, (3.3)

where i refers to a cyclist and h to an hour in the sample. We use the same controls as
above and include a day-of-the-week fixed effect, ⌘d̂ and a cyclist fixed effect, i. As
individuals are defined based on the chosen trip (origin and destination) and hour
of the day, an alternative interpretation of i is that of a separate fixed effect for each
hour-of-the-day for each origin-destination pair.

The main advantage of this approach is that we can rule out sorting issues. One
issue—which is a disadvantage if one is interested in cyclists per se—is that this ap-
proach yields estimates only valid for this specific group of commuters, who differ
from the general population of cyclists, for instance by cycling slightly faster and
longer distances (see Section 3.2). Furthermore, commuters usually have an arrival-
time target and may therefore increase their speed when they realise that they are
late (due to high ozone levels). Hence, the results from this approach may be an un-
derestimate of the effect of ozone on cycling speed for individuals that do not have
a specific target. However, this group of commuters may be more representative for
workers involved in other work-related outside activities.

3.3.4 Sensitivity analyses and robustness checks

Next to the identification strategies discussed above, we perform various additional
analyses to assess the robustness and sensitivity of the results. For the within-day
and between-day estimations we perform the following robustness checks. First, we
exclude bicycle traffic as a covariate. Next, we check robustness against flexibly con-
trolling for road traffic, by using individual road traffic measurements as separate
controls, rather than relying on a city-wide average. To check if outliers drive the
results, we also run an estimation where we use the hourly and daily median speed
as dependent variable, instead of mean speed.

As another robustness check, we exploit spatial and temporal variation in ozone lev-
els by dividing London into zones, each surrounding an air quality monitoring sta-
tion (see the map in Figure 3.1). A cycling trip is assigned to a zone if its origin and
destination are both within the same zone (see Section 3.2 for details). As in equation

58Identifying individual cyclists is possible because routes are very thin, for most of the trips there is
no other person cycling the same route within the same hour.
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(3.2), we use daily averages.59 This method should (and does) give similar results to
the between-day estimation, but relies on completely different identification, using
variation over space rather than over time. See Appendix 3 for further details of the
estimation method and the results.

We also provide a range of robustness and sensitivity checks for the cyclists panel
estimations. First, we select subsamples where we vary the minimum distance cycled.
Second, we put restrictions on the minimum number of trips (i.e. days) per cyclists
per month. Third, we include ozone as 5 ppb dummy indicators, so that we can
assess whether the assumption of a linear effect holds. This approach also allows
us to identify the minimum ozone threshold, i.e. the level of ozone at which speed is
affected. Fourth, we examine if there are within-day lag or lead effects of ozone. Fifth,
we assess whether the effect of ozone is heterogeneous across cyclists with different
fitness levels, as measured by their monthly average speed.

3.4 Results

3.4.1 Results using within-day and between-day estimations

Table 3.2 shows the estimation result using within-day and between-day estimations,
specified in equations (3.1) and (3.2). In both specifications we find a negative and
statistically significant effect of ozone on cycling speed. Column (1) shows that a
10ppb increase in ozone concentration during a certain hour, reduces speed by 53
metres per hour. At the sample average of 11.97 km/h, this is equivalent to a 0.4%
drop in mean speed. Column (2) shows that using between-day rather than within-
day estimation, yields a very similar point estimate, despite using a very different
identification strategy. It shows that a 10 ppb increase in ozone on a certain day
reduces speed by 63 metres per hour on that day.60

Columns (3)-(6) show the sorting tests: they highlight that ozone does not induce sort-
ing as it does not affect the extensive margins (conditional on controls). Importantly,
in these columns, the standard errors of the estimated ozone effects are small, imply-
59Horizontal ozone transportation (through air) makes identification using hourly data unreliable.

This is because there is measurement error when assigning a trip to an hour of observation. For
identification over time this is non-problematic as the same measurement error applies to the envi-
ronmental variables. However, with identification across zones, horizontal transportation of ozone
makes the assignment of trips to ozone levels unreliable due to overlap of trips per hour. At daily
averages this is problem disappears because there is no measurement error in the timing of trips
within a day.

60Note that the coefficients for traffic intensity in column (1) and (2), are not robust to the two different
specifications and should not be interpreted as causal.
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Table 3.2: Results using within-day and between-day variation.

Speed Distance log(Trips)

Within Between Within Between Within Between
(1) (2) (3) (4) (5) (6)

Ozone (10ppb) -0.053⇤⇤⇤ -0.063⇤⇤⇤ -0.001 0.009 0.006 0.020
(0.015) (0.023) (0.003) (0.007) (0.005) (0.014)

SO2 (10ppb) 0.008 0.009 0.003⇤ -0.004 -0.010⇤⇤⇤ 0.002
(0.006) (0.011) (0.002) (0.003) (0.003) (0.007)

Car traffic -0.030 0.795⇤⇤⇤ -0.003 0.095⇤⇤⇤ 0.220⇤⇤⇤ 0.358⇤⇤⇤

(0.026) (0.101) (0.006) (0.032) (0.009) (0.056)
Bicycle traffic 0.017⇤⇤⇤ -0.004⇤⇤⇤

(0.003) (0.0004)
Weather controls Yes Yes Yes Yes Yes Yes
NOx and PM2.5 dummies Yes Yes Yes Yes Yes Yes
Cycling controls Yes Yes No No No No
Day FE Yes No Yes No Yes No
Week hour FE Yes No Yes No Yes No
Month FE No Yes No Yes No Yes
Week day FE No Yes No Yes No Yes
Observations 28,828 1,220 28,828 1,220 28,828 1,220
R2 0.926 0.903 0.913 0.668 0.955 0.848

Notes: Estimated using weighted least squares, with no. of trips (per hour or per day) as weights
for columns (1)-(4). Weather controls: temperature (2.5°C dummy indicators), atmospheric pressure,
relative humidity, rainfall, solar radiation (100 W/m2 dummy indicators), solar radiation dummies
interacted with temperature dummies, wind speed, wind direction (8 dummy indicators), 8th hour
lag of temperature (1°C dummy indicators), 8th hour lag of rain. PM10 and NOx dummies: 10 ppb
dummy indicators. Cycling controls: log(number of trips), average trip distance.⇤⇤⇤, ⇤⇤, ⇤ indicate
significance at 1%, 5%, and 10%.

ing that these tests have a lot of power. The results of these sorting tests imply that
it is unlikely that our estimates in columns (1) and (2) are affected by ozone-induced
sorting of cyclists.

Table 3.B.3 in Appendix 2 presents the results of three alternative specifications for
the within-day and between-day estimations. It shows that omitting bicycle traffic as
control leads to similar estimates. Similarly, it shows that including flexible controls
for car traffic (a separate indicator for each of the eleven counters) hardly changes the
results. Furthermore, when we include speed using the median (instead of mean),
we again obtain very similar results. The latter highlights that outliers do not drive
our results. Finally, also the results of the spatio-temporal estimation, as discussed in
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Table 3.3: Estimation results with cyclist fixed effects.

Speed

(1) (2) (3) (4) (5) (6)
Ozone (10ppb) -0.026⇤⇤⇤ -0.025⇤⇤⇤ -0.031⇤⇤⇤ -0.030⇤⇤⇤ -0.028⇤⇤ -0.029

(0.005) (0.005) (0.006) (0.006) (0.011) (0.029)
PM2.5 (10ppb) 0.007⇤⇤⇤ 0.008⇤⇤⇤ 0.005⇤ 0.004 0.005 -0.011

(0.002) (0.002) (0.003) (0.003) (0.006) (0.014)
SO2 (10ppb) 0.005⇤ 0.004 0.003 0.006 0.012 0.003

(0.003) (0.002) (0.004) (0.004) (0.008) (0.022)
Car traffic -0.135⇤⇤⇤ -0.123⇤⇤⇤ -0.114⇤⇤⇤ -0.096⇤⇤⇤ -0.076⇤⇤⇤ -0.104⇤⇤

(0.010) (0.010) (0.012) (0.013) (0.021) (0.047)
Bicycle traffic -0.004 -0.008 -0.010 -0.010 -0.012 -0.021

(0.006) (0.006) (0.007) (0.008) (0.015) (0.033)
NOx dummies Yes Yes Yes Yes Yes Yes
Day of the week FE Yes Yes Yes Yes Yes Yes
Cyclist FE Yes Yes Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes Yes Yes
Min. obs. per cyclist 4 4 4 8 8 16
Min. distance 0 km 2 km 4 km 4 km 6 km 6 km
Avg. s.d. of departure 4.9 min 4.9 min 4.8 min 5.7 min 5.7 min 5.4 min
Avg. speed 14.2 km/h 14.4 km/h 14.9 km/h 15.0 km/h 16.2 km/h 16.4 km/h
Observations 2,359,675 1,701,521 598,324 409,203 86,379 10,918
R2 0.752 0.786 0.824 0.820 0.842 0.834

Notes: Standard errors in parentheses are clustered per hour. Weather controls are the same as in Table
3.2. ⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.

Appendix 3, indicate that we find very similar estimates if we identify the effect on
within-day variation across zones in the city.

3.4.2 Cyclists panel results

Table 3.3 shows the estimation results using a panel of cyclists who make the same
trip (in terms of route and hour of the day) for several days within a month. In
column (1), we obtain an effect of -0.026 with a standard error of 0.005. Columns
(2)-(5) indicate that the effect is of similar size, or even stronger, when we exclude
trips with short distances. There are several explanations for this. For instance, it
may be that fatigue increases with distance, or that longer exposure to ozone during
trips slightly increases the effect. Columns (4)-(6) indicate that the point estimates
hardly change when we focus on cyclists who make more cycling trips per month.
Only when we restrict the minimum number of trips to 16, as in column (6), the effect
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becomes statistically insignificant, as we now have less than 11,000 observations (out
of 2.4 million).

Overall, Table 3.3 again shows evidence of a negative effect of ozone on cycling speed,
albeit somewhat smaller compared to results without cycling fixed effects. Finding
smaller effects makes sense, because this subsample is dominated by morning com-
muters, who have a preferred arrival time (at work), such that they may exert more
effort to compensate for possible delays. We further note that the standard errors
are substantially smaller than in previous tables, despite having fewer observations.
Clearly, the cyclist fixed effects—which also control for the specific origin-destination
pair on a specific hour of the day—vastly improve the efficiency of the estimator.

As a sensitivity check for this approach, we have re-estimated the model for groups
of cyclists who differ in their average speed per month (see Table 3.B.5 in Appendix
B). This monthly average speed may be interpreted as a proxy for fitness. We find that
the ozone effect is very similar, despite substantial differences in average speed. This
suggests that cyclists’ fitness does not play a major role in the effect of ozone. Note,
however, that differences in average speed are not just because of heterogeneity in
fitness, but also due to differences in the grade of the road (London is not completely
flat), number of traffic lights, direction (there is a dominant south-western wind),
etc.

Because we can rule out confounding due to sorting, we can now also interpret esti-
mates of traffic control variables in Table 3.3 as causal, which provides another con-
sistency check.61 We find that cyclists are slowed down by car traffic, but not by
bicycle traffic. Both these findings make sense for London, because there is substan-
tial car traffic, but there is no bicycle congestion, such as observed in Amsterdam and
Copenhagen.

The above specifications assume that the marginal effect of ozone is constant, which
is in line with a range of other studies (e.g. Folinsbee et al., 1988; Zivin and Neidell,
2012), but potentially restrictive. It also prevents us from identifying a minimum
ozone threshold, i.e. the concentration at which an effect of ozone is observable. To
allow for non-linear effects and to identify the minimum ozone threshold, we use 5
ppb ozone indicator dummies. The results in Figure 3.7 show that a linearly down-
ward sloping effect would fit within the confidence intervals. This implies that we

61 For particulate matter (PM2.5), we find a very small (about one fifth of the ozone effect) but positive
effect on cycling speed. This finding is likely spurious as it is not robust across sub samples, but
it might be that because PM pollution is not odourless, cyclists increase their speed to reduce the
duration of exposure. We do not find any effect of SO2 (which has a strong odour), in line with its
very low levels in Inner London. High SO2 levels are mainly found around coal fired power plants,
that are absent in Inner London.
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Figure 3.7: Effect of ozone on speed relative to concentrations between 0 and 10 ppb.

Notes: Error bars denote 95% confidence intervals. Ozone concentrations between 0 and 10 ppb are set
as the reference category. Other than the ozone indicators, the specification is the same as in column
(1) of Table 3.3.

cannot reject the null hypothesis of a constant marginal effect of ozone on speed.62

We note that a linear effect is convenient for policy: it allows for straightforward en-
vironmental regulation based on constant marginal cost pricing and daily averages,
and may ignore within-day variation in ozone.63

An important difference with previous literature is that we have a much larger sam-
ple. As a consequence, we are able to show a negative impact of ozone starting at
concentrations as low as 20 ppb (see Figure 3.7), which is half the value reported by
Zivin and Neidell (2012). This is particularly relevant because ozone levels in London
are much lower than in California; the Zivin and Neidell (2012) results imply that for
London ozone effects are largely absent.

So far, we have assumed that the ozone effect is contemporaneous. We test this as-
sumption using a specification test which assesses whether the effect on speed is more
strongly caused by hourly lags or leads than contemporaneous ozone. The results are
presented in Figure 3.8. In terms of point estimates, contemporaneous ozone has the
strongest effect. This makes it plausible that our previous results are due to an im-
mediate effect of ozone. For leads, as shown in the figure, the first two hours hour
have a statistically significant effect. This effect is not causal, but due to strong hourly

62We find similar results if we do this exercise for the between-day approach. The other approaches
have too large standard errors to examine non-linearity.

63Note that regulation on daily averages still ignores hourly differences in exposure.
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Figure 3.8: Regressions results for testing for lag or lead effects.

Notes: Error bars denote 95% confidence intervals.

autocorrelation in ozone levels (see Table 3.A.2 in Appendix A). For leads longer than
two hours the effect disappears. For lags, we find statistically significant effects up
to the 8th hour. Because the point estimates for lags are stronger than for leads, one
may believe that there is a lagged effect of ozone on cycling speed additional to a
contemporaneous effect. However, further analysis, where we include both lagged
and contemporaneous ozone, shows that for all lag lengths the sum of the effects of
lagged and contemporaneous ozone is exactly equal to the estimated contemporane-
ous effect as shown in column (4) of Table 3.3. Hence, there is no evidence that the
contemporaneous effect underestimates the overall effect.

3.5 Conclusion

We provide novel evidence of the immediate negative impact of urban air pollution.
We focus on the effect of ozone, which is known to reduce lung capacity. We hypoth-
esise that ozone slows down all outside activities which require a minimal physical
effort. We focus on cycling in London and demonstrate that the speed of cyclists is
reduced due to ozone pollution. Our results imply that a 10 ppb increase in ozone
induces an immediate 0.3% to 0.4% reduction in cycling speed. Our most important
finding for policy on air quality is that that ozone pollution reduces speed for concen-
trations above levels as low as 20 ppb (observed 36% of the time in London). This is
far below the minimum threshold found in previous field studies, and also far below
current air quality standards.

Our effects are of the same magnitude as the ones found in the lab by Gong et al.
(1986). In contrast, we find much smaller point estimates than Zivin and Neidell
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(2012), who analyse the effect of ozone on productivity of agricultural workers in Cal-
ifornia. A plausible explanation for this difference is that, in contrast to these workers,
cyclists in London are not exposed for a full working day, and exert physical effort
for a much shorter amount of time.64 An alternative explanation is purely statistical:
our point estimate is just within the 95 percent confidence interval reported by Zivin
and Neidell (2012), so that their estimates may not be so different from ours.

Because cycling is a light physical activity, which is usually done for a short period of
time (about 20 minutes in our sample), we argue that the effect identified here plau-
sibly carries over to most other outside activities involving physical effort, such as
walking. For London, with ozone levels usually below 50 ppb, our results imply a
moderate impact on physical activity, with a total negative effect not exceeding 2%.
However, the marginal effects are sizeable, which becomes important when extrapo-
lating to cities with higher ozone levels. For example, in Chinese cities, ozone levels
have increased over the past decades (Verstraeten et al., 2015) and often exceed 100
ppb (Wang et al., 2017). If we assume a linear effect—in line with our results in Figure
3.7, but also implied by combining the estimates from our study and laboratory stud-
ies—then speed is reduced by more than 5% due to ozone. If such cities would im-
prove air quality to daily concentrations found in London, then cycling speed would
increase by about 4%. Our results therefore indicate that, besides the well-known
health hazards, urban air pollution has a sizeable immediate negative effect on travel
time and other activities that require physical effort.

64An additional explanation is that, as shown by Gong et al. (1986), ozone reduces lung capacity
especially in hot climates. In contrast to California, London has a relatively cool climate and tem-
peratures rarely exceed 30°C (less than 0.5% of the time). To test for this we ran a sensitivity check
with temperature interacted with ozone, but this does not yield results different from Table 3.2. In
addition, estimations using only ’hot’ days (e.g. more than 20°C) results in similar results, but with
(much) larger standard errors.
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Appendix 3.A Additional descriptives

3.A.1 Map with radiation monitors and sites names

●

●

●

●
●

BG1

BL0

RI2

HR1

SK6

KC1
TH4

Figure 3.A.1: Location of docking stations (⇥), air quality monitors (•), and radiation moni-
tors (N).

Notes: Map tile by Stamen Design, under CC BY 3.0, base layer data by OpenStreetMap, under CC BY
SA.

3.A.2 Spatial and temporal autocorrelation of ozone

Table 3.A.1: Spatial correlation of ozone.
BL0 KC1 RI2 SK6 TH4

BL0 1.00 0.94 0.92 0.93 0.82
KC1 0.94 1.00 0.96 0.91 0.87
RI2 0.92 0.96 1.00 0.90 0.89
SK6 0.93 0.91 0.90 1.00 0.80
TH4 0.82 0.87 0.89 0.80 1.00
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Table 3.A.2: Autocorrelation of ozone per hour (a) and per day (b).
t=0 t=-1 t=-2 t=-3 t=-4 t=-5 t=-6 t=-7 t=-8

cor 1.00 0.96 0.89 0.80 0.71 0.63 0.56 0.50 0.46

(a)
t=0 t=-1 t=-2 t=-3 t=-4 t=-5 t=-6 t=-7 t=-8

cor 1.00 0.73 0.54 0.48 0.45 0.42 0.41 0.41 0.37

(b)

3.A.3 Daily descriptives

Table 3.A.4: Descriptive statistics per day.

Statistic Mean St Dev. Min Max
Number of trips 25559 10642 3159 111694
Speed (km/h) 11.94 1.33 6.43 14.10
Duration (min) 18.41 4.39 11.99 42.60
Distance (km) 2.73 0.13 2.19 3.74
Bicycle traffic (km) 82688 31300 7373 406608
Road traffic (vehicles per counter) 491 43 279 663
Ozone (O3, ppb) 18.21 9.02 0.33 48.29
Nitrogen oxides (NOx, ppb) 43.95 29.03 7.14 307.67
Particulate matter (PM2.5, ppb)) 13.04 9.29 2.37 84.96
Sulphur dioxide (SO2, ppb) 10.59 7.89 1.35 171.25
Note: 1,826 daily observations, cycle variables are city wide daily means of 70.26 million observations.
Mean and standard deviation are weighted for the number of trips per day.
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3.A.4 Flows on inferred routes
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Figure 3.A.2: Map with flows and location of air quality monitoring stations.
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3.A.5 Panel characteristics
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Figure 3.A.3: Histogram of number of trips per route per hour for all observations.
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Figure 3.A.4: Histogram of departure time of panel observations.
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Appendix 3.B Additional analyses

3.B.1 Traffic and air pollution

Table 3.B.1: Results of the effect of traffic on air pollution using within-day variation.

Ozone NOx

(1) (2) (3) (4) (5) (6) (7) (8)
Car Traffic 0.198⇤⇤⇤ -0.131⇤⇤⇤ 0.007 0.038⇤ 1.185⇤⇤⇤ 1.081⇤⇤⇤ 0.664⇤⇤⇤ 0.707⇤⇤⇤

(0.015) (0.022) (0.020) (0.022) (0.025) (0.076) (0.064) (0.103)
NOx (10ppb) -0.108⇤⇤⇤

(0.002)
PM2.5 (10ppb) -0.160⇤⇤⇤ 1.690⇤⇤⇤

(0.007) (0.020)
SO2 (10ppb) 0.111⇤⇤⇤ -0.009 0.893⇤⇤⇤ 0.908⇤⇤

(0.006) (0.008) (0.018) (0.381)
Baseline ctrls. No No No Yes No No No Yes
Day FE No Yes Yes Yes No Yes Yes Yes
Week-hour FE No Yes Yes Yes No Yes Yes Yes
Observations 31,295 31,295 31,173 30,178 31,295 31,295 31,173 30,178
R2 0.006 0.778 0.819 0.925 0.069 0.736 0.812 0.852

Notes: Baseline controls as in Table 3.2.⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.

We explore the relation between car traffic and air pollution by estimating the within-
day and between-day model, as in equations (3.1) and (3.2), with ozone and NOx

as dependent variables. The within-day results in Table 3.B.1 (columns (1) and (5)),
show that, without controls, car traffic correlates positively with both ozone and NOx,
but much stronger with the latter (as evidenced by a larger coefficient, and a much
higher R2). Adding day fixed effects and hour-of-the-week fixed effects (columns
(2) and (6)), shows that within a day, ozone has a weak negative, and NOx still a
strong positive relation with car traffic. In column (3) and (7) we add controls for
other pollutants, this nullifies the effect of car traffic on ozone, while its effect on NOx

stays roughly the same. Finally, for columns (4) and (8), we include the same controls
as in Table 3.2. This specification now includes flexible controls for other pollutants
and weather. Again we find that ozone is unrelated to traffic. In contrast, car traffic
has a strong—and arguably causal—causal effect on NOx. These results are in line
with the notion that NOx is directly emitted by cars’ combustion engine, while ozone
is a second-order pollutant whose concentrations are only related to traffic through
NOx.
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Table 3.B.2: Regression results of the effect of traffic on air pollution using between-day model.

Ozone NOx

(1) (2) (3) (4) (5) (6) (7) (8)
Car Traffic -0.303⇤⇤⇤ -0.579⇤⇤⇤ -0.234⇤⇤ -0.146⇤ 2.775⇤⇤⇤ 2.461⇤⇤⇤ 1.837⇤⇤⇤ 1.291⇤⇤⇤

(0.104) (0.116) (0.099) (0.077) (0.371) (0.424) (0.337) (0.347)
NOx (10ppb) -0.130⇤⇤⇤

(0.007)
PM2.5 (10ppb) -0.093⇤⇤⇤ 1.400⇤⇤⇤

(0.019) (0.055)
SO2 (10ppb) 0.088⇤⇤⇤ -0.015 0.868⇤⇤⇤ 0.840⇤⇤⇤

(0.023) (0.015) (0.075) (0.066)
Baseline ctrls. No No No Yes No No No Yes
Month FE No Yes Yes Yes No Yes Yes Yes
Day of W. FE No Yes Yes Yes No Yes Yes Yes
Observations 1,826 1,826 1,823 1,797 1,298 1,826 1,823 1,797
R2 0.005 0.519 0.652 0.883 0.041 0.368 0.604 0.760

Notes: Baseline controls: same controls as in Table 3.2.⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and
10%.

Table 3.B.2 shows the same effect of car traffic on NOx using between-day variation,
see columns (5)-(8). Columns (1)-(3) show that between days, traffic is negatively
related to ozone. This is mainly driven by not controlling for weather conditions,
which correlate with car traffic and ozone. Therefore, adding controls for weather, as
in column (4), leads to an insignificant effect of car traffic on ozone.
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3.B.2 Further robustness checks for within-day and between-day
estimations

Table 3.B.3: Robustness checks for within-day and between-day estimations.

Average Speed Median Speed

Within Between Within Between Within Between
(1) (2) (3) (4) (5) (6)

Ozone (10ppb) -0.042⇤⇤⇤ -0.069⇤⇤⇤ -0.038⇤⇤⇤ -0.045⇤⇤ -0.030⇤⇤ -0.048⇤

(0.013) (0.023) (0.012) (0.020) (0.012) (0.025)
SO2 (10ppb) 0.008 0.004 0.007⇤ 0.0005 0.006 0.002

(0.005) (0.013) (0.004) (0.011) (0.005) (0.015)
Car traffic -0.209⇤⇤⇤ 0.373⇤⇤⇤ -0.185⇤⇤⇤ 0.462⇤⇤⇤

(0.027) (0.085) (0.032) (0.094)
Bicycle traffic 0.018⇤⇤⇤ -0.015⇤⇤⇤ 0.009⇤⇤ -0.017⇤⇤⇤

(0.004) (0.001) (0.004) (0.001)
Weather controls Yes Yes Yes Yes Yes Yes
NOx and PM2.5 dummies Yes Yes Yes Yes Yes Yes
Sep. traf. controls No Yes No No Yes No
Cycling controls Yes Yes No No No No
Day FE Yes Yes Yes No No No
Week hour FE Yes Yes Yes No No No
Month FE No No No Yes Yes Yes
Week day FE No No No Yes Yes Yes
Observations 28,760 1,699 28,760 1,699 28,760 1,699
R2 0.925 0.948 0.931 0.961 0.906 0.951

Notes: Estimation using weighted least squares, with number of trips per hour or per day as weights.
The same controls as in Table 3.2 are included. ⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.
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3.B.3 Spatio-temporal estimation

For the robustness check exploiting spatio-temporal variation, we consider the fol-
lowing two-way fixed effects model:

speedzd = �ozonezd + �Ezd + ⇣T zd + d + �z + ⌘zt + "zd, (3.B.1)

where z = 1, . . . , Z denotes a zone, and t denotes either a week or a month.65 Here, d

refers to a day fixed effect, and �z to a zone fixed effect. To control for sorting, we also
include ⌘zt, a zone-time fixed effect, which accounts for unobserved patterns across
time and zones. We estimate two specifications: one with zone-month fixed-effects,
and another with zone-week fixed effects. These controls account for temporary local
changes (e.g. local events, changes in infrastructure etc.). As before, we test for sorting
using distance and number of trips per zone per day as dependent variable.

Table 3.B.4: Results using spatio-temporal variation.

Speed Distance log(Trips)

(1) (2) (3) (4) (5) (6)
Ozone (10ppb) -0.050⇤⇤ -0.030 0.002 0.001 0.007 0.004

(0.023) (0.028) (0.003) (0.004) (0.005) (0.006)
Car traffic 0.007 0.010 -0.005 -0.005 -0.036⇤⇤⇤ -0.031⇤⇤⇤

(0.036) (0.044) (0.005) (0.006) (0.008) (0.010)
Bicycle traffic -0.062⇤⇤⇤ -0.061⇤⇤⇤

(0.011) (0.013)
NOx dummies Yes Yes Yes Yes Yes Yes
Zone FE Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes
Zone-Month FE Yes No Yes No Yes No
Zone-Week FE No Yes No Yes No Yes
Observations 6,079 6,079 6,079 6,079 6,079 6,079
R2 0.931 0.948 0.968 0.976 0.997 0.998

Notes: Estimated using observations from weekdays. ⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and
10%.

Table 3.B.4 shows the results for two specifications using spatio-temporal variation.
65In this specification, we include NOx, but not PM2.5 and SO2 because at the zonal level there are

substantial amounts of data missing in the measurements of PM2.5 and SO2. As other specifica-
tions do not show that controlling for these indicators is relevant, this is a non-problematic issue.
Similarly, we do not include weather controls here, as we only observe weather at the city level.
Arguably, the differences in weather conditions within a day do not vary much across zones in the
city.
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In the first specification we use zone-month fixed effects, whereas in the second we
use zone-week fixed effects. Again, for both specifications, the effect of ozone on
cycling speed is negative, but only statistically significant in the first one. These effect
sizes are similar, but with larger standard errors, to those in Table 3.2. Columns (3)-(6)
indicate that ozone does not induce bicyclist sorting.66

66Recall that we exclude weekend days. When we include weekend days, the ozone effect is similar
but somewhat stronger, which may be due to sorting, because the sorting tests show then that
ozone is weakly positively related with cycling distance and number of trips.
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3.B.4 Heterogeneity in panel estimations

Table 3.B.5: Results with cyclist fixed effects varying by average speed.

Speed

(1) (2) (3) (4) (5) (6)
Ozone (10ppb) -0.030 -0.021⇤⇤⇤ -0.023⇤⇤⇤ -0.029⇤⇤⇤ -0.026⇤⇤⇤ -0.028⇤

(0.018) (0.008) (0.006) (0.006) (0.009) (0.015)
PM2.5 (10ppb) -0.012 0.0003 0.006⇤⇤ 0.004 0.012⇤⇤ 0.029⇤⇤⇤

(0.009) (0.004) (0.003) (0.003) (0.005) (0.008)
SO2 (10ppb) -0.009 0.009⇤⇤ 0.008⇤⇤ 0.004 0.007 -0.004

(0.009) (0.004) (0.004) (0.005) (0.006) (0.012)
Car traffic -0.022 -0.124⇤⇤⇤ -0.129⇤⇤⇤ -0.134⇤⇤⇤ -0.147⇤⇤⇤ -0.184⇤⇤⇤

(0.040) (0.017) (0.014) (0.013) (0.019) (0.027)
Bicycle traffic -0.060⇤⇤ -0.015 -0.009 0.003 0.008 0.018

(0.025) (0.010) (0.008) (0.009) (0.013) (0.021)
NOx dummies Yes Yes Yes Yes Yes Yes
Day of week FE Yes Yes Yes Yes Yes Yes
Cyclist FE Yes Yes Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes Yes Yes
Avg. s.d. dep. 4.4 min 4.6 min 4.7 min 4.6 min 4.5 min 4.4 min
Speed (km/h) <10 km/h 10–12 km/h 12–14 km/h 14–16 km/h 16–18 km/h >18 km/h
Avg. spd. (km/h) 8.8 km/h 11.2 km/h 13.0 km/h 14.9 km/h 16.9 km/h 20.0 km/h
Observations 82,355 359,242 728,453 655,705 325,967 208,001
R2 0.437 0.143 0.149 0.132 0.107 0.430

Notes: Standard errors in parentheses are clustered per hour. Weather controls are the same as in Table
3.2. ⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.
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4
Do metro interruptions increase the

demand for public rental bicycles?
Evidence from Paris

4.1 Introduction

Urban policy makers in many cities are promoting cycling as part of a sustainable
and reliable transport system. Cycling has been linked to several positive urban
outcomes. Cycling is associated with health benefits (De Hartog et al., 2010; Celis-
Morales et al., 2017), does not generate pollution (Gössling and Choi, 2015), improves
connectivity (Bullock et al., 2017), and bicycles make more efficient use of road ca-
pacity compared to cars (Wang et al., 2008). One of the ways through which cities
encourage cycling is by providing a public bicycle system (PBS).67 While the first PBS

This chapter is based on Klingen (2019) as published in Transportation Research Part A. I am grateful to
Jos van Ommeren, Erik Verhoef, Paul Koster, Erik Plug, Stuart Donovan, Jiska Klein, Simon Mayer,
Gerben de Jong, and Devi Brands for their comments, to Etienne Côme from IFSTTAR for guiding
me to the Vélib’ data, and to three anonymous referees who provided very useful comments and
suggestions on a previous version of this paper. Map tile Fig 4.1 by Stamen Design, under CC BY
3.0. Data by OpenStreetMap, under CC BY SA.

67Here, public refers to the fact that the bicycles are readily and flexibly available in a city, this is
irrespective of whether the operator is a private or public organisation. In Paris, the context studied
here, the PBS was initiated by the mayor but a concession won by private operator JCDecaux.
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was introduced in Amsterdam in 1965, the launch of Lyon’s Velo’v system in 2005
marks a turning point in the deployment of large scale urban bicycle systems (De-
Maio, 2009). Today, more than thousand public bicycle schemes worldwide host over
two million rental bicycles (Metro bike, 2017).

The main goal of this paper is to examine the role of a PBS in relation to public trans-
port, by analysing the effect of metro interruptions on the local demand for public
rental bicycles within the Vélib’ sharing scheme in Paris. Thereby I will use Twitter
accounts of the metro operator to construct a dataset of metro interruptions. Focusing
on Paris for this study offers, more than any other city with a PBS, the possibility to
analyse net substitution of transport modes within an urban system as a whole. This
is because of all PBS, Velib’ is the most comprehensive system, spanning both central
and more peripheral parts of the city. In contrast, other cities’ PBS often only cover
the inner city (e.g. London), or have disconnected clusters of docking stations (e.g.
Los Angeles).

There is a wide literature on vulnerability of transport networks, often defined as "...a
susceptibility to incidents that can result in considerable reductions in [...] network
serviceability" (Berdica, 2002, p119). A common method to assess the vulnerability of
a transport network is to analyse the impact of removing individual links (Mattsson
and Jenelius, 2015). Using this method, von Ferber et al. (2012) find that the structure
of the Parisian public transport network is less vulnerable compared to London’s sys-
tem. When certain routes are interrupted, the load transferred to remaining links is
better absorbed in Paris compared to London. As a result, it can handle more inter-
ruptions before overall capacity is exceeded. Similarly, Cox et al. (2011) find that dur-
ing a city-wide public transport interruption in London, cycling was used to absorb
excess travel demand. This study relates to this literature by analysing to what ex-
tent cycling is used to absorb capacity constraints following local metro interruptions.
However, instead of looking at a city-wide shut down, I analyse local interruptions
which enables us to study the effect of removing only part of the transport network.

As a by-product, I can identify whether cycling in general complements metro service
or serves as a substitute. The literature on this subject is still in development. Based
on surveys, Shaheen (2012) finds that people in bigger cities who start using rental
bicycles take fewer (light)rail trips:

In larger cities, bicyclesharing appears to draw from public transit use,
freeing up capacity and perhaps serving as a faster connection to intraur-
ban locations than previously provided by bus and rail systems (Shaheen,
2012, p3).

Looking instead at trains rather than the metro, previous studies suggest that cycling
is more of a complement than a substitute. Kager et al. (2016) argue that a bicycle-train

60



connection benefits from complementarity between speed and accessibility, while
Rietveld (2000) finds that train station’s market potential strongly depends on sur-
rounding cycling infrastructure. To my best knowledge, empirical studies on the
interaction between public transport and cycling are based on survey data only, and
therefore understanding of this interaction can be further improved by analysing data
derived from the use of a PBS.

The introduction of modern PBS with electronic docking stations creates opportuni-
ties for further analysis of urban cycling due to the large amount of data that is pro-
duced and collected. Using these data, several studies investigate the (local) demand
for cycling. One branch of literature focuses on the operational side of a PBS. Han
et al. (2014) and Côme and Oukhellou (2014) develop models to predict local demand
at station level, based on network and usage characteristics of the Vélib’ PBS. Using
similar data for London, Adham and Bentley (2015) provide a method to optimize
the redistribution of bicycles over the network, by optimally addressing the spatial
variation in local demand over time. Another branch of literature focuses on the type
of users of a PBS. Bordagaray et al. (2016) and Martin-Moral and Fonzone (2017) de-
velop tools to classify the type of rental bicycle usage using cluster analysis based on
trip characteristics in the London PBS. Finally, Wang et al. (2015) assess determinants
of local demand for rental bicycles in the Minneapolis–St. Paul Metropolitan Area
in Minnesota and find positive correlation between rental bicycle usage and, among
others, socio-economic characteristics of the neighbourhood, proximity to a central
business district, and local economic activity in general.

In this study I try to bridge the survey based results on interaction between a PBS
and public transport on one hand, with the studies based on PBS data on the other
hand. To that end, I link usage data of the Parisian PBS Vélib’ with data on metro
interruptions that I construct using the transport operator’s Twitter accounts. The
metro interruptions serve as quasi-natural experiments to measure the effect of neg-
ative shocks in metro supply on the demand for rental bicycles.

The rest of this paper is structured as follows: Section 4.2 gives the theoretical frame-
work; Section 4.3 describes the data collection and gives descriptive statistics; Section
4.4 presents the empirical methods; Section 4.5 discusses the results and implications;
Section 4.6 concludes.

4.2 Theoretical framework

For this study I use a simple partial equilibrium framework to analyse the demand
and supply of rental bicycles. Transport modes can be substitutes or complements,
and in a model with two markets this translates into a change in demand in one mar-
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ket induced by a price change in the other market. For this study, I analyse how
demand for rental bicycles is affected by a negative supply shock in the market for
metro trips. Demand is studied at the level of a bicycle docking station (hereafter
referred to as ’docking station’), denoted by i, and during a 20 minute time window,
denoted by t. Rental bicycles at time-location pair i, t are modelled as distinct com-
modities, such that demand captures the willingness to pay for bicycles during one
period. In this way I have a one-to-one connection with the empirical results. De-
mand for rental bicycles is described by q

d
i,t = D̃(pi,t), where q

d
i,t denotes the number

of newly demanded bicycles at price pi,t in the 20 minutes preceding t. Demand is
assumed to be downward sloping, i.e. D̃0(p) < 0. Supply is piece-wise constant and
(fully) represented by qi,t, the number of bicycles available at a docking station. Sup-
ply is fully elastic for quantities within the available stock, and fully inelastic when
the stock of bicycles at a station is depleted. This gives the following price scheme in
equilibrium:

pi,t =

(
c if q?i,t  qi,t,

1 if q?i,t > qi,t,
(4.1)

where c is the rental price.

Here, I assume that metro interruptions can induce a change in the demand for rental
bicycles at docking stations in the neighbourhood of affected metro stations. Let q?i,t
and q

#
i,t denote the quantity of bicycles that are rented in a normal situation and

during a metro interruption nearby respectively. If the quantity of bicycles rented
changes from q

?
i,t to q

#
i,t due to a metro interruption, then the sign of �i,t := q

#
i,t � q

?
i,t

indicates if bicycles are a net substitute or a net complement to metro trips, provided
q
?
i,t < qi,t and q

#
i,t < qi,t. If �i,t > 0 then rental bicycles are a net substitute for metro

trips, and if �i,t < 0 then they are a net complement. The empirical part of this paper
deals with estimating �, the average observed change in the number of rental bicycles
consumed, that can be ascribed to a ceteris paribus change in the generalized price of
metro trips. Hence, the estimate of � identifies the shift in demand, such that I can
empirically test whether rental bicycles are a net substitute or a net complement to
metro trips.

4.3 Data and descriptive statistics

For this study I observe data from Paris for one year, from July 2016 to June 2017.
The map in Figure 4.1 shows that the infrastructure of the Vélib’ PBS and the metro
network are both dense and cover a similar area in the city.
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Figure 4.1: Map of Paris with Vélib’ docking stations (⇥) and metro stations (⌅).

4.3.1 Vélib’ public bicycle system

The Vélib’ PBS has roughly 20,000 bicycles and 1,225 docking stations located across
Paris. It was launched in 2007 and, at that time, Vélib’ was the largest PBS in the
world. The goal was to provide bicycles within 300 metres from every location within
Paris in order to promote cycling (JCDecaux, 2008).

Prices are e1.70 for a day, e8.00 for a week, or e29 per year, with discounts for stu-
dents and adolescents. Within these subscriptions, usage is free of charge for the first
30 minutes. Exceeding the free usage period is priced e1 for the first hour, e2 for the
second, and e4 per hour for any subsequent hours (Vélib’, 2017).

Marie de Paris (2016) estimates that roughly 5% percent of within-city trips in Paris
are made by cyclists. Of all bicycle trips, Vélib’ bicycles are used 35% of the time,
which amounts to just over 100,000 trips per day. Trips take on average about 20
minutes—such that for the majority of the trips the price is zero —and 30% of trips
are estimated to be commutes.
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(b) Histogram of stock relative to capacity.
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Figure 4.2: Stocks and transactions of bicycles at docking stations.

4.3.1.1 Data

I observe historical series from docking station occupancy as reported every 20 min-
utes by the operator JCDecaux, and collected by IFSTTAR (2017).68 The histogram in
Figure 4.2a shows that docking stations are empty 13% of the time and Figure 4.2b in-
dicates that docking stations are more often empty than fully occupied (10% of time).
The average daily pattern of all transactions over the full sample shown in Figure 4.2c
shows two local maxima at peak hours, suggesting usage by commuters.

Using the definitions from Section 4.2, the Vélib’ data gives us qi,t, the stock of bicycles
at docking station i at time t. However, for this study I am ultimately interested in the
gross outflow qi,t, i.e. the number of bicycles that leave docking station i during the
interval [t� 1, t]. To get a proxy for the outflow, I first calculate the change in stock at
each docking station, which gives the net inflow: �qi,t := qi,t � qi,t�1. Then I take the
negative value to get the net outflow that I define as

q̃i,t := ��qi,t = qi,t � q̂i,t, (4.2)

where qi,t denotes the gross outflow and q̂i,t denotes the gross inflow, both at docking
station i in interval [t � 1, t]. Figure 4.2d depicts the histogram for this indicator and
shows that during most time periods there is only a small change in the stock of
bicycles, if any at all. For the regression analyses, I use the net outflow q̃i,t as a proxy

68The data is available at: vlsstats.ifsttar.fr/rawdata
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for gross outflow qi,t, which implies that I treat q̂i,t as measurement error. This seems
reasonable, as most interruptions considered in this paper are short, such that is not
likely that inflow is affected, especially not in the first 20 minutes of an interruption.
To what extend this affects my results is discussed in greater detail in section 4.4.

4.3.2 Metro interruptions

One of the contributions of this study is the construction of a unique data set based
on Twitter messages sent by Régie Autonome des Transports Parisiens (RATP), the
Parisian metro operator. Each of the fourteen metro lines has a separate Twitter ac-
count that is used for communication with travellers and provides information on
interruptions.69 When a metro line is interrupted, RATP sends out a tweet: a short,
publicly available, online text message containing a maximum of 140 characters. In
these messages the operator announces metro interruptions, and also states which
part of the line is affected. Some interruptions affect only one station (e.g. when a sta-
tion is closed for a security check), while other interruptions affect multiple stations
or cause a full metro line to be temporarily shut down.

From the tweets posted by RATP, I infer the spatial characteristics of interruptions by
connecting the names of the metro stations mentioned in an announcement to the
(spatial) structure of the metro network. See Appendix A for further details on the
data collection. In the end, the data then contain time stamped information on when
the metro service is interrupted and which metro stations are affected.

For this study, I focus on local interruptions in the metro network with a duration
longer than 20 minutes but less than a day.70 These interruptions last 1.79 hours on
average and the large majority (95.4%) take less than 5 hours (see Figure 4.3a). The
distribution over the day exhibits a morning and afternoon peak (see Figure 4.3c).
Across the week, Tuesdays and Fridays seem to have slightly more interruptions,
while Sundays have less (see Figure 4.3b). Figure 4.3d shows that the data contains
between 50 and 100 monthly interruptions for most months, while the months May
till June 2017 have more interruptions.

69The Twitter accounts are consistently named: twitter.com/ligne[line number]_ratp. For in-
stance, the url of the account for line 1 is https://twitter.com/ligne1_ratp.

70The lower bound of of 20 minutes is set to match the time interval of the data on rental bicycles,
in order minimise measurement error in that respect. For longer interruptions measurement error
increases in the length of the interruptions (see Appendix A), and based on manual inspection it
turns out that errors longer than 24 hours were often incorrectly measured. Faulty exclusion of
errors will have a negligible effect on the results due to very low number of metro interruptions
compared to the number of observations. Instead, including metro interruptions that are in fact
measurement errors can have a substantial downward bias. Therefore, it seems justified to be on
the safe side and omit short and long interruptions.
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Figure 4.3: Characteristics of metro interruptions.
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Figure 4.4: Example of docking station (’Picpus’) with metro interruption within 100 metres.

4.3.3 Descriptive statistics

For each docking station, metro stations that lie within 100, 200, and 300 metres are
identified. I then calculate whether there is an interruption within these bands to
analyse the variation over time and across docking stations in relation to metro inter-
ruptions. Figure 4.4 provides an example of a metro interruption in the vicinity of a
docking station. At first glance the stock of available bicycles seems to fall when the
supply of metro drops nearby.

Figure 4.5 shows the net outflow of rental bicycles just before and during a metro
interruption. In general all histograms show a distribution with fatter tails compared
to the one of the full sample in Figure 4.2d, which indicates that there is more activity
in this sub sample. This is likely because interruptions happen during busier hours
and at locations with more activity at docking stations. The histograms indicate that
there is more activity during interruptions (fewer zero flows) and also suggest that
net outflow is higher during metro interruptions (rightward shift of mass). These
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Figure 4.5: Histograms of net outflow conditional on metro interruption within 100m.

effects are most visible during the first 20 minutes of an interruptions. I will employ
statistical models that will be discussed in Section 4.4 to test whether this pattern is
structural and can be ascribed to metro interruptions.

The descriptive statistics in Table 4.1 indicate that at docking stations, on average, 14
out of the total of 33 stands are occupied by a bicycle. The mean of net outflow (q̃i,t)
is roughly zero, as is to be expected due to the bounded stock levels, and the large
number of observations. The maximum and minimum net outflow are unrealistically
large, either due to data collection errors, or due to occasional relocation of bicycles
by the operator. Because there are only very few of these outliers (see the histogram
in Figure 4.2d) I do not exclude them, such that the panel remains balanced. The
distance to the centre ranges from 200 metres to 10 kilometres, this will be used as
interaction with the time of day to control for daily spatial rental patterns.71 Across
the whole dataset, metro interruptions are rare. During the observed period, metro
interruptions within 0-100 and 100-200 metres from a docking station occur in only
0.1% of the time for both bands, and in 0.2% of the time for interruptions within 200-
300 metres.

4.4 Estimation methods

4.4.1 Baseline models

For the analysis I compare different linear cross sectional and panel estimation tech-
niques to estimate the effect of metro interruptions on the demand for rental bicy-

71The centre is set to be Île de la Cité, with coordinates (48.85341, 2.34880).
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Table 4.1: Descriptive Statistics for data from July 2016 to June 2017.

Statistic Mean St. Dev. Min Max
Capacity (bicycle stands) 33.42 13.96 6 99
Stock of bicycles 13.67 14.12 0 99
Net outflow of bicycles 0.0001 1.99 �69 92
Distance to centre (in km) 3.93 1.82 0.22 9.77
Metro interruption within 0m-100m 0.001 0.03 0 1
Metro interruption within 100m-200m 0.001 0.03 0 1
Metro interruption within 200m-300m 0.002 0.04 0 1

Note: 31,154,200 observations accross 1225 docking stations, time interval of 20 minutes.

cles.72 The unit of observation is set to be a bicycle docking station.73

4.4.1.1 Measurement error

Consider the following model

qi,t = �0 +
3X

k=1

�kxk,i,t + "i,t, (4.3)

where qi,t denotes the local demand for rental bicycles and xk,i,t denotes discrete vari-
ables capturing the presence of a metro interruption in the vicinity within three bands
(0m-100m; 100m-200m; 200m-300m). As explained in Section 4.3, I do not observe qi,t

but instead q̃i,t = qi,t � q̂i,t, with q̂i,t inflow of bicycles at docking stations, such that
there is measurement error in the dependent variable. Substituting the measurement
error into equation (4.3) gives

q̃i,t = �0 +
3X

k=1

�kxk,i,t + "i,t � q̂i,t = �0 +
3X

k=1

�kxk,i,t + ✏i,t, (4.4)

72All parameters in this study are estimated using the linear regression function in software package
R (R Core Team, 2013).

73Alternatively one could aggregate the change in stock of bicycles nearby a metro station, i.e. to make
the metro station the unit of observation. This seems to have the advantage that it yields a direct
estimate for the change in demand for rental bicycles in an area surrounding a metro station. How-
ever, the metro network in Paris is dense (e.g. the distance between some metro stations is less than
300 metres, also see the map in Figure 4.1), such that several docking stations lie nearby multiple
metro stations than can simultaneously face interrupted metro service. Therefore, aggregating the
observations geographically leads to double counting of the effects at these docking stations, and
hence, I choose to use the docking station as the unit of observation.
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with ✏i,t = "i,t � q̂i,t. If x is uncorrelated with ✏ then vector � can be consistently
estimated using ordinary least squares (OLS).

For x to be uncorrelated with ✏, the inflow of rental bicycles at docking stations should
not be affected by metro interruptions, such that x is uncorrelated with q̂i,t. This
assumption can be violated when travellers who planned to complement a cycling
trip with taking the metro find out about the interruption and decide not to dock
their bicycles next to the interrupted metro line.

Although it is in general not unreasonable that cyclists bypass docking
stations that are nearby interrupted metro lines, it is unlikely that this happens
immediately—within 20 minutes—after the start of an interruption, for the following
reason. First, one should note that the usual routine of using a PBS is to dock
a bicycle directly upon arrival at any (intermediate) destination. This is also
incentivised by the zero marginal price for rentals below 30 minutes, which is
renewed with every rental. Moreover, since cycling trips take on average 20 minutes,
to be warned about a metro interruption within those 20 minutes requires gathering
information whilst cycling, for instance by checking information on a smartphone.
Given that interruptions are rare in general, and that cycling in a dense city like
Paris requires cyclists to pay close attention to the road and traffic, I regard it safe to
assume that cyclist find out about an interruption, if at all, only after they stopped
cycling and docked their bicycle.

Further, it seems safe to assume that if the estimates are prone to the bias as described
above, it is growing over the course of an interruption due to increased awareness
about the local shut down of the metro service. Arguably, the longer a metro inter-
ruption lasts, the more likely it is that travellers are informed about it. For instance
they get informed by checking the schedule for the metro online, even before starting
with cycling. However, I find that the estimated coefficients decrease over the duration
of interruptions rather than increase, see Section 4.5. Hence, this suggests that, even
during later periods of an interruption, there is most likely only a small upward bias,
if any at all.

Finally, even if some cyclists bypass docking stations as a result of interruptions, then
the coefficient is still unbiased when interpreted as a slightly broader measure of net
substitution. That is, if cyclists find out about the interruption whilst cycling, decide
not to take the metro as planned, and also not dock their bicycle as planned, but
instead continue their trip cycling, then they still use the bicycle as a substitute for the
metro. Therefore, in the unlikely case that the estimates of actual outflow of bicycles
at docking stations are upward biased due to reduced inflow, the estimates still only
capture substitution between metro and rental bicycles.
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4.4.1.2 Controlling for fixed effects and spatial patterns

The map in Figure 4.1 showed that there is large variation in the centrality of the
docking stations. In addition, there are flows towards the centre in the mornings
and towards the periphery in the afternoon, see Randriamanamihaga et al. (2014).
These flows are similar during weekends and on weekdays, but during weekends
they start later (earlier) in the morning (afternoon). To control for this effect I con-
struct a variable that is the interaction between the distance to the centre, defined
as Di, and the time of the day divided in six blocks of four hours, denoted by Hpt ,
with pt := t mod 4.74 By using four-hour blocks I control for potential correlation be-
tween these flows—both on weekdays and during weekends—and interruptions in
the metro network. Including these controls to specification (4.4) gives

q̃i,t = �0 +
3X

k=1

�kxk,i,t +
6X

p=1

�pDiHpt + ✏i,t. (4.5)

Next, to control for unobserved spatial heterogeneity and temporal trends, I add
docking station and hour fixed effects (FE):

q̃i,t =
3X

k=1

�kxk,i,t +
6X

p=1

�pDiHpt + ↵t + ⌘i + ✏i,t, (4.6)

where ⌘i and ↵t denote docking station and hour specific constants.75 This model
accounts for docking station specific characteristics that can affect the change in stock,
for instance due to a favourable location. The hour FE control for temporal effects
like (in)favourable weather conditions and other factors that temporarily affect the
demand for rental bicycles in the city. I use two ways to estimate equation (4.6). First,
mean-differences are calculated per hour and per docking station, this gives

q̃i,t � q̃i � q̃t + q̃ =
3X

k=1

�k (xk,i,t � xk,i � xk,t + xk)

+
6X

p=1

�p

�
DiHpt �DiHp �DHpt +DHp

�
+ ✏i,t � ✏i � ✏t + ✏, (4.7)

74The four-hour blocks captured by Hpt are set to the following blocks: 1am-4am; 5am-8am; 9am-
12am; 1pm-4pm; 5pm-8pm; 9pm-0am. Thereby the morning peak and afternoon peak have distinct
controls both on weekdays and during weekends.

75Note that there is slight abuse of notation using subscript t, as the time interval is 20 minutes, while
I use hour fixed effects instead.
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where a bar denotes the average within a group, specified by a subscript, e.g. q̃i is the
average net outflow at station i. I will refer to this estimation method as the FE model.
Second, starting again with equation (4.6) I mean-difference per hour and then take
first-differences to get

�
�
q̃i,t � q̃i

�
=

3X

k=1

�k� (xk,i,t � xk,i) +
6X

p=1

�p�
�
DiHpt �DiHp

�
+� (✏i,t � ✏i) , (4.8)

which will be referred to as the first-differences (FD) model.

An advantage of using a FD model over a FE model is a relaxation of the weak exo-
geneity assumption. That is, the FE model requires for consistency that E[✏i,t|xi,t, ⌘i] =
0, meaning that the error term should be independent from the regressors and the sta-
tion FE. Instead, a FD model only requires E[✏i,t � ✏i,t�1|xi,t � xi,t�1] = 0. However, as
the FD estimator is estimated on changes in x, the number of observations on which �

is effectively identified is substantially reduced due to interruptions that take longer
than one period. As a result, the FD model might not be as efficient as the FE model.
Finally, there can be an issue with feedback between ✏i,t and future instances of the
regressor, denoted here as xk,i,t+j , for j > 1. As time periods with metro interruptions
are serially correllated, the FD estimator can have a bigger bias than the FE estimator,
see Wooldridge (2015). Overall, it is difficult to decide ex-ante which model performs
best for the problem at hand and I report results for both models.

4.4.2 Duration and low stocks

Next, I analyse two extensions to the baseline model in (4.6). First, I recalculate the re-
gressors for the metro interruptions in such a way that I can distinguish the duration
of the interruption. That is, I calculate separate dummy variables for consecutive time
periods during a metro interruption. With this routine I can assess the path of substi-
tution over time. Analysing this pattern also sheds further light on the properties of
the FE and FD models, because their main difference stems from serial correlation in
the metro interruptions.

Second, the supply of rental bicycles in the time window preceding t is bounded by
the number of bicycles in stock. Therefore, it might be that metro interruptions next
to rental bicycle stations increase the probability of stock depletion. In such cases no
bicycle can be taken, while there might still be latent demand. To assess this effect,
I estimate a linear probability model using station and hour FE, and centrality-time
controls on an indicator variable for stocks below 1, 2, and 3 respectively.
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Table 4.2: Estimation results of baseline models.

Net outflow of rental bicycles
OLS OLS FE FD

(1) (2) (3) (4)

Metro Interruption 0m-100m 0.244⇤⇤⇤ 0.230⇤⇤⇤ 0.241⇤⇤⇤ 0.415⇤⇤⇤

(0.028) (0.027) (0.027) (0.041)
Metro Interruption 100m-200m 0.056⇤⇤⇤ 0.046⇤⇤ 0.055⇤⇤⇤ 0.072⇤⇤

(0.021) (0.021) (0.021) (0.035)
Metro Interruption 200m-300m 0.015 0.004 0.014 0.075⇤⇤⇤

(0.014) (0.014) (0.014) (0.025)
Constant �0.0002⇤⇤⇤ �0.0004⇤⇤⇤

(0.00004) (0.0001)

Centrality-time controls No Y es Y es Y es

Hour FE No No Y es Y es

Observations 31,154,200 31,154,200 31,154,200 31,153,010
R2 0.00001 0.001 0.001 0.00002

Note: ⇤⇤⇤, ⇤⇤, ⇤ indicate 1%, 5% and 10% significance levels. Standard errors in parentheses are robust
and clustered by docking station. Columns (1)-(4) refer to Equations (4)-(7) respectively.

4.5 Results

4.5.1 Estimation results

4.5.1.1 Baseline

Table 4.2 shows that for the baseline model all estimation methods yield a positive
and significant impact of metro interruptions on q̃, the net outflow of bicycles at dock-
ing stations within 200 metres from a metro station. At docking stations within 100
metres the average net ouflow of bicycles is between 0.230 and 0.415 bicycles per
period higher. As expected, the effect seems to decay with distance and is not signifi-
cantly different from zero for docking stations within 200m-300m in the OLS models
and the fixed effects (FE) model.

Comparison of column (1) and (2) shows that controlling for centrality-time patterns
reduces the coefficients by roughly 8%, which suggests that there is correlation be-
tween the location and time of metro interruptions on one hand, and peak hour us-
age of the more centrally located docking stations on the other hand. Accounting for
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Figure 4.6: Estimations over the course of an interruption using FE model.

docking station FE and hour FE results in only a slight increase compared to the OLS
model with additional controls, whereas the FD model finds a substantially higher
effect.

As discussed in Section 4.4, there can be various mechanisms that drive the difference
between FE and FD estimations. The robust standard errors show that the FD model
is indeed less efficient as it uses effectively fewer observations. This is because it is
identified only on changes in metro interruptions, which also means that only the
start and end points of interruptions matter for the FD model. In contrast, the FE
model averages out the effect over the full length of an interruption. The fact that
the FD estimates are larger than the FE estimates thus suggests that there is a non-
linear and convex decay of substitution during interruptions. The next section further
explores this suggestion.

4.5.1.2 Substitution pattern during an interruption

Figure 4.6 shows the estimated substitution pattern during an interruption using the
FE model, see Appendix B for the table with underlying results. There are four main
lessons to be learned from these results.

First, during the time interval when the interruption starts (indicated by period 0),
I do not find a significant effect. These estimates provide a good placebo test and
finding a null result here highlights that location and time specific effects do not drive
the overall results.

Second, the observed pattern indeed shows a convex decay, suggesting that the FD
model overestimates the average results compared to the FE model. This is because
the average effect as measured by the FE model does take the rapid decline in the
substitution into account, whereas the results from the FD model are driven by the
higher substitution at the start of interruptions. Therefore, I regard the FE model as
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the preferred estimation method for measuring the average substitution.76

Third, I find significant substitution in all three distance bands within the first 40
minutes of an interruption. In line with the central estimations in Table 4.2, the sub-
stitution effects are larger the closer a docking station is to a metro station. After one
hour the effect is roughly zero at all three bands. I identity five potential explanations
for this drop. First, there might be measurement error in the timing of the end of
an interruption. For instance, when the service is gradually recovering, the operator
might still want to wait until the service is running at full capacity before sending
the announcement that the interruption is over. Since most observations of interrup-
tions are short (see Figure 4.3a) this then might suppress the coefficients estimated
for longer interruptions. Second, the drop can indicate that bicycles are solely used
during unexpected shut downs, such that after an hour people are informed about
the interruption and seek for other alternatives. Third, it can also be that substitution
towards bicycles is not necessarily lower after an hour, but just not observed in the
vicinity of metro stations, as there is no need for renting a bicycle exactly nearby the
metro station. Fourth, it might be that net outflow drops partially due to increased
gross inflow. One explanation for such an effect would be that if interruptions are
bi-directionally, then docking stations next to interrupted metro stations are more
likely to be a destination for cyclists who rented a bicycle next to another metro sta-
tion that faced the same interruption. It can also be that the operator redistributes
bicycles to docking stations that ran out of bicycles following metro interruptions. In
both of these cases I would underestimate the demand for bicycles, although only for
later periods of metro interruptions, as it seems highly unlikely that increased inflow
as described here takes place immediately at the start of metro interruptions. Fifth,
stocks of bicycles might get depleted due to the increased demand.

4.5.1.3 Insufficient stock

Column (1) of Table 4.3 shows that metro interruptions increase the probability that
a docking station is empty by 1.8 percentage points. Recalling from Figure 4.2a that
stations are empty 13% of the time, it means that interruptions are associated with
a roughly 15% increase in the probability that a station is empty. This suggests that
there can be latent demand for rental bicycles during interruptions. Note, however,
that for a given docking station the distance to the next nearest docking station is
369 metres on average. It is therefore likely that part of latent demand due to empty

76I also analysed the duration effect using the FD model, but this yields very similar results. The
fact that there is little difference between the different techniques when estimating the interrupted
periods separately resembles the equivalence between FD and FE estimators in two-period panels.
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Table 4.3: The effect of metro interruptions on probability of low stock.

Dependent Variable
P(Stock<1) P(Stock<2) P(Stock<3)

(1) (2) (3)

Metro Interruption 0m-100m 0.018⇤⇤⇤ 0.022⇤⇤⇤ 0.030⇤⇤⇤

(0.006) (0.007) (0.008)
Metro Interruption 100m-200m 0.009 0.010 0.012

(0.007) (0.008) (0.008)
Metro Interruption 200m-300m 0.004 0.005 0.007

(0.005) (0.006) (0.006)

Observations 31,154,200 31,154,200 31,154,200
R2 0.001 0.002 0.003

Note: model calculated using station FE, hour FE and centrality-time controls. ⇤⇤⇤,
⇤⇤, ⇤ indicate 1%, 5% and 10% significance levels. Standard errors in parentheses are
robust and clustered by docking station.

stocks is satisfied at other docking stations nearby.77

Columns (2) and (3) in Table 4.3 indicate that metro interruptions are associated with
a 2.2 and 3.0 percentage points increase in the probability of stocks of one or two
bicycles respectively. This is of interest because docking stations with some bicycles
in stock might fail to satisfy demand for two reasons. First, if people do not travel
alone, the availability of a single bicycle is not sufficient. Second, in case of low stocks,
the bicycles left are more likely to be broken or to have a flat tire. This is because
bicycles are not taken from docking stations randomly, and people will select non-
defect bicycles to rent.78

77To see whether depleted stocks have an effect on the baseline estimations I re-estimated the baseline
models using sub-sets in which cases are excluded with stocks below 1, 2, 3, and 4 bicycles re-
spectively. Although this would provide potentially valuable insights in the extent to which there
is latent demand, the analysis is problematic because the data is selected based on characteristics
of the dependent variable (stock levels) that are correlated with the independent variable (metro
interruptions). Nevertheless, when I estimate this model, I find only moderate increases in the es-
timated increase in demand for rental bicycles. Which might still suggests that the baseline results
would not be much higher if sufficient bicycles were available at all times.

78Based on personal observations of docking stations in Paris, indeed often bicycles are registered as
being available but actually are not usable due to defects.

75



Chapter 4. Metro interruptions and the demand for public rental bicycles

4.5.2 Implications

In this section I calculate the total effects that the estimated coefficients imply, and
relate these figures to annual statistics of the PBS and metro traffic.

4.5.2.1 Bicycle rental induced by metro interruptions

The average duration of metro interruptions in the sample is 1.79 hours. The to-
tal number of metro interruptions in the full set of Twitter data is 2,283.79 During
a metro interruption, 11.15 and 16.80 docking stations are on average affected for
the closest band (0m-100m) and second band (100m-200m) respectively. Using these
results I calculate that in the observed year (, 32,897 and 11,314 bicycles are used di-
rectly in response to metro interruptions for the closest band (0m-100m) and second
band (100m-200m) respectively. That means that in total 44,211 bicycle trips were
untertaken to alleviate time losses from metro interruptions. Assuming that the 39.4
million of Vélib’ hires in Paris in 2015, as estimated by Marie de Paris (2016), can be
extrapolated to the time span of the sample, metro interruptions account for 0.11% of
all annual Vélib’ trips.

Finally, because I observe stocks rather than flows, I need to approximate the gross
outflow for situations without an interruption. That is, I have identified q

#
i,t � q

?
i,t

empirically, but not q#i,t and q
?
i,t separately, where q

?
i,t and q

#
i,t denote the quantity of

bicycles that are rented in a normal situation and during a metro interruption nearby
respectively. To still be able to have an indication of the relative increase in demand
for rental bicycles, I approximate net outflow outside interruptions as the share of
annual outflow from Marie de Paris (2016) using the ratio between observed transac-
tions during metro interruptions and the total number of transactions. This yields a
relative increase of rental bicycles outflow at stations within 100m of 11% on average
and 22% during the 20 minutes of a metro interruption.

4.5.2.2 Average substitution during interruptions

Using annual metro traffic statistics from RATP (2017), I can relate the results to metro
usage. Yearly 1.41 billion (non-unique) passengers enter one of the 303 metro stations
within Paris. That is 177 passengers per metro station per 20 minutes on average.
To account for non-service hours I adjust this average under the assumption that the
metro runs 18 hours a day—roughly in line with the distribution of interruptions
in Figure 4.3c—to get an average of 236 travellers entering a metro station during the
79This set is not trimmed because the number of interruptions can still be accurately inferred from the

full data set.
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active hours. I use this value as a rough indication of the number of travellers affected
within a time interval of 20 minutes during an interruption.80

Next, recall that the baseline estimations in Table 4.2 indicate that for the closest two
distance bands, metro interruptions are associated with an increase in bicycle rental
of 0.241, and 0.055 respectively. Using these results I find that during metro inter-
ruptions 0.16% of the travellers that enter a metro station are estimated to switch to a
public rental bicycle. Finally, if I repeat this exercise with estimations of the increased
demand during the first 20 minutes of an interruption, then I find that 0.44% of the
travellers that would have entered a metro station switch to a bicycle for their trip.

4.6 Conclusion

This paper analysed the interaction between a public bicycle system (PBS) and pub-
lic transport by estimating the effect of metro interruptions on the local demand for
rental bicycles within the Vélib’ PBS in Paris. I find that, as a direct consequence of
a metro interruption, the consumption of bicycles within 100 metres of metro sta-
tions increases by 0.72 bicycles per hour per docking station on average, and with
1.54 bicycles per hour per docking station during the first 20 minutes; an increase
of approximately 11% and 22% respectively. Due to their effects on demand, metro
interruptions increase the probability of empty stocks at docking stations with 15%.
The findings highlight that cycling is a local net substitute for metro service, and that
public rental bicycles can alleviate time losses stemming from public transport inter-
ruptions.

Based on the results, I identify several directions for further research. First, since a
PBS is used as a substitute for public transport during interruptions, models of the
optimal location for bicycle docking stations, like the one from Wuerzer and Mason
(2016), can be extended to include these effects. That is, location decisions should seek
to embed a PBS into the broader transport network so as to reduce to the system’s vul-
nerability. Second, future research should assess whether and by how much public
rental bicycles are used as long term substitutes for metro service, and not just during
interruptions. This can provide relevant evidence on to whether the promotion of cy-
cling can be used as a second-best policy instrument to address congestion in public
transport, see Prud’homme et al. (2012), or to reduce car congestion, see Adler and
van Ommeren (2016). Third, future research could analyse more in depth how cy-
cling infrastructure and public transport interact. This in order to better understand

80Note that not all metro interruptions are bi-directional and many stations serve more than one line.
Therefore, this number is likely an overestimate of the total number of travellers affected by an
interruption.

77



Chapter 4. Metro interruptions and the demand for public rental bicycles

determinants of using cycling and public transport as complements (as suggested for
trains) or as substitutes (as found in this study). In addition, stock management of
bicycles at docking stations might be further optimized to enhance shock-absorbing
capacity of the combined systems. Finally, it would be valuable to complement this
study by analysing other cities.
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Appendix 4.A Data collection

Metro operator RATP uses a Twitter account for each line to give status updates
for travellers. The accounts are consistently named with the following structure
twitter.com/ligne[line nr.]_ratp. Twitter allows for downloading the last 3,200
tweets from any account. This was done on July 8 2017. A tweet announcing an
interruption is for instance

15:35, le trafic est interrompu entre Esplanade de la Defense et La Defense
(Grande Arche) (panne de matériel) # RATP # Ligne1.

(posted Fri Apr 14 13:38:24, by Ligne1_RATP)

These announcements are usually, but not always, followed by a clearing message, in
this case

Retour à un trafic régulier sur l’ensemble de la # Ligne1 # RATP. Incident
terminé.

(posted Fri Apr 14 14:47:24, by Ligne1_RATP)

Using these tweets, the timing and location characteristics of metro interruptions are
inferred. The start time of an interruption is set to be the time stamp of the tweet,
which was maximum a couple of minutes later than the time mentioned in the tweets
and accounts for cases where no start time was mentioned in the message itself. The
location is determined by connecting the stations mention in a tweet to the network
characteristics. For instance from the example above I infer the all stations on line 1
between and including ‘Esplanade de La Defense’ and ‘La Defense (Grande Arche)’ face
interruptions.

Based on manual inspection of the messages sent, a clear pattern of potential interrup-
tion announcing messaged emerges such that the following three types of announce-
ments could be classified as the start of an interruption:

• "le trafic est interrompu..." (traffic is interrupted);

• "le trafic est perturbé.." (traffic is disrupted);

• "la station [name] est fermée..." (station is closed).

The end of interruptions is classified if there was a clearing message or if there was
an announcement of delays. The latter is included because it indicates that the metro
is running again, albeit with some delays. Because from the tweets one cannot infer
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whether these delays are severe or minor, it seems safer to assume that the metro is
running and that the interruption is over.

It is important to note that missing an occasional interruption due slightly other
phrasing used for an announcement does not affect the results of this study. It might
slightly reduce the statistical power, but in the total average of non interrupted time-
station pairs its effect on the estimates is negligible due to the rarity of interruptions
(see Table 4.1). For this reason, I only include cases of interruptions that were fol-
lowed by a clearing message (the large majority, at least 87%).81 However, even for
interruptions with a clearing message, finding the correct time for the end of inter-
ruptions in the RATP Tweets is not straightforward and prone to measurement error.
This is because not all endings of interruptions are announced, and thus the differ-
ent messages on interruptions cannot be linked (e.g. with an ID). The only way to
determine the end of an interruption is through scanning through consecutive tweets
that succeeded the announcement to look for a clearing message. In case no clear-
ing message was sent—e.g. because the error interruptions was not solved within a
day—this algorithm erroneously sets the ending of the error at a clearing message
that belongs to a subsequent error. A consequence thereof is that measurement error
increases in the duration of the errors. Although 95.4% of interruptions takes less
than 5 hours—for which the end of interruptions could be accurately determined—I
exclude interruptions longer than 24 hours to avoid measurement error in the timing
of longer interruptions (see also Section 4.3).

81This percentage is calculated as the ratio between total number of clearing messages with total num-
ber of interruption announcements. Note, however, that this value is an underestimate of the actual
ratio and should be treated as a lower bound. This is because sometimes interruptions are updated,
where every update is flagged as a new interruption.
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Appendix 4.B Additional results

Table 4.B.1: Substitution pattern during metro interruption,
using FE model.

Metro Interruption within Net outflow of bicycles
FE

0m-100m0 Start 0.001 (0.027)
0m-100m1 0.512⇤⇤⇤ (0.027)
0m-100m2 0.506⇤⇤⇤ (0.030)
0m-100m3 0.022 (0.039)
0m-100m4 0.078 (0.049)
0m-100m5 0.065 (0.057)
0m-100m6 �0.062 (0.066)
0m-100m-Rest 0.015 (0.026)
0m-100m-Stop �0.045⇤ (0.027)
100m-200m0 Start 0.015 (0.023)
100m-200m1 0.159⇤⇤⇤ (0.024)
100m-200m2 0.178⇤⇤⇤ (0.026)
100m-200m3 �0.074⇤⇤ (0.034)
100m-200m4 �0.041 (0.042)
100m-200m5 �0.012 (0.049)
100m-200m6 0.036 (0.057)
100m-200m-Rest �0.019 (0.021)
100m-200m-Stop 0.054⇤⇤ (0.024)
200m-300m0 Start �0.001 (0.018)
200m-300m1 0.078⇤⇤⇤ (0.019)
200m-300m2 0.087⇤⇤⇤ (0.021)
200m-300m3 0.056⇤⇤ (0.026)
200m-300m4 �0.051 (0.034)
200m-300m5 �0.217⇤⇤⇤ (0.039)
200m-300m6 0.006 (0.045)
200m-300m-Rest �0.051⇤⇤⇤ (0.017)
200m-300m-Stop �0.012 (0.019)

Observations 31,154,200
R2 0.001

Note: model calculated using station FE, hour FE and centrality-
time controls. ⇤⇤⇤, ⇤⇤, ⇤ indicate 1%, 5% and 10% significance lev-
els. Standard errors in parentheses are robust and clustered by
docking station.
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5
Bikes lanes, road safety, and congestion:

evidence from New York City

5.1 Introduction

Urban policymakers around the globe increasingly see cycling as an essential part
of sustainable urban transport. Urban cycling is associated with benefits for pub-
lic health (De Hartog et al., 2010), reductions in air pollution (Gössling and Choi,
2015), and a reduction in congestion (Hamilton and Wichman, 2018). Cycling also
has disadvantages. In particular, compared to other transport modes, cycling is asso-
ciated with higher accident risk.82 Hence, a policy that aims to induce a modal shift
from cars to bicycles by increasing the cost of driving (e.g. a road charge) can lead to
more (fatal) accidents (Schepers and Heinen, 2013). Therefore, many cities invest in
cycling infrastructure, often with protected bike lanes, to accommodate an increase
in urban cycling, while minimising road safety issues. In 2020, several cities sped
up their cycling infrastructure investment, following tighter capacity constraints in

This chapter is based on a paper joint with Dan Graham, Jos van Ommeren, and Erik Verhoef. For
this chapter I want to thank Anupriya, Laila Ait Bihi Ouali, Praj Xuto, Csaba Pogonyi, Prateek
Bansal, Francis Ostermeijer, Hans Koster, Alexandros Dimitropoulos, Martin Adler, and seminar
and conference participants in Amsterdam (Eureka), London (ICL), Toulouse (ITEA) for their help-
ful comments and suggestions.

82 Nilsson et al. (2017) find that for injuries cyclists face a 29 times higher accident rate compared to
car drivers and passengers, and a 10 times higher rate for fatal accidents.
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(a) Standard bike lane. (b) Protected bike lane.

Figure 5.1: Illustration of bike lane upgrades (adopted from NYC DoT, 2020).

public transport due to the COVID-19 pandemic (De Vos, 2020; Honey-Roses et al.,
2020).

In this paper, we analyse the effect of bicycle infrastructure on road safety and traffic
congestion, using methods similar to Mangrum and Molnar (2018). We focus on New
York City (NYC) and exploit spatial and temporal variation from a recent expansion
of protected bike lanes, that occurred mainly on Manhattan. Our paper contributes
to a growing body of literature that examines the relationship between cycling infras-
tructure and road safety. Marshall and Garrick (2011) find improved safety due to
bike lanes by analysing road safety trends in several cities in California. At a more
disaggregated level, Li et al. (2017) find that installation of London’s Cycle Super-
highways did not increase collision rates.83 For NYC, Gu et al. (2017) find that bike
lanes are cost-effective due to their road safety improvements. In a related study, Wall
et al. (2016) find that bike lanes decrease the severity of accidents involving cyclists.
Further, bike lanes appear to yield most safety improvements close to intersections
and on roads with high traffic volumes (Kondo et al., 2018).84

Here, we analyse effects of protected bikes in NYC, often as upgraded from standard
bike lanes, see Figure 5.1. We improve on the literature by addressing sorting. We
do so by focusing on Manhattan, which offers the advantage that it allows for, as we
will show, accurate traffic proxies by using yellow taxi trips. Furthermore, the grid
structure of its streets facilitates clean identification of causal effects as one can derive
likely routes (discussed below).85

83The authors find an increase in the total number of collisions on Cycle Superhighways, driven by
increased mileage on those roads. This highlights that addressing sorting is essential in road safety
analyses.

84This is in contrast to our results, which seems to suggest that most safety benefits are away from
junctions, see Section 5.5.

85Mangrum and Molnar (2018) analyse how much of the overall slowdown in NYC’s traffic can be
attributed to taxis. In their study, bike lanes are used as a control variable, but their sample in-
cludes only a few bike lanes. Hence they cannot provide (average) causal effects of bike lanes on
congestion. Furthermore, they do not focus on road safety and do not address cyclist’s sorting.
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We focus specifically on congestion and safety effects of bike lanes to provide a policy-
oriented overview of the impacts of bike lanes on traffic conditions. Because bike
lanes induce rerouting of cars and cyclists, estimation at street-level is prone to sort-
ing biases. We address sorting by aggregating street-level data to area-direction ob-
servations, where we exploit that north and south-bound trips have to traverse these
areas. As a consequence, all streets affected by bike lanes, including those used for
rerouting, are then covered by the estimated treatment effects. This approach not only
avoids sorting bias but also provides us with an area-wide treatment effect, which is
a relevant input for evaluating bike lane policies.

This paper proceeds as follows. Section 5.2 describes the data and presents descrip-
tive statistics. Section 5.3 analyses the extent that one can use taxi trips as proxy for
traffic flow conditions. Section 5.4 describes the empirical strategy. Section 5.5 dis-
cusses results. Section 5.6 concludes.
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Figure 5.2: Growth of dedicated bike lanes in New York City over the sample period.

Notes: Protected bike path indicates a lane that is separated from other travel lanes, by parking bays, a
barrier, or both. Standard bike lanes are marked on the road surface and adjacent to other travel lanes.
Indices are calculated per month with January 2012 as base.

5.2 Data

5.2.1 Street network

We obtain information on the street network and bike lanes in NYC from City of New
York (2020a,c). For comparability between treated streets (those with a protected bike
lane) and control streets, we only focus on ‘normal’ streets and thereby exclude high-
ways, tunnels, trails, etc. Information on the type and installation date of bike lanes
is available for each street segment. Figure 5.2 shows the development of bike lanes
in NYC during our sample period. The figure highlights that bicycle infrastructure
grew substantially, with an increase of around 60% in the total length of protected
bike paths.86

The map in Figure 5.3a shows the spatial distribution of existing (in July 2012) and
newly installed (after July 2012 but before July 2016) protected bike lanes on Man-
hattan. The map highlights that within our sample period, several streets received a
protected bike lane.

86The expansion of protected paths occurred in waves, which provides us with temporal variation
that we exploit for identification.
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Street
Standard bikelane
Protected in July 2012
Protected after July 2012

(a) Bike lanes on Manhattan. (b) Manhattan areas.

Figure 5.3: Maps with the spatial distribution of bike lanes and defined aggregation areas.

We focus on Manhattan, for which nearly all protected bike lane installations are on
the north-south axis. We use this feature for our identification by defining 35 areas
as in Figure 5.3b. Because routes are either going north or south, we have 70 area-
directions. Each area covers a whole slice of Manhattan spanning roughly eight east-
west streets each. The idea here is to exploit that north-bound and south-bound trips
have to traverse these areas.

As a consequence, any change in infrastructure within an area that induces rerouting
must affect traffic flow on other streets within the same area. We can, therefore, address
sorting (due to rerouting) by using aggregate data for area-directions. Hence, we treat
the whole area-direction as treated in case a bike lane is installed in that area.
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(a) All accidents. (b) Accidents with cyclists involved.

Figure 5.4: Map with spatial distribution road accidents in Manhattan between 2012 and 2020

Notes: Map tile by Stamen Design, under CC BY 3.0, base layer by OpenStreetMap, under CC BY SA.

5.2.2 Road accidents

We observe 0.73 million accidents (of which 3.1% with cyclists involved), as reported
by New York Police Department (NYPD) between July 2012 and June 2016 (City of
New York, 2020b). Based on the geographical location and a timestamp, we assign
accidents to the closest street segment (with time-specific bike lane properties at the
time of the accident). We further observe the number of vehicles involved and the
severity of the accident, that we classify as material damage (more than $1000 of
damage, but no injuries), severe (at least one person injured) and fatal (one or more
deaths). Figure 5.4 shows accident locations for Manhattan, and indicates that acci-
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dents (including those with bikes) are spread across most of Manhattan.

5.2.3 Car traffic

For 387 locations, we observe hourly traffic volumes based on on-site counters from
City of New York (2020e). These data contain counts of all vehicles that pass a certain
street segment. However, these data only cover short time windows, typically less
than a week. Hence, we use these data to validate our approach to use taxi trips as a
proxy for traffic flow and speed.87

We observe 480 million trips made in yellow taxis from July 2012 until June 2016,
obtained from City of New York (2020d). For each trip, we observe the origin and
destination, departure time, arrival time, and trip distance as measured by the taxi
meter.88 Figure 5.5 shows that most taxi trips cover less than 5km, take less than
20 minutes, and that travel speed is often below 20 km/h. Panel 5.5d shows that
a substantial amount of trips (more than 20 million) have a trip distance equal to
the euclidean distance between origin and destination, which implies that these trips
did not take any turn, such that we can infer their exact route. We will use these
trips to identify traffic conditions on Manhattan (see similarly Mangrum and Molnar,
2018).

We select the subsample of trips that start and end on the same road which we will
refer to as within-road trips. We then use this subsample to infer a proxy for traffic
speed and traffic flow as observed using on-site counters. In Section 5.3 below, we
discuss this method in detail and assess the quality of the proxy for flow.

5.2.4 Descriptive statistics

We geographically assign all traffic and accident observations to the nearest street
segment. We first determine hourly averages (for taxi traffic) and hourly counts (for
accidents). We then aggregate to weeks, where we weight the speed for the number
of taxi passings per hour. We thus get a volume-weighted weekly indicator for speed,
so that this measure captures congestion weighted for the number of trips.

Next, we select streets that on Manhattan and have a north or south direction. The
resulting data contains observations for 209 weeks on 1,786 street segments, with

87Our main assumption here is that taxi passings are proportional to total traffic flow, discussed in
detail below in Section 5.3

88From July 2016 onwards City of New York (2020d) does not report the exact origin and destination
pair. Therefore, we cannot precisely identify within-road trips.
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Figure 5.5: Descriptives taxi data.

provides us with an unbalanced panel with 299,376 street-level observations. Panel
A inn Table 5.1 provides descriptive statistics.

We also aggregate our street-level data to the area-direction level, where we combine
all north-bound or south-bound streets segments within an area as depicted on the
map in Figure 5.3b. The gives 14,839 observations from 35 areas each with two direc-
tions. Panel B in Table 5.1 provides descriptive statistics at this level of aggregation.

5.3 Taxi data as proxy for traffic

We use information on taxi trips to construct street-level indicators for speed, travel
time and flow. For speed, we closely follow the strategy of Mangrum and Molnar
(2018). First, we select a subsample of within-road trips, i.e. taxi trips that have their
origin and destination on the same road (street or avenue). Next, we exclude obser-
vations for which the great circle distance between its OD pair is smaller than the trip
distance as measured by the taxi meter.89 The resulting sample contains 17.92 million
trips for which we can be sure that no detour was taken (e.g. to avoid congestion).
For this subsample, Figure 5.6 shows that, as expected, the trip distance is shorter
compared to the full sample, but the speed is roughly similar.
89This can occur because of the error margin in the GPS meter (see Mangrum and Molnar, 2018).
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Table 5.1: Descriptive statistics.

Statistic Mean St. Dev. Min Max
Panel A: Street level

Speed (km/h) 22.143 6.116 0.102 93.590
Taxi volume 541.203 756.886 1 5,720
Accidents (all) 0.119 0.413 0 9
Accidents (at junctions) 0.115 0.407 0 8
Accidents (severe) 0.017 0.133 0 5
Accidents (material) 0.102 0.378 0 8
Accidents (with bikes) 0.005 0.071 0 2
Protected bike lane 0.119 0.324 0 1

Panel B: Area-direction level

Speed (km/h) 22.732 5.363 0.453 64.213
Taxi volume 34,003.410 43,158.610 0 359,776
Accidents (all) 2.886 2.897 0 19
Accidents (at junctions) 2.775 2.862 0 18
Accidents (severe) 0.415 0.715 0 6
Accidents (material) 2.471 2.593 0 17
Accidents (with bikes) 0.118 0.361 0 4
Protected bike lane 0.623 0.485 0 1

Notes: We have 299,376 street-level observations and 14,839 area-direction observations.
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Figure 5.6: Distribution of trip distance and travel speed of within-road taxi trips.

We calculate the travel time (in hours per kilometre) for each week w and each link
l (a street segment in-between two junctions) as the weighted average of all the trips
that fully traversed that link.90 Further, we calculate the taxi flow per link as the sum

90Mangrum and Molnar (2018) also explore two alternative methods to infer the speed of segments
based on taxi trips, but note that the unconditional mean of taxis passings, as used here, performs
best in terms of bias-variance trade-off. We focus on parts of the city that are less crowded than
their study area, so in our setting it is even more important to have less variance.
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Figure 5.7: Traffic flow and taxi passings at weekly level.

of all within-trips that pass by a certain segment. We use these counts to proxy for
total traffic flow. Figure 5.7 shows that weekly taxi flow and total flow are strongly
correlated, especially when demeaned with a link-specific constant as in panel (b). In
the next section, we further analyse this relationship.

5.3.1 Predicting total flow with taxi flow

We analyse the quality of our proxy for flow in Table 5.2. Column (1) shows that in a
bivariate linear regression, taxi flow has a strong correlation with total traffic flow, but
also indicates that their relationship is not proportional and that the predictive power
is modest (as indicated by the R2 of around 0.56). In contrast, column (2) shows that
adding a link fixed effect yields a precisely estimated coefficient of unity, which im-
plies that up to a street-specific (log) constant, taxi passings are exactly proportional
to the total traffic flow at a weekly level. More importantly, the within-R2 is close to
unity (0.96) such that we can accurately predict weekly traffic flow using taxi passing
counts.

Columns (3)-(4) show that focusing on the number of drop offs or pick ups on a link
seems to be a less precise predictor of total traffic flow, although proportionality is still
within a 95% confidence interval. Column (5) shows that the sum of all taxi counts
yields similar results. Column (6) highlights that pick ups are stronger correlated to
total traffic flow than drop offs. This makes sense, especially in NYC, as taxis cruise
to find demand in busy streets.

The results of our hourly (Table 5.B.1) and daily (Table 5.B.2) analysis in Appendix
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B indicates that at these lower levels of temporal aggregation, the within-R2 is much
lower, such that taxi trips do not accurately capture total traffic flow. We, therefore,
conclude that the finest temporal resolution for which taxi passings can proxy total
traffic flow is at the weekly level and that street-segment fixed effects are essential to
obtain an accurate proxy for traffic volumes.

Table 5.2: Estimation results testing predictive power of taxi trips on traffic volume.

log(Total traffic flow)

(1) (2) (3) (4) (5) (6)
log(Taxi passings) 0.602⇤⇤⇤ 1.007⇤⇤⇤ 0.599⇤⇤⇤

(0.036) (0.024) (0.118)
log(Taxi pick ups) 0.987⇤⇤⇤ 0.321⇤⇤

(0.034) (0.147)
log(Taxi drop offs) 0.963⇤⇤⇤ 0.088

(0.037) (0.084)
log(Taxi sum) 1.031⇤⇤⇤

(0.023)
Street segment FE Yes Yes Yes Yes Yes
Within R2 0.565 0.958 0.949 0.922 0.964 0.965
Observations 212 212 206 209 212 204
R2 0.565 0.981 0.976 0.964 0.984 0.983

Notes: Robust standard errors in parentheses are clustered at the level of a street segment (i.e. counter
location).⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.

5.4 Identification strategy

We aim to identify the causal effect of bike lane installation on road safety, car traffic
speed and car traffic flow. Four main statistical challenges arise in our setting. First,
bike lanes are not installed at random as they are targeted at unsafe streets and areas
(City of New York, 2014). We address this issue by including location fixed-effects
such that we exploit within-location variation that stems from bike lane installation.

Second, there are plausibly general trends in transport and road safety that correlate
with the bike lane installation program in NYC. Therefore, we include time fixed
effects to absorb time trends that correlate with bike lane installation. We thus apply
a two-way fixed effects approach, to estimate our effects based on deviations from
city-wide time trends and from location-specific characteristics.

Third, one expects travellers to reroute after the installation of a bike lane. For in-
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stance, cyclists may reroute from streets parallel to benefit from the new bike lane,
and cars may avoid roads with bike lanes. This implies that a street-level analy-
sis is prone to biases due to treatment-induced rerouting (or violation of the stable
unit treatment assumption). To address this issue, we use aggregated observations of
streets in the same direction within areas. Thereby we exploit Manhattan’s elongated
shape and grid-structured street network.

Fourth, roadworks required for the installation of bike lanes are likely to disrupt traf-
fic and thereby affecting congestion and road safety. To avoid such effects to influence
our results, we exclude observations three months prior to a change in infrastructure.
In addition, we exclude the first month after the bike lane has been installed to avoid
any post-roadwork adjustments that may affect our results.

5.4.1 Main specification

To control for sorting due to rerouting, we combine all streets in an area and travel di-
rection into direction-area-week observations. We classify an area-direction as treated
when it is possible to traverse an area north bound or south bound fully on a pro-
tected bike lane. This approach not only assures causality by avoiding violation of
the stable unit treatment value assumption, but also yields policy-relevant estimates
at the area level. We consider variants of the following general specification:

Yzt = �z + t + � · bikelanezt + � ·Xzt + ✏zt, (5.1)

where z denotes area-direction and t time in weeks. We estimate specifications with
Y denoting log of speed (inverse travel time), log of taxi traffic flow, and accidents
counts. For the latter, we use Poisson regression.91 We include two types of fixed
effects. First, �z, is an area-direction fixed effect, which absorbs any unobserved time-
invariant characteristic of the area, including the unobserved constant that assures
that taxi flow accurately describes the total traffic flow. Second, t is a time fixed
effect, that controls for city-wide trends and seasonality. Further, X denotes traffic
controls, which, depending on the specification includes log of taxi traffic flow, log
of speed, or both. Finally, ✏zt denotes the error term that we cluster at the level of an
area to adjust the standard errors for serial correlation.

91 We will use the algorithm as developed by Correia et al. (2019) to avoid the computational burden
of estimating parameters for the fixed effects.
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5.4.2 Estimating sorting effects

To get a sense of rerouting and sorting, we also perform a descriptive analysis at the
level of a street segment. We use a similar two-way fixed effects approach as above, to
control for city-wide trends and street-segment specific unobservables, but in contrast
to the causal model in (5.1) we estimate the treatment parameter on variation across
streets within each area-direction. We consider a similar specification as above:

Yzst = �̃zs + ✓̃zt + �̃ · bikelanezst + �̃ ·Xzst + ✏̃zst, (5.2)

where z denotes an area, s a street segment, and t time in weeks. We now include
fixed effects for each street segment within an area (�̃zs), and also one for each week
interacted with area-direction (✓̃zt). The latter assures that we identify changes in the
traffic within areas. Therefore, �̃ will capture both the causal effect, but also sorting
effects due to rerouting. Hence, comparing estimates from (5.1) and (5.2) sheds light
on the extend to which travellers reroute following bike lane installation.

95



Chapter 5. Bikes lanes, road safety, and congestion

Table 5.3: Effect of protected bike lanes on traffic accidents at area-direction level.

(1) (2) (3) (4) (5) (6)
Accidents Accidents Accidents Accidents Bike acc. No bikes acc.

Bike lane 0.685*** 0.707*** 0.223* -0.029 -0.421*** -0.013
(0.162) (0.162) (0.131) (0.033) (0.141) (0.034)

log(Traf. volume) 0.242*** 0.164*** 0.453* 0.155***
(0.029) (0.049) (0.248) (0.051)

Area-direction FE Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Observations 12,362 12,362 12,362 12,362 11,900 12,362

Notes: Coefficients in columns (1)-(4) are estimated using Poisson regression. All dependent variables
are in logs. Robust standard errors in parentheses are clustered at the level of an area.⇤⇤⇤, ⇤⇤, ⇤ indicate
significance at 1%, 5%, and 10%.

5.5 Results

5.5.1 Main road safety results

Table 5.3 shows the main regression results. Column (1) shows the unconditional cor-
relation between bike lanes and accidents. We find a positive correlation: bike lanes
are installed in areas with around 98% more accidents compared to areas without a
bike lane. We stress that this is not a causal effect since we do not control for area
characteristics. In column (2), we include time-fixed effects, which hardly affects the
point estimate compared to the column (1). This indicates that bike lanes do no cor-
relate with seasonal trends in accidents. In column (3), we still find a positive (but
smaller) effect on accidents when controlling for traffic volume. For a Poisson model,
when controlling for the log traffic volume, the effect of bike lanes can be interpreted
as the effect on the accidents rates, i.e. the number of accidents per traffic volume.
Hence, the result here implies that areas with bike lanes tend to have higher accident
rates than those without a bike lane.

Column (4) depicts our preferred specification for overall accident levels. Here, we
obtain a causal estimate by absorbing unobserved area characteristics using an area-
direction fixed effect. The results highlight that we do not find a statistically signifi-
cant effect of bike lanes on traffic accidents. We thus conclude that installing a bike
lane in an area does not seem to affect overall accident levels.
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Table 5.4: Effect of protected bike lanes split by location.

(1) (2) (3) (4)
All Not at junction At junction At junction with bikes

Bike lane -0.029 -0.894*** 0.010 -0.394**
(0.031) (0.252) (0.032) (0.154)

log(Traf. volume) 0.164*** 0.491** 0.113** 0.363
(0.044) (0.235) (0.045) (0.255)

Area-direction FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Observations 12,362 10,077 12,362 11,836

Notes: Coefficients are estimated using Poisson regression. Robust standard errors in parentheses are
clustered at the level of an area.⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.

In the next analysis, we distinguish between accidents involving bicycles and those
without bicycles. We then find, as shown in column (5), evidence for a causal 34%
reduction in accidents with cyclists involved due to bike lane installation in an area.
In contrast, we do not find such an effect on accidents without bicycles involved, as
shown in column (6). The latter makes sense because we control for any change in
volume induced by the bike lane.

5.5.2 Effect at and away from junctions

In Table 5.4, we use subsamples to analyse how bike lanes have differential effects at
junctions and away from junctions. Column (1) is a copy of our preferred specification
as a reference. In column (2) where we focus on accidents away from junctions, we
find a statistically significant coefficient, indicating a 59% reduction in the number
accidents involving all modes, due to bike lane installation. Column (3) highlights
that focusing only on accidents at junctions still leads to a null result.92

In column (4) we focus on accidents involving cyclists. Here, we find a negative effect
that is statistically significant, but not statistically different from our main estimate for
accidents with bikes involved. This implies that for cyclists, bike lanes lead to similar
safety improvements both at junctions and on streets.

92 Naturally, the point estimate is higher than the one from column (1), since the latter is a weighted
average of treatment effects at junctions and away from junctions. Because the vast majority of
accidents occur at junctions, it makes sense that we obtain null results both in column (1) and (3),
while still finding a negative and statistically significant effect in column (2).
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Table 5.5: Effect of protected bike lanes on traffic indicators.

(1) (2) (3) (4)
log(Traf. speed) log(Traf. vol.) log(Traf. speed) log(Traf. vol.)

Bike lane -0.013 0.007 -0.013*** 0.023***
(0.011) (0.028) (0.003) (0.008)

Aggregation level Area Area Street Street
Time FE Yes Yes Yes Yes
Area-direction FE Yes Yes
Time ⇥ Area-direction FE Yes Yes
Street-segment FE Yes Yes
R2 0.803 0.995 0.894 0.986
Observations 12,362 12,362 244,189 244,189

Notes: Robust standard errors in parentheses are clustered at the level of an area.⇤⇤⇤, ⇤⇤, ⇤ indicate
significance at 1%, 5%, and 10%.

We also explored analysing bike accidents away from junctions. However, given the
few accidents away from junctions, this analysis yields data that is too sparse to be
able analyse with a Poison fixed effects approach, that we need to assure causality.
Because the point estimate for bikes at junctions (column (4) in Table 5.4), is smaller
than the one for all bike accidents (column (5) in Table 5.3), it is very plausible that
bike accidents away from junctions are also reduced due to bike lanes.

5.5.3 Further sensitivity analyses

In Appendix B we report further sensitivity analyses. Table 5.B.3 shows that the re-
sults are not affected by the inclusion of traffic speed as control. Further, Table 5.B.4
highlights that do not find statistically significant coefficients when focusing on se-
vere accidents (with at least one injury or a fatality) or accidents with only material
damage. This suggests that bike lanes do not differentially affect light or more severe
accidents.

5.5.4 Traffic and sorting

In Table 5.5 we analyse the effects on traffic. In columns (1) and (2) we use observa-
tions at the area-direction level, such that we can obtain a causal effect. In column (1),
we find a negative, but not statistically significant, effect of bike lanes on the speed of
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car traffic for the whole area. This suggests that bike lanes have no differential effects
on traffic speeds within the same area-direction. Column (2) shows that we cannot
identify any effect on (area-direction wide) traffic flow. This suggests that weekly de-
mand is not affected by a bike lane. Note that we control for city-wide trends, so our
results here are abstracted from overall modal shifts (e.g. from cars to bikes). Table
5.B.3 in Appendix B shows that controlling adding additional controls for speed or
traffic volume does not change the estimates.

In columns (3) and (4) we estimate the same specifications, but now on street-level
observations. These results are descriptive in the sense that they both capture a
causal effect of bike lanes, as well as any effects from rerouting. In column (3) we
find that bike lanes face traffic speeds that are 1.3% lower compared to other streets
in that area-direction. In column (4) we find that streets with bike lanes have a 2.3%
higher weekly flow compared to other streets in the same area-direction. This sug-
gests that some cars reroute towards roads with bike lanes, e.g. because of safety im-
provements.

5.6 Conclusion

Governments increasingly invest in cycling infrastructure. In this paper, we focus
on New York City and estimate the causal effect of protected bike lanes on traffic
speed and flow, and road safety at the area level. Because a street-level analysis is
prone to biases due to treatment-induced rerouting, we use aggregated observations
of streets in the same direction within narrowly defined areas on Manhattan. Thereby
we exploit Manhattan’s elongated shape and grid-structured street network to assure
causality, but also to obtain policy-relevant area-level estimates.

We find that bike lanes improve safety for cyclists both away from junctions and
at junctions. Protected bike lanes reduce by 34%. Our results further indicate that
bike lanes have no statistically significant effect on overall road safety at junctions.
However, we find that a bike lane in an area reduces accidents away from junctions
by 59% for all modes combined.

Using taxi trips as an accurate proxy for traffic indicators, we find no statistically
significant evidence for an effect of bike lanes on traffic speed or traffic flow (at the
area level). However, we find that the traffic speed on streets with bike lanes is 1.3%
lower compared to streets in the same direction within the same area. At the same
time, our results indicate that streets with a bike lane accommodate a 2.3% higher
throughput. If we assume that streets on Manhattan often operate at their maximum
capacity, this increase in traffic flow is likely possible due to the reduction in speed,
such that traffic density is increased.
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In our setting, we have to be agnostic about underlying mechanisms. For instance,
we cannot distinguish between a behavioural effect (e.g. cyclists and car driver may
be more or less cautious due to a bike line), and a mechanical effect (e.g. even with
the same driving behaviour the number accidents may be reduced). For a more de-
tailed understanding, future research could disentangle these mechanisms by collect-
ing higher resolution data on driving behaviour from motorised vehicles and bicy-
cles. Ultimately, one could think of empirically estimating a model with endogenous
speed choice as a function of road safety (such as the one developed by Verhoef and
Rouwendal, 2004). Thereby, such a design could isolate mechanical and behavioural
effects of bike lanes on road safety.
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Appendix 5.A Additional descriptives

5.A.1 Additional maps

Street 
Counter

Figure 5.A.1: Map with locations of traffic counters.
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Appendix 5.B Additional results

5.B.1 Further taxi proxy analysis

Table 5.B.1: Estimation results testing predictive power of taxi trips at hourly level.

log(Total traffic flow)

(1) (2) (3) (4) (5) (6)
log(Taxi passings) 0.324⇤⇤⇤ 0.262⇤⇤⇤ 0.098⇤⇤⇤

(0.033) (0.013) (0.007)
log(Taxi pick ups) 0.186⇤⇤⇤ 0.098⇤⇤⇤

(0.010) (0.011)
log(Taxi drop offs) 0.158⇤⇤⇤ 0.062⇤⇤⇤

(0.008) (0.008)
log(Taxi sum) 0.323⇤⇤⇤

(0.013)
Street segment FE Yes Yes Yes Yes Yes
Within R2 0.210 0.201 0.142 0.099 0.307 0.177
Observations 20,416 20,416 15,639 14,986 20,416 13,277
R2 0.210 0.746 0.765 0.760 0.780 0.803

Notes: Standard errors clustered at street segment.⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.

102



Table 5.B.2: Estimation results testing predictive power of taxi trips at daily level.

log(Total traffic flow)

(1) (2) (3) (4) (5) (6)
log(Taxi passings) 0.800⇤⇤⇤ 0.852⇤⇤⇤ 0.568⇤⇤⇤

(0.021) (0.019) (0.037)
log(Taxi pick ups) 0.668⇤⇤⇤ 0.200⇤⇤⇤

(0.021) (0.028)
log(Taxi drop offs) 0.643⇤⇤⇤ 0.058⇤⇤

(0.024) (0.026)
log(Taxi sum) 0.772⇤⇤⇤

(0.018)
Street segment FE Yes Yes Yes Yes Yes
Within R2 0.822 0.704 0.660 0.595 0.672 0.837
Observations 1,991 1,991 1,477 1,512 1,991 1,373
R2 0.822 0.965 0.949 0.941 0.961 0.973

Notes: Standard errors clustered at street segment.⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.

103



Chapter 5. Bikes lanes, road safety, and congestion

5.B.2 Robustness checks

Table 5.B.3: Effect of protected bike lanes on traffic accidents at area-direction level.

(1) (2) (3) (4) (5) (6)
Accidents Accidents log(Speed) log(Speed) log(Volume) log(Volume)

Bike lane -0.029 -0.032 -0.013 -0.012 0.007 0.005
(0.033) (0.033) (0.011) (0.011) (0.028) (0.028)

log(Traf. volume) 0.164*** 0.149*** -0.050**
(0.049) (0.049) (0.022)

log(Traf. speed) -0.298*** -0.183***
(0.065) (0.066)

Time FE Yes Yes Yes Yes Yes Yes
Area-direction FE Yes Yes Yes Yes Yes Yes
R2 0.803 0.804 0.995 0.995
Observations 12,362 12,362 12,362 12,362 12,362 12,362

Notes: Standard errors clustered at area level.⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.

Table 5.B.4: Effect of protected bike lanes on accident severity.

(1) (2) (3) (4) (5)
All Severe Severe Material Material

Bike lane -0.032 0.007 0.003 -0.032 -0.038
(0.031) (0.076) (0.076) (0.033) (0.033)

log(Traf. volume) 0.149*** 0.016 0.179***
(0.044) (0.113) (0.047)

log(Traf. speed) -0.298*** -0.227 -0.306***
(0.072) (0.178) (0.077)

Area-direction FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Observations 12,362 12,362 12,362 12,362 12,362

Notes: Standard errors clustered at area level.⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.
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6
Hands on the wheel, eyes on the phone:

the effect of smartphone usage fees
on road safety

6.1 Introduction

Traffic accidents are an important loss to society. In the European Union (EU), for ex-
ample, about 25,000 road users lost their lives due to traffic accidents in 2018. For ev-
ery death on European roads, there are an additional 50 injuries of which 8 are severe
and 4 cause permanent disability (European Commission, 2019b). Next to this physi-
cal harm, accidents also cause psychological suffering to those directly involved and
to friends and relatives of the victims. Traffic accidents also lead to monetary losses
due to damages to private and public property and are a major cause of traffic con-
gestion. The total costs of traffic accidents in the EU are estimated to be about e280
billion, or 2% of GDP, which makes it the most important external cost of transporta-
tion (European Commission, 2019a). Similar numbers can be found for the United

This chapter is based on Brands et al. (2020), the authors would like to thank Jos van Ommeren, Erik
Verhoef, Hans Koster, Paul Koster, Niels Bos, Jiska Klein, Dan Graham, Csaba Pogonyi, Laila Ait
Bihi Ouali, Niek Mouter, Hendrik Wolff and conference and seminar participants in Amsterdam
(VU), Paris (ITEA), London (Imperial College), Budapest (hEART), Toulouse (SBCA), Rotterdam
(EEA), Berkeley (UEA), and Jakarta (Universitas Indonesia). We also would like to thank Rijkswa-
terstaat Netherlands for granting us access to the data.
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Figure 6.1: Road fatalities in the EU and 2020 policy target (European Commission, 2019b)

States and other countries (Blincoe et al., 2015).

These high costs explain the vast body of scientific literature on traffic accidents that
exists today, including important contributions from the field of economics on related
topics such as the risk of drunk driving (Levitt and Porter, 2001a), the size of the ac-
cident externality caused by one typical additional driver (Edlin and Karaca-Mandic,
2006), and the effect of mandatory seatbelt laws on traffic fatalities (Cohen and Einav,
2003).93 The substantial costs of accidents also provide governments with a strong ra-
tionale to prioritise safety in road design, and in traffic and vehicle-related regulation.
Safety concerns in this respect largely shape policy decisions on aspects such as speed
limits, road geometry, obligatory usage of seatbelts, and factors that affect the ability
of road users to maintain attention on the driving task. This includes prohibiting
the use of alcohol and cell phones by drivers. Figure 6.1 indicates that stricter safety
regulations over the past two decades have had a promising impact on the number
of road fatalities in the EU. However, progress in terms of reductions in road fatali-
ties, as compared to the EU policy target formulated by the European Commission,
began to diverge and stagnate in 2013, even after accounting for vehicle kilometres
travelled.94

Despite regulations that forbid car drivers from using mobile phones while driving,
effective regulation has proved to be difficult, and technological progress in recent
years has transformed cell phones into omnipresent devices that can be seen as a
major cause of distraction in traffic. Smartphones stand out as a major culprit, as they
have enabled various novel distractions, including sending and receiving messages

93Other notable contributions include: Levitt and Porter (2001b), Adams and Cotti (2008), Jacobsen
(2011), and DeAngelo and Hansen (2014).

94Data on vehicle kilometres travelled for all EU countries does not span back until 2000, so we plot
fatality rates per million passenger-km for four major EU countries in Figure 6.A.1 of Appendix A,
which shows a similar trend.
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via numerous applications, news updates, video calling, and receiving notifications
from social media platforms. In experimental settings, this has been shown to cause
visual, cognitive, and physical distractions which result in longer reaction times, less
awareness, and various other deficiencies which restrict full control of the vehicle
(Zhao et al., 2013, Young et al., 2014, Haque and Washington, 2015).

Findings from the lab are generally corroborated by observational studies in natu-
ralistic settings and crash-based studies (see e.g. Dingus et al., 2016, Redelmeier and
Tibshirani, 1997, and McEvoy et al., 2005). However, various studies using field data
fail to conclusively prove this relation.95 In the first large scale field study of its kind,
Bhargava and Pathania (2013) estimate the effect of mobile calls on accidents using
a discontinuity in the price scheme at 9 pm between 2002 and 2005. They find a 7.2
percent increase in call likelihood after the price drop but no corresponding increase
in the number of accidents at the 9 pm threshold. Further research on the effect of
statewide mobile phone bans in the US indicates that the effects are short-lived, if
detectable at all (Abouk and Adams, 2013; Burger et al., 2014).

The most recent studies that focus on smartphones find more conclusive negative
safety effects. Hersh et al. (2019) exploit temporal variation in 3G coverage in Cal-
ifornia between 2001 and 2013 to study the effect of gaining access to mobile data
on vehicle accidents. After controlling for vehicle kilometres travelled and road seg-
ment fixed effects, the authors find that crash rates increase by 1.1 percentage points
when roads receive 3G coverage. Furthermore, Faccio and McConnell (2020) find
that locations with a lot of activity of Pokémon Go (a popular video game app on
the smartphone at the time) faced more vehicle accidents after the introduction of the
game, suggesting that 136 of the total 2850 nation wide crashes (approximately 5%)
in the five months after the introduction of the game could be attributed to it.

Although numerous studies have investigated the link between phone use and acci-
dents, a substantial research gap prevails.96 Most existing estimates are dated, while
mobile phone use has dramatically changed since the turn of the century in terms of
adoption, exposure and capabilities.97 For example, in the much-cited study by Re-
delmeier and Tibshirani (1997), only 18% of drivers owned mobile phones which had
limited capabilities, while in more recent studies, Bhargava and Pathania (2013) only
focus on mobile calling and Hersh et al. (2019) end their study in 2013. Furthermore,
studies that do address the interaction between modern smartphones, with data us-
age, and accidents, either focus on very specific non-generalisable phone-use (Poké-
95Drivers may also be able to navigate streets more easily using navigation applications, hence the

effect of phone use on traffic accidents is not per se negative.
96See e.g. reviews by WHO (2011), Oviedo-Trespalacios et al., 2016, and Lipovac et al. (2017).
97Mobile phone subscriptions per capita have been above one in the world since 2016 (World Bank,

2019) and in 2018 smartphone penetration was above 70% in many developed nations (Newzoo,
2018).
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mon Go in Faccio and McConnell, 2020), or only focus on highways (Hersh et al.,
2019). In addition, most studies do not account for unobserved factors that may be
correlated to both phone use and accident likelihood, such as risk preferences at the
individual level and demand factors at the aggregate level. Finally, as sample sizes
were often small in experimental and crash-based studies, generalisation to aggregate
effects is often problematic. Therefore, an important and ongoing research question is
to what extent does smartphone use while driving affect the number and likelihood
of traffic accidents.

We propose a novel approach based on field data and a natural experiment induced
by a change in EU roaming regulations. The specific policy, imposed in June 2017,
mandated mobile phone operators to abolish all roaming surcharges for EU cus-
tomers travelling outside their home country network within the EU. The policy,
dubbed Roam Like at Home (RLAH), implied that people travelling abroad within the
EU now face their home fee, which is substantially lower than pre-policy charges. As
a consequence, growth in roaming cellular traffic increased sharply after the policy.
Mobile data use while roaming grew by over 200 percentage points, whereas local
usage was not affected by the policy and faced stable growth rates.98 We hypothesise
that, as of June 2017, EU citizens driving abroad are more likely to be distracted by
their phone, while nothing changed for local usage.

We use microdata on all police-reported road accidents in the Netherlands from 2014
until 2018. We then use vehicle registration information to classify which (foreign)
drivers are plausibly treated by the RLAH policy. The causal effect of phone use
on road accidents is then estimated using a difference-in-differences (DiD) approach,
where we use the RLAH policy as treatment, and local users as control group. This
allows us to overcome endogeneity issues from earlier studies due to measurement
error in phone use and omitted variables. Our key identification assumption is that
in the absence of the policy, the number of vehicle accidents by roaming users should
follow similar trends to local drivers, for which we provide evidence in our parallel
trends plot.

Our findings imply that the increase in phone use due to the policy causes the number
of accidents to increase by around 10%. Under plausible assumptions, this implies a
crash risk odds ratio of around 3.8. Under the assumption that this mechanism also
carries over to local drivers and holds for other EU countries, our results then imply
that each year as many as 2,500 road fatalities in the EU can be attributed to phone
use. This suggests that about one-third of the gap between the EU target and the
observed number of fatalities shown in Figure 6.1 could be reduced by successfully
banning mobile phone use of drivers.

98Growth rates have been calculated using information from the International Roaming BEREC Bench-
mark Data Reports (for roaming) and the Dutch Authority for Consumers and Markets (for locals).
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This study contributes to the existing literature in five ways. First, our results pro-
vide a causal estimate of phone use on road safety based on a novel method. Sec-
ond, because our identifying variation comes from a very recent policy intervention,
our estimates take into account modern distractions of smartphones, and particularly
changes in mobile data use. Third, because our analysis is based on revealed and non-
experimental field data of all registered accidents in the Netherlands, we are able to
estimate an aggregate effect. This is especially relevant given the urgency of road
safety issues and the rapid growth in cellular traffic. Fourth, with our approach, we
can estimate how smartphone distractions affect accidents for different severity levels
and on different road types. We show that phone distractions increase accident risk
predominantly on local urban roads, which highlights that studies focusing solely on
highways underestimate the total effect. In addition, our results indicate that both
light accidents, as well as fatal accidents, increase due to smartphone use. Fifth, we
introduce an identification strategy that is directly applicable to all other countries
in the European Union, allowing for convenient cross-validation of our results using
data from other countries in future research.

The rest of this paper is structured as follows. Section 6.3 describes the policy context,
Section 6.4 explains the methods employed, and Section 6.2 presents the data we use.
Section 6.5 discusses our results, robustness checks, and implications. Finally, Section
6.6 concludes.

6.2 Data and context

6.2.1 Road safety data

We observe police reported accidents in the Netherlands as published by the Dutch
Ministry of Infrastructure and Water Management (specifically ‘Rijkswaterstaat’).
The maps in Figure 6.2 plot the locations and annual counts of vehicles involved
in accidents per province. The maps highlight that accidents are spread across the
country, but more concentrated around urban areas and highways.

Our data contains characteristics of road accidents and of the parties involved.99 For
each accident, we observe accident circumstances, such as day of the week, time of
the day, road type, weather conditions, and road surface conditions. Furthermore,
the dataset contains vehicle related characteristics, such as vehicle type, vehicle ma-
noeuvre just before the crash, sex and age of the driver, and the country in which the
99We use the full dataset available to researchers as we require privacy sensitive information on vehicle

registration nationality. A publicly available version of the data is available on data.overheid.
nl, but does not contain all party characteristics.
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(a) Accident locations. (b) Vehicles in accidents per year per province.

Figure 6.2: Maps of the Netherlands with accident locations and counts per province.

vehicle is registered.100 Finally, party related variables are also reported and provide
information such as age and sex of involved parties, casualty severity and whether
the casualty was a driver, passenger, cyclist, or pedestrian.

We directly observe the vehicles’ country of registration. Drivers of cars registered in
EU countries, but outside of the Netherlands are likely to reside in those EU coun-
tries. Therefore, vehicle registration is a good proxy of whether the driver incurs
roaming costs (before RLAH) or uses the local network instead.101 To abstract from
long term trends, we use data for the years 2014 until 2018, which contains 0.76 mil-
lion vehicles involved in 0.44 million accidents. Most accidents have more than one
vehicle involved (78%), therefore we use information at the party level to avoid mea-
surement error which may be present at the accident level, as police reports do not

100For our particular application we cannot use most of these characteristics as they are often missing
for non-local cars. This is because these data stem from the car registry in the Netherlands, which is
not connected to databases from other countries. The data does not contain information on whether
a car is rented or leased.

101Dutch law requires that any vehicle staying in the Netherlands for more than six months must ob-
tain a Dutch licence plate. Note that, due to our difference-in-difference method, misclassification
can pose a problem for the efficiency of our estimator, but will not bias our estimates under the
plausible assumption that misclassification is not correlated to the roaming regulation.

110



2014 2016 2018

30

60

90

1500

2000

2500

3000

7000

9000

11000

13000

Time

# 
Ve

hi
cl

es
 in

 A
cc

id
en

ts

Deadly

Injury

Material

Figure 6.3: Number vehicles involved in accidents per month by severity.

indicate which party was at fault. We discuss this issue and how we deal with it in
more detail in Section 6.4.2.

6.2.1.1 Trends in road safety

Figure 6.3 shows that there appears to be an increase in the number of vehicles in-
volved in accidents over all levels of severity. Over the period of study, our data
shows that the annual number of deadly accidents increased by around 20%, while
the number of accidents involving injury and material damage increased by about
50%, with most of the change between 2014 and 2016. In an average month there are
around 74 vehicles involved in deadly accidents, 2,381 vehicle accidents involving
injury and 10,280 vehicle accidents involving material damage.102

6.2.1.2 Grouping roaming drivers

We combine observations in our sample into six country groups for our main analysis.
The aim of this grouping is to strike a balance between, on the one hand, optimally
controlling for unobserved heterogeneity per country of origin (by means of group
fixed effects), and on the other hand, preserving statistical power by avoiding zero
counts (which are omitted due to the log transformation of the dependent variable,

102We also checked whether the number of vehicles per accident is stable over time, which turns out to
be the case, both for accidents with only locals as well as accidents with at least one roaming user
involved.
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see Section 6.4 for a discussion).

The first group contains vehicles with a Dutch registration and is our control group
(95.12% of sample). Second and third, are the two adjacent countries, with 1.76% of
German vehicles and 1.04% of Belgian vehicles, respectively. The fourth group con-
tains other western European countries, which account for 0.42% of vehicles in acci-
dents. Drivers from these countries often visit the Netherlands as tourists.103 The fifth
group contains Romanian, Polish, and Bulgarian vehicles (1.32%) which are relatively
common on Dutch roads due to joint economic activity and labour migration. More
than for other cases, drivers from these labour migration countries may have a Dutch
phone subscription and thus might not be treated by the RLAH policy. Therefore, it
is important to include a separate fixed effect for vehicles from these countries. It also
allows us to run a robustness check where we exclude vehicles from these countries,
which highlights that vehicles from these countries do not drive our overall results
(see Section 6.5.3.1). The sixth group contains all remaining EU countries (0.33%).

6.2.2 Descriptive statistics

6.2.2.1 Vehicles involved in accidents

Around 5% of vehicles involved in accidents are from roaming users, 46% of drivers
are female and the average age is 42 years old. Of the total number of accidents, 0.58%
are deadly, 18.7% result in injury, and 80.72% cause material damage only.104

Local and roaming drivers involved in accidents are roughly comparable, but roam-
ing users tend to be younger, male, and drive more on fast roads than local drivers.105

In terms of the damage reported, the share of material damage is relatively large for
roaming vehicles. This may be a reporting bias, as language barriers can make it
more likely for the police to be called in these situations with only material damage,
whereas locals may more easily settle without police present. Importantly, dissimi-
larities between local and roaming drivers do not threaten our identification under

103These are: France, Great-Britain, Denmark, Spain, Austria, Portugal, Luxembourg, Sweden, Italy,
Ireland, Norway, and Finland.

104Table 6.A.1 in Appendix A presents the descriptive statistics for vehicles involved in accidents.
105Table 6.A.2 in Appendix A provides more detailed descriptives of vehicles involved in accidents by

group.
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Table 6.1: Descriptive statistics for province-month data

Statistic N Mean St. Dev. Min Max
Panel A: Locals

Vehicles in accidents 720 953.11 757.40 84 3,297
log(Vehicles in accidents) 720 6.52 0.86 4.43 8.10
No trucks 720 189.13 133.80 26 564
Single vehicle accidents (SV) 720 742.60 590.43 72 2,503
Hotel Nights (⇥ 1000) 720 148.99 118.92 11 565

Panel B: Roamers

Vehicles in accidents 3,600 9.78 13.41 0 92
log(Vehicles in accidents) 3,032 1.79 1.19 0.00 4.52
No trucks 3,600 1.68 2.53 0 20
Single vehicle accidents (SV) 3,600 6.16 9.54 0 71
Hotel Nights (⇥ 1000) 3,600 22.21 72.31 0 707

the plausible assumption that the RLAH policy does not induce sorting.106 Dissim-
ilarities become more relevant when generalizing estimated effects to the untreated
population. We discuss the assumptions required to attribute the estimated effect to
all drivers in Section 6.5.4.

6.2.2.2 Distribution of accidents

Our dependent variable is the number of vehicles involved in accidents, aggregated
by province, month and country group. Table 6.1 presents descriptive statistics for
various subsets. Naturally, the mean of the count of vehicles involved in accidents is
in levels much larger for locals than for roaming users. In logs, however, the figures
are more comparable and the standard deviation is in the same ballpark. Further
we find that after controlling for the different mean levels —as we do by including
country fixed effects—the treated and control appear to have similar distributions
(discussed below).

Figure 6.4 shows histograms of the dependent variable after log transformation and
after demeaning for fixed effects. Panels (a)–(c) indicate that these empirical distribu-
tions are left-skewed, as to be expected from count data. Similarly, panels (d)–(f) show
106Figure 6.A.3 in Appendix A shows that the age distribution of roaming users does not change con-

siderably after the policy was implemented. We note, however, that even if we find a policy-
induced sorting in the distribution of drivers in accidents, this does not necessarily bias our esti-
mates, as it may be a result of the policy e.g. younger drivers may be more likely to use their phone
and therefore be more represented in accidents, while the distribution of age groups in kilometres
travelled may be the same.
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Figure 6.4: Histograms of vehicles per month per province.

that after taking logs of these counts, distributions still seem to be slightly skewed to
the left. However, if we demean by our panel and time fixed effects, as in panels
(g)–(i), distributions seem quite symmetric, albeit with a larger variance for roam-
ing compared to local users. This is non-problematic, however, when using standard
errors that are robust to heteroskedasticity.

6.2.2.3 Hotel nights data as proxy for traffic intensity

An important concern with our approach may be that country specific trends in traffic
intensity, or vehicle kilometres travelled (VKT), might drive our results. For example,
an increase in tourism over time may result in relatively more VKT by roaming users
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and therefore increase the likelihood of a roaming accident after the introduction of
RLAH. We do not observe VKT for each drivers’ country at the required level of
temporal (monthly) and spatial (province) disaggregation. Instead, we use overnight
stays in hotels, obtained from Statistics Netherlands (2019a), to proxy for changes
in tourism and thereby monthly traffic intensity. For each province, we observe the
number of overnight stays per month, disaggregated into guests’ country of origin.
We assess the quality of this proxy in two ways.

First, we observe country wide VKT at the annual level for locals and non-locals.
Figure 6.5 shows annual growth rates of hotel nights and VKT for local and roaming
(non-local) drivers. The figure highlights that over the course of the five years prior to
the treatment, VKT by roaming drivers grew more compared to local VKT. However,
a similar, yet even stronger trend is visible for hotel nights. Even when we exclude
the province containing Amsterdam, an obvious hot spot of growth in hotel nights,
we see a similar pattern. This suggests that we can capture trends in VKT with hotel
nights, albeit potentially overestimating changes in VKT as it increases less.

Second, we analyse how traffic intensity and the number of vehicles involved in acci-
dents are related to hotel nights for Dutch drivers, for which we observe traffic inten-
sities on highways at the province-month level (Statistics Netherlands, 2019b). Table
6.A.5 in Appendix A shows that, after controlling for time and panel (in this case sim-
ply province) fixed effects, there is no statistically significant effect of hotel nights for
Dutch nationals with respect to traffic intensity, or number of vehicles involved in ac-
cidents. Importantly however, we do find a statistically significant and robust effect
for the case of roaming drivers and the number of vehicles involved in accidents. This
suggests that hotel nights are a good proxy for country specific changes in VKT from
tourism and business related trips. Furthermore, the R2 in column (2) is 0.99, which
indicates that almost all of the variation in the traffic intensity can be explained by our
fixed effects, suggesting that group specific changes in traffic intensity are unlikely to
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effect our estimates.107

6.3 The Roam Like at Home Policy

On 27 October 2015, the European Parliament adopted regulation No. 2015/2120
which prescribed that all roaming surcharges should be abolished within the EU.108

Following a decade of EU roaming regulations which aimed to gradually reduce
roaming fees within the EEA, the Roam Like at Home (RLAH) policy meant that, effec-
tive 15 June 2017, telecommunication network providers were required to abolish all
roaming surcharges in addition to domestic retail prices for EU roaming customers.

The policy dramatically reduced the costs of phone use abroad, both compared to the
gradual reductions prior to RLAH and compared to the pre-RLAH prices (BEREC,
2019). For example, leading mobile operators such as Vodafone Germany, offered
daily roaming packages such as EasyTravel in early May of 2017 providing “phone
calls, texting and surfing abroad [within the EU] just like at home” for a price of e2.99
per day. This equates to arounde90 per month and is over four times more than stan-
dard domestic packages offering calls, texts and data at the time (Vodafone, 2017).109

The special Eurobarameter (2018) survey, carried out one year after RLAH, suggests
that awareness of RLAH was already high with 62% of Europeans that travelled in
the previous 12 months being aware that roaming charges had been eliminated, and
only 19% of travellers claiming to never use mobile data (down from 42%). Neverthe-
less, around 50% of the respondents still claim to restrictively use mobile data while
abroad, suggesting that EU roaming users still use their mobile phones comparatively
less than locals.

To evaluate the effect of RLAH, we collect data on mobile phone usage of roaming
users in the EU from the International Roaming BEREC Benchmark Data Reports

107Note that we find a borderline significant (significant only at the 10% level) negative estimate for
hotel nights of locals in column (8). This might be an indication that drivers who are staying in a
hotel, are driving more safely because they are unfamiliar with the area. This would be in line with
findings in observational studies. Another possible explanation could come from region specific
holidays that vary in timing between years for given regions, and between regions for given years.

108Roaming refers to mobile phones connecting to a cellular network abroad. In the absence of regula-
tion, mobile network operators generally charge additional fees for using this service.

109Regulated wholesale data rates were capped at e0.05 per MB or e50 per GB, so using data outside
of a data bundle may have been restrictively expensive.
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and local usage from the Dutch Authority for Consumers and Markets (ACM).110

Figure 6.6 plots the average monthly data traffic in MB’s per roaming user for each
quarter between 2012 and 2018, with the shaded region representing when RLAH
was active.111 It indicates that since RLAH was introduced, roaming usage appears to
catch up with developments in local cellular data traffic. Roaming usage is still about
four times lower than local usage after the policy, but this is a result of the relatively
short period of time European tourists spend outside their country of residence (e.g.
the average trip duration was about 8.4 nights in 2017 (Eurostat, 2019)). It also shows
that cellular roaming traffic exhibits a strong upward growth trend for both groups
and demonstrates a high degree of seasonal variation for roaming users. This is not
surprising as technological advancements (e.g. introduction of 4G-network) and the
increased adoption of smartphones has resulted in higher speeds, lower prices, and
more demand, while tourism, and therefore roaming usage, tends to be seasonal. It
is therefore useful, when comparing the annual growth rates of cellular traffic, to
compare each quarter with the same quarter in the previous year.

Figure 6.7 illustrates that the RLAH policy resulted in a very large increase in the
growth rate of phone use of roaming users one year after the policy while having no
discernible effect on locals. Table 6.A.4 in Appendix A documents the average annual
growth rate before and after the policy for roaming users as compared to locals. It
indicates a substantial increase in the growth rate of roaming data usage by 200 per-
centage points, while texts and calls also increased by around 20 to 80 percentage
points, relative to locals.112 This further demonstrates that the policy had large effects
on the overall phone use of roaming users, while especially effecting data usage.

6.4 Empirical methods

Our aim is to estimate how smartphone usage affects road safety. Because data on
smartphone usage of drivers is privacy sensitive and not made available for research
110BEREC only includes information on the number of active roaming users, referred to as roaming

subscribers in the BEREC reports, since the second quarter of 2016. BEREC considers a subscriber
to be a roaming subscriber if roaming services were active at least once in the concerned period.
In order to calculate the average monthly usage before this period, we predict the number of sub-
scribers using a log-linear model with a time trend and quarter dummies. Using total data usage
gives almost identical results (available from BEREC upon request). We document this in Appendix
B.

111Note that the second quarter of 2017 already contains 15 days during which the policy was active,
namely the second half of June. Furthermore anticipating RLAH, several large network providers
dropped roaming charges earlier in the year, such as Vodaphone UK in April (CNET, 2017).

112RLAH was not the only roaming policy introduced during the period of study. Other regulations,
notably price caps, also resulted in moderate growth in roaming usage, which may explain the
increased growth in data around the end of 2014 (BEREC, 2016).
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Figure 6.6: Average monthly data traffic per quarter.
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Figure 6.7: Annual growth rates in cellular data traffic per quarter.

purposes, we use the implementation of the RLAH policy as a source of exogenous
variation. We hypothesise that a substantial reduction in phone usage fees induces
more phone use while driving, which in turn leads to an increase in accidents due to
driver distraction. Unique for the RLAH price change, and essential for our identifi-
cation strategy, is that fees for domestic phone use (i.e. within the home country) are
not affected by the policy. This allows us to define a control group, in our case drivers
with a Dutch phone subscription, and a treatment group, drivers with a phone sub-
scription from any other EU country. As a consequence, we can employ a difference-
in-differences (DiD) approach to estimate the effect of the policy-induced increase
in phone use on road safety. Below, we first introduce the general statistical model
and subsequently discuss how we deal with the statistical challenges that arise in our
setting.
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6.4.1 Statistical model

We use a standard DiD approach, where we estimate how the RLAH policy affects
the number of vehicles involved in road accidents. We define Vit as the number of
vehicles involved in accidents for each country-group in each province, indexed by i,
at time t.113 Countries are grouped to strike a balance between optimally controlling
for unobserved heterogeneity per country of origin, and preserving statistical power
by avoiding zero counts (see Section 6.2.1.2 for more details). We consider the general
following model:

log(V )it = �Tit + �Hit + �Wit + �i + t + ✏it, (6.1)

where log denotes the natural logarithm. The treatment effect, denoted by Tit, is a
dummy equal to one after the policy was introduced for vehicles from roaming coun-
tries. We proxy for traffic intensity using vector Hit, which contains separate control
variables, in logs, for the number of hotel nights of locals and roaming users, and a
dummy in case we observe a zero.114 Further, vector Wit contains weather controls,
that we include to improve the efficiency of the estimator.115

Finally, we include panel and time fixed effects. Time-invariant characteristics of
drivers and the area in which they drive, such as the road network, attractiveness
to tourists, and number of car users, are captured by a country-group province fixed
effect, �i, which represents the panel element in our analysis. We also control for
any unobserved time trends affecting all drivers, for instance due to road mainte-
nance or infrastructure improvements, by including a time fixed effect, t, for each
year-month.

We note that using a smartphone was rather costly for roaming users before the pol-
icy. It might therefore be useful to assume that before the policy roaming drivers
did not use their phone at all while driving. However, if roaming users did use their
phones while driving prior to new roaming regulations, we still accurately estimate
the effect of the price drop, but underestimate the total effect of phone use. Our es-

113Because we essentially have a count model, our temporal and spatial resolutions are arbitrary. We
aim for the most fine-grained resolution to maximally use variation over time and space. We are
in this respect, constrained by the resolution of the essential control variables. We aggregate at the
province-month level because this is the most fine-grained resolution for which we can control for
country-specific VKT.

114We obtain hotel nights per province per country of origin from Statistics Netherlands (2019a), which
is measured in thousands. In case of a zero, which we only observe for roaming countries, we set
the value to one (so that the log is zero) and use a dummy to control for these cases separately. This
means that we correct for any bias due to inflation at when a zero is reported.

115These include for each province and month the average temperature, average rainfall, and number
of days with temperatures below 0 °C.
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timates should therefore be considered as a lower bound of the total effect of smart-
phone distractions on road accidents.

6.4.2 Measurement error

Measurement error poses a statistical challenge in our setting, because we do not
directly observe within-vehicle phone use, nor the type of phone subscription drivers
have. Below, we identify three implications of this challenge and discuss how we deal
with them.

First, for multi-vehicle accidents, we cannot identify which driver caused the acci-
dent, if any at all. This means that we have measurement error in the dependent
variable, which makes our estimates potentially imprecise, albeit still unbiased if
the measurement error is random. We address this issue by focussing on vehicles
rather than accidents because multi-vehicle accidents might include both treated and
control-group drivers. In addition, we also perform a robustness check where we
consider a subsample with single-vehicle accidents (e.g. a car crashing into a tree).
This approach rules out measurement error of this sort but comes at the cost of hav-
ing less statistical power, as only a small fraction of the accidents in the data are
single-vehicle accidents (17.58%). As it is a priori not possible to decide which is the
preferred approach, we report results for both estimation strategies.116

Second, some drivers of vehicles that are registered abroad might still have a Dutch
phone subscription. For instance, drivers that live in bordering regions in Belgium
or Germany and often work in the Netherlands. These drivers will be erroneously
classified as treated, and will bias our estimates downwards.117 To address this issue,
we will run a robustness check where we exclude all border provinces, as it is likely
that this measurement problem is most pronounced in those regions.

Third, some roaming users may not have to pay smartphone charges themselves.
One can think of unlimited subscriptions paid by drivers’ employers or having a
Dutch subscription while living just across the border. This insensitivity to the price

116Another related issue which is solved by taking single-vehicle accidents is that roaming accidents
may result in more multi-vehicle accidents. This would violate the SUTVA, but it is unlikely to
be problematic in this setting due to the size of the control group; around 95% of vehicles in our
accidents sample are part of the control group. Also, we also checked whether the number of
vehicles per accidents changes over time, which is not the case, both for accidents with only locals
as well as accidents with at least one roaming user involved.

117Additionally, some roaming users might be driving a Dutch car, for instance, a rental car, and will
hence be erroneously designated as untreated. This may lead to a small downward bias, how-
ever, due to a large number of accidents in the control group (local users) it is unlikely to have a
substantial effect.
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would also result in a downward bias of the estimate. We address this concern in
two ways. Firstly, we re-estimate our main model on a sub-sample where we exclude
trucks and vans, assuming that drivers of these vehicles are most likely to have such
arrangements with their employer, and secondly, on a sub-sample without bordering
countries or typical labour migration countries.

6.4.3 Trends in vehicle kilometres travelled

A potential confounding factor is vehicle kilometres travelled (VKT) by roaming
drivers. For instance, because countries and provinces vary in their popularity as a
holiday destination over time (Taylor and Ortiz, 2009), there may be more roaming
accidents due to increased tourism rather than due to increased phone distractions.
Another potential reason for temporal variation in VKT by roaming drivers could
come from changes in trade and business trips as a result of ongoing globalisation.
Because these trends affect treated drivers (e.g. tourists) but not local drivers, it
poses a potential threat to our identification strategy and may lead to overstating the
effect of phone distraction on road safety.

Ideally, one would want to directly control for VKT to avoid any bias from traffic
intensity, but this information is not available.118 Instead, we show that the number
of hotel nights per country of origin is a good proxy for both tourism and business-
related traffic (see Section 6.2.2.3 for an extensive discussion on the quality of this
proxy). This implies that, if the relation between traffic and hotel nights is stable
over time, then controlling for hotel nights will absorb a bias that stems from VKT
trends of roaming drivers.119 Nevertheless, we also perform two additional robust-
ness checks. Firstly, we include a roamer-specific linear time trend which captures na-
tionwide trends in accidents of all roaming users combined. This approach then esti-
mates the policy effect conditional on a roaming-user-specific trend in accidents, which
provides a lower bound for the estimated effect. This time trend does, of course, also
absorbs part of the treatment effect, such that this estimation is only useful to assess
our estimates’ sensitivity to trends. Secondly, we re-estimate our models using only
two years of observations between July 2016 and July 2018 (i.e. one year before and
one year after the policy), for which it is implausible that there are major trends in
tourism transport modes conditional on hotel nights.

118For non-Dutch vehicles, Statistics Netherlands only provides imputed annual figures of VKT for
the whole country. For all traffic combined, there are intensity measures available at the province-
month level. These will be used to validate our VKT proxy (hotel nights).

119This is a reasonable assumption for our five-year study period, but may not hold in the long run
(e.g. if cheap flights and high-speed trains make cars a less attractive mode).
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Figure 6.9: Graphical representation of common trends in aggregated province-month data.

6.4.4 Standard errors

In our setting, the number of observations depends on an arbitrary temporal and spa-
tial resolution. We aggregate vehicle data to province-month observations, to align
the resolution with our control variables. However, if accidents are serially correlated,
ordinary least squares (OLS) standard errors may be too small (Bertrand et al., 2004).
To address this issue, we cluster our standard errors at the time-invariant level of a
province and country-group, which leaves us with 12⇥ 6 = 72 clusters (12 provinces
and 6 country groups). In addition, we run a robustness check where we ignore all
time-series variation and aggregate our data into two periods, one before and one
after the policy. This rules out any autocorrelation in error terms, and the outcome
highlights that our results and standard errors are hardly affected by serial correla-
tion.

6.5 Results

6.5.1 Parallel trends

We first examine overall trends of local vehicles (control group) and roaming vehi-
cles (treated group) involved in accidents. Figure 6.8 shows that nationwide accident
counts for these groups follow similar trends.120 The figure also highlights that these
measures are quite noisy and that no clear jump is observable around the policy in-
troduction in 2017.
120In January 2014 there are fewer roaming user accidents, this seems to be a reporting-issue in the data

source. Our robustness check where we focus only on one year before and after the policy indicates
that this issue does not affect our conclusions.
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Figure 6.10: Treatment effect per month for full sample (top) and single-vehicles (bottom).

For a more rigorous analysis of a common trend, in Figure 6.10 we plot estimates of
a monthly treatment effect, while including all controls and fixed effects as in our
preferred specification in (6.1). Here, the coefficients are estimated using an indicator
for whether the province-month count of vehicle accidents are for roaming users,
interacted with year-month dummies.121

The results in Figure 6.10 indicate that no clear pre-trend exists and that local drivers
are a suitable control group for roaming drivers, conditional on controls and fixed
effects. Furthermore, after the policy, there is a clear positive impact on accidents
as indicated by the increased proportion of positive and statistically significant esti-
mates.122 This pattern is even more pronounced in the bottom panel of the plot, where
we focus specifically on single-vehicle accidents.

121Specifically, the figure plots the �⌧ coefficients from estimating:

log(Vit) =
60X

⌧=�41

�⌧Ri,t�⌧ + � log(Hit) + �i + t + ✏it, (6.2)

where Ri,t�⌧ is an indicator variable for whether the vehicle count is for roaming users or not, in-
teracted with a year-month dummy, and �⌧ is the effect of the policy for each year-month t. To be
able to include the seasonality fixed effect t in this setting, we omit the treated⇥year-month dum-
mies for the first full year; otherwise perfect multicollinearity emerges. The error bars represent
robust 95% confidence intervals for each monthly point estimate.

12244% of the coefficients are positive and statistically significant post-policy as compared to only 10%
pre-policy.
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Table 6.2: Main regression results

log(# Vehicles in Accidents)

(1) (2) (3) (4) (5)
Treatment effect 0.124⇤⇤⇤ 0.125⇤⇤⇤ 0.176⇤⇤⇤ 0.089⇤⇤⇤ 0.094⇤⇤⇤

(0.034) (0.035) (0.025) (0.030) (0.031)
Roamer ⇥ trend 0.003⇤⇤

(0.001)
log(Hotel nights roamers) 0.298⇤⇤⇤

(0.076)
log(Hotel nights locals) -0.089

(0.063)
Temperature 0.057⇤⇤⇤ -0.005⇤ -0.005⇤ -0.004⇤

(0.016) (0.003) (0.003) (0.002)
Rain 0.061 -0.001 -0.001 0.003

(0.061) (0.012) (0.012) (0.013)
# Frost days 0.157⇤⇤⇤ 0.025⇤ 0.025⇤ 0.019

(0.040) (0.013) (0.013) (0.012)
Time FE Yes Yes Yes Yes
Panel FE Yes Yes Yes
Clusters 72 72 72 72 72
Local vehicles 686k 686k 686k 686k 686k
Roaming vehicles 35k 35k 35k 35k 35k
Observations 3,688 3,688 3,688 3,688 3,688
R2 0.729 0.748 0.965 0.965 0.967

Notes: Column (1) is a basic DiD regression which includes a dummy for roaming user, policy and
the interaction between roaming user and policy (denoted treatment effect). Robust standard errors
in parentheses are clustered at the province and country-group level. Hotel nights are split into two
orthogonal variables for local and roaming users. An additional dummy is included when hotel nights
were inflated (only occurs for roaming users). ⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.

6.5.2 Estimation results
Table 6.2 shows the estimation results with incremental levels of controls and fixed
effects. Column (1) shows that with only the minimal DiD controls, we find a sta-
tistically significant effect of over 12%.123 Column (2) shows that overall time trends
(captured by year⇥month fixed effects), and weather controls hardly change the es-
timated treatment effect. In column (3) we add panel fixed effects, where our panel
identifier is a province-country group. This increases the point estimates and low-
ers the standard errors, indicating that these fixed effects improve the efficiency of
the estimator and suggests that accident counts are heterogeneous across provinces

123Here we run the most simple DiD regression, which includes a dummy for the RLAH policy, a
dummy for whether the country group consists of roaming users, and the treatment effect is the
interaction between these two dummy variables.
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and country-groups. Column (4) shows that the estimated treatment effect declines
significantly when we add a linear roaming-specific monthly time trend. This is po-
tentially a bad control that can also pick up part of the treatment effect, but the results
here imply that any major nationwide trends in accidents of roaming users only par-
tially affect the results.

Our preferred specification is the one used in column (5), in which we include controls
for hotel nights as a proxy for traffic intensity. We find a point estimate of 0.094 with
a standard error of 0.031. This implies that the policy-induced increase in phone use
leads to an increase in the number of vehicles involved in accidents of 9.91%, with
a 95% confidence interval of 3% � 17%. The point estimate declines as compared to
(3) and the hotel nights elasticity of roaming users has the expected sign. It indicates
that a 1% increase in hotel nights for roaming users is associated with an increase of
around 0.3% in the number of vehicles involved in accidents. The hotel nights effect
is insignificant for locals, conditional on our set of fixed effects. This makes sense as
traffic intensity for roaming users is likely to follow seasonal tourist trends while most
local traffic is generated by work commutes and other daily activities. Importantly,
fixed effects already absorb overall trends in VKT, heterogeneity across provinces,
and heterogeneity across vehicle countries. Therefore, the statistical significance of
the hotel nights elasticity, and the fact that the point estimate of the treatment effect
is smaller when we include hotel nights, highlights that we indeed capture country-
specific long term trends in VKT.

6.5.3 Robustness checks

In this section we perform a vast range of robustness checks. Tables with results are
available in Appendix C.

6.5.3.1 Measurement error and endogeneity

One type of measurement error arises because we do not accurately observe which
vehicle potentially caused the accident. Table 6.C.1 in Appendix C shows estimation
results using different subsets of accident types and vehicle involvement. Columns
(1–2) show that focusing on different types of accidents yields very similar results. Ex-
cluding trucks and focusing on single-vehicle accidents leads to very similar or only
slightly stronger point estimates. Focusing on single-vehicle accidents may suggest
we reduce measurement error slightly, but again the point estimates are not statisti-
cally different from the main estimate.

As discussed before, our analysis may suffer from measurement error in the treatment
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assignment, for instance by having a Dutch phone subscription while still driving a
non-Dutch car or vice versa. It is likely that measurement error is most pronounced
in bordering provinces and for drivers with a close connection to The Netherlands.
This can either be due to proximity (like bordering regions or countries) or due to
strong economic links (e.g. labour migration). If we exclude bordering countries, we
find somewhat larger effects while if we remove bordering provinces or drivers from
labour migration countries, we find only slightly smaller effects. Excluding border
provinces also mitigates potential concerns that border provinces face more VKT due
to the policy, e.g. if people are more likely to go shopping across the border because
phone usage is cheaper. Such an endogenous response might induce sorting and
thereby poses a threat to our identification strategy. These results indicate that our
results do not suffer from a severe downward bias from measurement error.

6.5.3.2 Accounting for VKT trends

So far, we have assumed that country-of-origin specific trends in VKT are
well-captured by our hotel nights proxy. Results from Section 6.2 suggest that this is
a plausible assumption. Nevertheless, to further rule out any issue with long-term
trends in non-local road traffic as a potential confounder, in columns (1–2) of Table
6.C.2, we restrict our sample to one year before and one year after the policy (i.e.
from June 2016 to July 2018). This approach yields an estimate of 6.8% for all vehicles
and 14% for single-vehicle accidents which are very comparable to our main results.
This highlights that long term trends in VKT cannot explain the observed increase in
vehicles involved in accidents.

6.5.3.3 Accounting for auto-correlation in error structure

In our main analysis, we use the number of vehicles involved in accidents per
province per month as the observational unit. If there is strong serial correlation,
then OLS standard errors may be incorrect, even when clustering at a time-invariant
level as we do (Bertrand et al., 2004). To deal with this issue in the most conservative
way, we re-estimate our main models on data aggregated to pre and post-policy
averages.124 Columns (3–4) in Table 6.C.2 show that the statistical significance is only
slightly lower as compared to our main analysis (the t-statistic = 2.1 as compared
to 3.1 in our preferred specification). This provides strong evidence that serial
correlation does not pose a threat to our statistical inference.

124After aggregating, the data represents the log number of vehicles, hotel nights, and weather condi-
tions, by country group and province, for an average month in the pre and post data.
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6.5.3.4 Weighting

Our aim is to approximately recover the phone-use effect per driver, rather than at a
province level. This suggests that we should use sample weights for VKT at the in-
dividual level.125 Because these data are not available on the vehicle accident level,
we test the robustness of our results to four weighting schemes that are closely re-
lated to VKT.126 As regions differ in the total number of roaming drivers involved in
accidents, this also allows assigning higher weights to provinces that tend to have
relatively more roaming drivers and therefore may be more informative. Table 6.C.3
shows that our main results hardly change if we use weights based on 1) roaming ac-
cident numbers, 2) total accident numbers, 3) traffic intensity, and 4) hotel nights. This
suggests that our fixed effects and log-level specification already sufficiently account
for differences in VKT between regions.

6.5.3.5 Accounting for zero counts

In our main analyses, we use a log-linear specification, which performs well with
a sufficient number of accidents. However, during some months, for some country-
groups, we observe few or even zero vehicles in accidents (14.02% pre and 4.95% post
policy). These cases are naturally excluded from our log-linear regressions. However,
they might be less likely to occur after the policy due to policy-induced phone dis-
tractions. As a consequence, our estimations might suffer from a slight downward
bias by excluding more zero counts before than after the RLAH policy introduction
for treated vehicles. To test if such a bias exists, we re-estimate our main specifica-
tion as in (6.1) using a Poisson pseudo-maximum likelihood count model. Table 6.C.4
presents the results from this re-estimation, which allows us to include all province-
month observations.127 The coefficients are remarkably similar and in column (5), our
preferred specification with hotel nights, the results indicate that the policy caused
9.4% more accidents and is statistically significant at the 1% level.128

125Note however that weighting might lead to erroneously small standard errors when there is clus-
tering in the disturbances (Solon et al., 2015). Therefore, as the latter is likely to be the case in our
setting, we are cautious with weights and report the more conservative estimates (without weight-
ing) as main results.

126Note that for accident numbers we use the time-invariant pre-policy number of roaming and total
accidents.

127This means we have 4,248 province-month observations as compared to 3,688 in column (5) of Table
6.2.

128Column (4) of this specification indicates that it indeed appears that the roamer specific time trend
is a bad control, as could be expected.
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6.5.3.6 Heterogeneous effects

In addition to the average treatment effect that we estimate in our main analysis, we
test for measurable heterogeneity in the effect of phone use, for various subgroups of
drivers and road characteristics.

We first test whether the effect size varies by age group. Table 6.C.5 in Appendix
C suggests that our main effect predominantly applies to drivers in the age group
between 30 and 50. We find statistically insignificant effects for age groups below
30 and above 50. However, as the 95% confidence intervals overlap, we cannot con-
clusively determine that the effects are statistically different, which might be due to
less precision. Lab-based studies also tend to be inconclusive on the performance
differences of distracted driving across age groups. Oviedo-Trespalacios et al. (2016)
synthesise the most recent literature, and find that although “older drivers tend to
engage less in a secondary task like using mobile phones while driving [...], the per-
formance of younger drivers, who are inclined to use a mobile phone while driving,
has been reported to be less affected by mobile phone tasks than older drivers” (p.
369). It is therefore not surprising that many studies report a negligible effect of age
differences.

We also investigate the treatment effect on different road types. Phone distractions
may disproportionately impact the likelihood of causing an accident in more chal-
lenging road conditions, such as in urban areas and on local roads where drivers
often share the road with other vehicles and modes (e.g. pedestrians and cyclists).
To test this hypothesis, we split the sample into three road types based on the speed
limit. To assure sufficient statistical power, we define the following three road classes
with roughly equal numbers of accidents: below 50 km/h, between 50 km/h and 100
km/h, and above 100 km/h. These groups roughly represent local roads in urban ar-
eas, local roads in rural areas, and highways. Similarly, we test whether our estimates
are different for vehicles involved in more severe accidents (fatal or injury) versus
accidents with only material damage. Results of these estimations are presented in
Table 6.3.

Columns (1–3) indicate that most of the estimated effect comes from local roads, and
we do not find evidence of a reduction in road safety on highways. This suggests
that phone distractions are either more risky on local roads (e.g. due to crossings
and traffic lights), or that drivers use their phone less frequently on highways (e.g.
because it is perceived as more dangerous).129

129We cannot fully isolate the effect of phone usage from that of increased car navigation, but the fact
that we find only an effect on urban roads may indicate that car navigation does not increase safety
in urbanised areas.
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Table 6.3: Estimation results using subsamples of road types and severity.

log(# Vehicles in Accidents)

< 50km/h 50km/h - 100km/h >100km/h Fatal/Injury Material
(1) (2) (3) (4) (5)

Treatment effect 0.098⇤⇤ 0.050 -0.065 0.115⇤⇤ 0.083⇤⇤

(0.038) (0.040) (0.049) (0.054) (0.033)
log(Hotel nights roamers) 0.178⇤⇤⇤ 0.260⇤⇤⇤ 0.220⇤⇤⇤ 0.130⇤⇤ 0.294⇤⇤⇤

(0.058) (0.078) (0.045) (0.051) (0.075)
log(Hotel nights locals) -0.031 0.004 -0.125 0.214⇤⇤⇤ -0.144⇤⇤

(0.054) (0.065) (0.116) (0.077) (0.067)
Weather controls Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Panel FE Yes Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes Yes
Clusters 72 72 72 70 72
Local vehicles 368k 135k 101k 133k 554k
Roaming vehicles 14k 8k 9k 3k 32k
Observations 3,083 2,796 2,818 2,136 3,636
R2 0.964 0.955 0.934 0.961 0.965

Notes: Robust standard errors in parentheses are clustered at the province and country-group level.⇤⇤⇤,
⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.

Finally, columns (4–5) indicate that the main result holds, regardless of accident sever-
ity, suggesting that mobile phone distractions play an important role in accidents with
varying degrees of severity. Our results do not support the hypotheses that phone
distractions predominantly increase accidents with material damage, for instance, if
people mostly use phones in low-speed, low-risk, situations like traffic jams.

6.5.4 Implications

Our robustness checks indicate that the effect of phone use generally falls within the
95% confidence interval 3%� 17% of our main estimate. Furthermore, 9.91% is likely
to be a conservative estimate of the total effect of phone use because we only esti-
mate the effect induced by the price drop, while roaming users were likely to use
their phones, albeit infrequently, prior to the policy. In this section, we calculate the
total number of accidents and the relative risk of phone use implied by our main
estimate.
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6.5.4.1 Total number of accidents caused by phone use

To calculate the number of accidents associated with phone use, we compare the ob-
served number with a counterfactual situation where all drivers face phone usage
fees equal to the pre-policy roaming charges. In other words, we consider how many
accidents could be avoided if all drivers faced higher phone usage costs and thereby
used their phones less. This is a policy-relevant variable because governments can
directly affect these costs by, for example, imposing more stringent regulation which
increases the costs of being caught using a mobile phone while driving. Importantly,
the RLAH policy abolished additional roaming surcharges, such that after the policy,
roaming and local users face the same phone use costs and accident risk.130

We effectively estimate a local average treatment effect (LATE) of smartphone use
while driving, using the RLAH policy as a shifter. The effect is local because some
roaming drivers may not comply with the new policy in the sense that they may
not increase smartphone usage. If we assume that non-compliance is the same in the
treatment and control group, and that the treatment and control group are sufficiently
comparable, then we can generalise our LATE to an average treatment effect (ATE)
for all road users.

Based on observable driver characteristics, roaming users tend to be younger and
drive on faster roads than local drivers (see discussion in Section 6.2.2). Nevertheless,
our analysis on heterogeneous effects across age groups suggests that differences in
driver age lead to similar results, while highways tend to be safer than local roads
with respect to the accident risk of phone distractions (see Table 6.A.3 in Appendix
A). Therefore, based on observable characteristics, our estimates may underestimate
the ATE because roaming users are more likely to drive on highways.

One remaining concern might be that unobservable driver characteristics, such as
familiarity with roads and other infrastructure, make roaming and local drivers not
comparable. For instance, if driving on unfamiliar roads increases accidents risk,
then this may be further exacerbated by phone distraction. However, Intini et al.
(2018) find no clear evidence for increased accident risk due to unfamiliarity with the
road network. On the contrary, they find that familiarity is associated with increased
accident risk. More research is required to understand the interaction between driver
distractions and road familiarity, but at this stage there seems to be no clear indication
that our results overestimate the ATE due to road familiarity.

130In other words, the RLAH policy caused roaming drivers to ‘catch up’ with local drivers’ smart-
phone usage and the distractions and associated accident risk. There may still be variations across
mobile phone plans and across countries, but these no longer depend on roaming or local use. In
addition, these differences are most likely fairly constant over time in the short run and are more
related to local demand and supply conditions than to the RLAH policy.
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In sum, it seems plausible that our estimate is roughly similar to the ATE. Our results
then imply that phone use causes 13,563 additional accidents annually in the Nether-
lands, of which about 2,536 result in injury and 79 are fatal. Furthermore, if the ATE
is applicable to other EU countries, this would imply that around 2,500 road fatali-
ties in the EU in 2018 may be attributable to phone use.131 As shown in Figure 6.1,
the gap between the EU 2020 target and actual fatalities was 28% (7,044 cases). Our
results then suggest that around one-third of this gap could be closed by successfully
banning mobile phone use while driving.

6.5.4.2 External effect

We do a back-of-the-envelope calculation to determine the share of drivers that got
involved in accidents without being distracted themselves. This can be loosely in-
terpreted as a smartphone-induced increased in the external effect of car use. Let us
assume that in each accident, just one driver was potentially causing the accident due
to phone distraction. Then, out of 764k drivers involved in accidents in our data,
334.89k (43.8%) of them were involved in a crash without contributing to the cause
of the accident themselves. If we focus on local roads—where we find the strongest
effect of distraction—we find a similar figure of 43.9%.

We use these figures to calculate a simple smartphone-induced increase in the ex-
ternal safety effect of car use, expressed in terms of vehicles involved in accidents.
Starting with our main estimate of a 9.91% increase in vehicles involved in accidents
due to phone distractions, we calculate that in all accidents, on average about 4.1%
of vehicles were affected due to distraction of other drivers. Note that this calculation
crucially hinges on the assumption that in each phone-induced accident, only one
driver was distracted. This may seem plausible but may be violated in rare cases.

6.5.4.3 Crash risk odds ratio

We follow Bhargava and Pathania (2013) and translate our estimate for the effect of
the change in mobile phone use, due to the RLAH policy, on the number of vehicles
involved in accidents to the crash risk odds ratio (or ‘relative risk’) which allows us
to compare our results to the existing literature. This requires two key parameters,
the percentage of roaming users that are on their phone while driving or the ‘base-
line prevalence’, and the change in phone use due to the policy, denoted by b and c

respectively.

131This can be calculated by multiplying our main estimate by the total number of fatal vehicle acci-
dents in 2018, so 9.91% ⇥ 25,058 = 2,470.
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Observational studies, based on roadside surveys, indicate that average phone use in
the car ranges between 1 � 11% (European Road Safety Observatory, 2015).132 These
field studies do not distinguish between roaming and local drivers. However, there
is a good reason to expect that the baseline prevalence is overestimated for roaming
users because roaming was very costly before RLAH. Therefore we consider a range
of b 2 [0.01, 0.10], in the sensitivity analysis, but note that lower values are more
likely.

As for the increase in phone use due to the policy, Table 6.A.4 suggests that RLAH
induced an increase in the annual growth rate of mobile data of around 200 percent-
age points, and calls and texts of around 80 and 20 percentage points, respectively.
We assume that aggregate changes in roaming use also apply to drivers visiting the
Netherlands and consider a range of c 2 [0.5, 2]. It is possible that most of this 200
percentage points increase comes from watching videos and playing songs, which
may not (fully) translate to an equivalent increase in distractions while driving. This
would imply that the lower values in the specified range for c are more relevant and
more applicable to our setting.

Using these parameters, we can calculate a range of possible relative risk factors,
denoted by RR, implied by our preferred estimate, �̂, using the formulation:

�̂[1⇥ (1� b) +RR⇥ b] = RR⇥ bc� bc. (6.3)

To reflect the uncertainty of these assumptions, Table 6.4 illustrates how our key pa-
rameters influence the implied RR estimates. It indicates that RR is decreasing in the
baseline prevalence and in the change in phone use due to the policy. In other words,
if the policy had a small impact on phone use and roaming drivers used their phone
very little prior to the policy, our estimate implies larger risks associated with phone
use while driving.

That said, we take a conservative estimate for the baseline prevalence of 3% and the
change in phone use due to the policy of 100%. This would imply a relative risk of
phone use of 3.8.133 We consider this to be a conservative estimate as it is unlikely
that roaming drivers used their phones as intensively as local drivers due to the high
pre-policy roaming costs.

Comparing these estimates to the existing literature suggests that our conservative
estimate of the crash risk associated with modern smartphone usage is similar to
132Based on a naturalistic driving setting between 2012 and 2015, Dingus et al. (2016) observe handheld

cell phone prevalence in the US to be about 6.3%. There is no reason to expect that prevalence is
substantially different in the Netherlands, and therefore, we expect that the findings in European
Road Safety Observatory (2015) capture a meaningful range for our study.

133Re-arranging terms, we can find RR = �̂��̂b+bc
b(�̂+c)

. Plugging in b = 0.03 and c = 1 gives: RR = 3.8.
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Table 6.4: Sensitivity of implied accident risk.

Baseline prevalence, b

� phone use due to RLAH, c 1% 2% 3% 5% 10%
50% 17.10 8.90 6.20 4.00 2.30
80% 11.70 6.30 4.40 3.00 1.90
100% 9.80 5.30 3.80 2.60 1.70
150% 7.00 4.00 2.90 2.10 1.50
200% 5.60 3.30 2.50 1.80 1.40
Notes: This table presents the relative accident risk implied by our baseline estimate from column (5)
in Table 6.2. The relative risk is calculated by re-arranging equation (6.3) such that: RR = �̂��̂b+bc

b(�̂+c)
.

Baseline prevalence reflects the percentage of time roaming drivers spend on the phone while in the
car. An illustration is outlined in the text.

earlier crash-based studies, but are significantly larger than recent field studies.134

This suggests that the crash risks of phone use are slightly lower in magnitude than
those found for positive levels of blood alcohol.135 As mentioned earlier, previous
research focuses mainly on the effects of calling, or focuses on specific road types
and phone use, however, modern smartphones offer substantially more usability and
potential for distraction, and our findings suggest that these effects are more likely to
be present on local urban roads. Our estimates for the change in mobile phone use
due to the RLAH policy suggest that we mainly pick up an effect from using more
mobile data (increase in the growth rate of about 200 percentage points as compared
to local drivers) which may explain why we find larger implied relative risk estimates
than some earlier field studies.

6.6 Conclusion

In this study, we provide novel evidence on the effect of cell phone use on car acci-
dents. We exploit variation in the cell phone usage fees in the Netherlands following
the Roam Like at Home (RLAH) policy introduced by the European Union (EU) in
2017. This intervention is used as a treatment, and applies to roaming users—non-
Dutch drivers from the EU—, which allows us to employ a difference-in-differences
approach.

134Redelmeier and Tibshirani (1997) find a RR of about 4.3, Dingus et al. (2016) find the RR of cell phone
use to be 3.6, and Bhargava and Pathania (2013) do not find any effect. Hersh et al. (2019) do not
calculate the RR, however their main estimate of 1.1% is far lower than our main estimate of 9.91%.

135Levitt and Porter (2001a) finds a crash risk of 7 and 13 for positive levels of blood alcohol and illegal
levels respectively.
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We show that the growth rate of mobile calls, texts, and particularly data usage in-
creased substantially after the change in roaming regulations, making roaming phone
use more in line with usage in home countries. While we do not directly observe ac-
tual phone use of drivers, the observed increase in usage is likely to (partly) carry
over to phone use while driving. We estimate that decreased smartphone usage fees
lead to an increase in the number of vehicles involved in accidents of 9.91% (95%
confidence interval 3% � 17%). This is likely to be an underestimate of the total ef-
fect of phone use while driving, as our estimates capture the effect of an increase in
smartphone use, which was not fully absent before the policy.

Under the assumption that the identified mechanism carries over to all EU drivers,
our estimate implies that, in 2018, around 2,500 road fatalities in the EU could be
attributed to phone use. Our results then suggest that around one-third of the gap
between realised safety improvements on roads and the EU 2020 target can be at-
tributed to mobile phone use.136

Our findings indicate that the existing literature may underestimate the risks associ-
ated with modern smartphone usage while driving. Our main result implies a crash
risk odds ratio associated with mobile phone use of around 3.8, which is likely to be
a conservative estimate. All in all, our results suggest that smartphones are making
roads less safe, and this has important implications for road safety policies.

Our paper provides an estimate of the average effect of smartphone usage on the num-
ber of vehicles involved in traffic accidents, which may conceal considerable differ-
ences between specific groups of drivers. We look into heterogeneous effects by es-
timating models for different sub-samples (e.g. for different age groups, or exclud-
ing trucks). Future research could delve into this further, by estimating propensities
of specific groups of drivers to use their phone while driving. Ride-hailing drivers,
for example, may have a relatively high propensity to be distracted by their phone,
which might be an important factor in explaining the results of Barrios et al. (2020),
who find that ride-hailing services increased the number of traffic accidents in the US.
Such evidence could provide valuable input for related regulation and policies.

136In 2018, the EU was 28% away from their 2020 target (see Figure 6.1).
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Appendix 6.A Additional descriptives

Table 6.A.1: Descriptive statistics: Vehicles in accidents.

Statistic N Mean St. Dev. Min Max
Roaming 764,065 0.046 0.210 0 1
Age 561,136 42.488 15.015 0.000 110.000
Female 764,065 0.455 0.707 0 10
Maximum speed (km) 653,055 63.726 26.823 15.000 130.000
Deadly 764,065 0.006 0.076 0 1
Injury 764,065 0.187 0.390 0 1
Material 764,065 0.807 0.394 0 1

Table 6.A.2: Descriptive statistics by group: Vehicles in accidents.

Variable Roaming Local Diff Tstat
Age 40.903 42.566 -1.663 18.998
Female 0.383 0.459 -0.075 21.007
Maximum speed (km) 74.511 63.200 11.312 -62.898
Deadly 0.006 0.006 -0.000 0.503
Injury 0.088 0.192 -0.103 65.301
Material 0.906 0.802 0.104 -63.736
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Figure 6.A.1: Fatality rates in road accidents over time in major EU countries and the Nether-
lands
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Table 6.A.3: Relative frequencies of road types by severity

Local roads Major roads Highways
Fatal/injury 14.1 % 4.3 % 2.0 %
Material damage 46.8 % 17.9 % 14.8 %
Total 60.9 % 22.2 % 16.9 %

Table 6.A.4: Difference-in-differences in annual growth of phone use.

Annual growth rate (%) � Annual growth rate (p.p.)

Usage User Pre Post Diff DiD
Calls Local 4.29 -2.49 -6.78
Calls Roaming -1.06 71.16 72.21 78.99
Data Local 67.05 83.82 16.76
Data Roaming 68.09 285.89 217.80 201.04
Texts Local -18.24 -1.80 16.45
Texts Roaming -22.01 18.37 40.38 23.93

Notes: Pre-policy refers to the the average annual growth rates of cellular traffic comparing each quar-
ter with the same quarter in the previous year, over three years (Q1 2014 � Q1 2017) prior to the
implementation of RLAH. Post-policy is one year, Q2 2017 � Q1 2018, after RLAH.
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Figure 6.A.2: Age of local and roaming users.
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Figure 6.A.3: Age of roaming users pre and post policy.
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6.A.1 Analysis of hotel nights as proxy for vehicle kilometres
travelled

Table 6.A.5: Regression results for analysing traffic and hotel nights for Dutch drivers.

log(Traffic intensity) log(# Vehicles in accidents)

(1) (2) (3) (4) (5) (6) (7) (8)
log(Hot. loc.) 0.241⇤⇤ 0.043 0.787⇤⇤⇤ 0.114 0.629⇤⇤⇤ -0.132⇤

(0.108) (0.065) (0.117) (0.084) (0.070) (0.075)
log(Hot. roam.) 0.288⇤⇤⇤ 0.322⇤⇤⇤ 0.303⇤⇤⇤ 0.311⇤⇤⇤

(0.086) (0.077) (0.082) (0.078)
Time FE Yes Yes Yes Yes
Panel FE Yes Yes Yes Yes
Subsample Loc. Loc. Loc. Loc. Roam. Roam. All All
Within R2 0.233 0.017 0.660 0.025 0.241 0.046 0.806 0.047
Observations 564 564 564 564 2,980 3,688 3,688 3,688
R2 0.233 0.992 0.660 0.990 0.241 0.966 0.806 0.966

Notes: Robust standard errors in parentheses are clustered at the province and country-group level.⇤⇤⇤,
⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.
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Appendix 6.B Predicting smartphone use per subscriber
pre-2016

We obtain roaming usage data from the EU Body of European Regulators for Elec-
tronic Communications (BEREC). Their reports include the time series “EEA average
consumption per month per total number of roaming subscribers (in GB)” from the
second quarter of 2016 onwards. Therefore, in order to get a better picture of the long
term changes in roaming data usage, we use data on the total “EEA Retail data traffic
(millions of GB)” (available as of 2007) and predict the number of subscribers in ear-
lier periods using a simple model. The advantage of this approach is that the number
of subscribers appears to follow a rather simple dynamic process and means that we
only need to predict the denominator. We can then also compare the growth in our
metric to the total growth in mobile data use which gives us more confidence that the
predictions are as close as possible to actual figures.

We observe quarterly data on the number of roaming subscribers from the second
quarter of 2016 until the first quarter of 2019. The top panel in Figure 6.B.1 indicates
that the number of subscribers appears to follow a somewhat log-linear growth trend
with a strong seasonal pattern which is likely related to summer tourism. We there-
fore estimate the number of subscribers using the following regression equation:

log(St) = �Trendt + �q(t) + ✏t, (6.B.1)

where log(St) is the natural logarithm of the number of subscribers, Trendt is a linear
time trend capturing the growth over time, and �q(t) are quarter dummies that cap-
ture seasonal variations. The resulting model has an R

2 = 0.92, which suggests that
it captures the vast share of roaming subscriber dynamics. This is further confirmed
by the bottom panel of Figure 6.B.1 which compares the actual and predicted number
of subscribers and the resulting calculation of data roaming per subscriber. Finally,
Figure 6.B.2 compares the difference between growth in roaming data per subscriber
and the total roaming data use. While the trends are almost identical, it indicates a
larger growth in total data use which is likely a result of capturing overall trends in
growth in subscribers (which is relatively constant) and may also be a result of the
RLAH policy that causes the number of people actively using roaming while trav-
elling to increase. Overall, it suggests that the predicted change in data usage is a
conservative estimate of the effect of the policy.
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Figure 6.B.1: Predicting number of EU roaming subscribers and data consumption
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Appendix 6.C Robustness checks and sensitivity
analyses

Table 6.C.1: Results correcting for sources of measurement error

log(# Vehicles in Accidents)

No trucks SV No border prov. No border countr. No BG/PL/RO
(1) (2) (3) (4) (5)

Treatment effect 0.086⇤⇤ 0.096⇤⇤⇤ 0.072⇤ 0.134⇤⇤⇤ 0.077⇤⇤

(0.034) (0.033) (0.037) (0.030) (0.034)
log(Hotel roam.) 0.297⇤⇤⇤ 0.147⇤⇤ 0.424⇤⇤⇤ 0.132⇤⇤⇤ 0.335⇤⇤⇤

(0.093) (0.056) (0.121) (0.037) (0.084)
log(Hotel loc.) -0.117⇤ -0.167⇤⇤⇤ 0.087 -0.038 -0.071

(0.061) (0.054) (0.082) (0.072) (0.064)
Weather controls Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Panel FE Yes Yes Yes Yes Yes
Clusters 72 72 30 48 60
Local vehicles 535k 136k 356k 686k 686k
Roaming vehicles 22k 6k 12k 15k 26k
Observations 3,303 2,658 1,523 2,458 3,026
R2 0.966 0.962 0.968 0.977 0.972

Notes:Robust standard errors in parentheses are clustered at the province and country-group level.⇤⇤⇤,
⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.
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Table 6.C.2: Results using only one year pre/post (1–2), and data aggregated to two periods
(3–4).

log(# Vehicles in accidents)

All Single vehicle All Single vehicle
(1) (2) (3) (4)

Treatment effect 0.065⇤⇤ 0.131⇤⇤⇤ 0.148⇤⇤ 0.162⇤

(0.029) (0.036) (0.070) (0.091)
log(Hotel nights roamers) 0.316⇤⇤⇤ 0.192⇤⇤⇤ 0.114 -0.082

(0.094) (0.064) (0.094) (0.109)
log(Hotel nights locals) 0.036 -0.053 0.148 -0.037

(0.069) (0.078) (0.424) (0.409)
Weather controls Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Panel FE Yes Yes Yes Yes
Clusters 72 72 72 72
Local vehicles 319k 59k 23k 4k
Roaming vehicles 18k 3k 1k 0k
Observations 1,593 1,162 144 143
R2 0.969 0.962 0.999 0.998

Notes: Robust standard errors in parentheses are clustered at the province and country-group level.
Columns (1–2) are obtained using data from June 2016 until July 2018. Columns (3–4) are obtained
after aggregating the data into two periods, one before the policy and one after. For interpretation
purposes, after aggregation, variables are then rescaled to their initial units (e.g. monthly averages).⇤⇤⇤,
⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.
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Table 6.C.3: Regression results using weighted least squares.

log(# Vehicles in Accidents)

(1) (2) (3) (4)
Treatment effect 0.111⇤⇤⇤ 0.128⇤⇤⇤ 0.110⇤⇤⇤ 0.101⇤⇤⇤

(0.030) (0.033) (0.028) (0.037)
log(Hotel nights roamers) 0.196⇤⇤⇤ 0.185⇤⇤⇤ 0.255⇤⇤⇤ 0.256⇤⇤⇤

(0.061) (0.057) (0.059) (0.092)
log(Hotel nights locals) -0.212⇤⇤⇤ -0.173⇤ -0.083 -0.221⇤

(0.078) (0.094) (0.066) (0.118)
Weather controls Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Panel FE Yes Yes Yes Yes
Weights Total veh. Roaming veh. Avg traf. intens. Avg hotel nights
Clusters 72 72 72 72
Local vehicles 686k 686k 686k 686k
Roaming vehicles 35k 35k 35k 35k
Observations 3,688 3,688 3,688 3,688
R2 0.970 0.969 0.966 0.968

Notes: Estimated using weighted least squares, with pre-policy total number of (roaming) vehicles
as weights. Robust standard errors in parentheses are clustered at the province and country-group
level.⇤⇤⇤, ⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.
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Table 6.C.4: Estimation results using Poisson regression.
# Vehicles in Accidents

(1) (2) (3) (4) (5)
Treatment effect 0.186⇤⇤⇤ 0.186⇤⇤⇤ 0.187⇤⇤⇤ 0.0381 0.0899⇤⇤⇤

(0.0234) (0.0210) (0.0223) (0.0262) (0.0298)
Roamer ⇥ trend 0.00520⇤⇤⇤

(0.000921)
log(Hotel nights roamers) 0.335⇤⇤⇤

(0.0709)
log(Hotel nights locals) -0.000314

(0.0689)
Temperature 0.0366 -0.00100 -0.00101 -0.00108

(0.0264) (0.000852) (0.000851) (0.000850)
Rain 0.198⇤⇤ 0.0134⇤⇤⇤ 0.0132⇤⇤⇤ 0.0139⇤⇤⇤

(0.0788) (0.00447) (0.00443) (0.00452)
# Frost days 0.0571 -0.000380 -0.000526 -0.000896

(0.0631) (0.00301) (0.00297) (0.00352)
Time FE No Yes Yes Yes Yes
Panel FE No No Yes Yes Yes
Clusters 72 72 72 72 72
Local vehicles 686 686 686 686 686
Roaming vehicles 35 35 35 35 35
Observations 4,248 4,248 4,248 4,248 4,248

Notes: Robust standard errors in parentheses are clustered at the province and country-group level.⇤⇤⇤,
⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.
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Table 6.C.5: Estimation results for subsamples with different age groups.

log(# Vehicles in Accidents)

All Age  30 30 <Age< 50 Age� 50 Age� 65 Age unknown
(1) (2) (3) (4) (5) (6)

Treatment effect 0.094⇤⇤⇤ 0.039 0.099⇤⇤ 0.058 0.055 0.193⇤⇤

(0.031) (0.038) (0.039) (0.035) (0.051) (0.087)
log(Hotel nights roamers) 0.298⇤⇤⇤ 0.201⇤⇤⇤ 0.200⇤⇤⇤ 0.204⇤⇤⇤ 0.027 0.181⇤⇤

(0.076) (0.039) (0.050) (0.064) (0.049) (0.072)
log(Hotel nights locals) -0.089 0.058 -0.046 0.016 0.063 -0.238

(0.063) (0.070) (0.080) (0.069) (0.096) (0.166)
Weather controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Panel FE Yes Yes Yes Yes Yes Yes
Clusters 72 72 72 72 62 72
Local vehicles 686k 189k 221k 172k 59k 104k
Roaming vehicles 35k 7k 12k 6k 1k 9k
Observations 3,688 2,638 3,072 2,572 1,422 2,822
R2 0.967 0.959 0.954 0.959 0.970 0.924

Notes: Robust standard errors in parentheses are clustered at the province and country-group level.⇤⇤⇤,
⇤⇤, ⇤ indicate significance at 1%, 5%, and 10%.
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7
Summary and conclusions

This thesis provides a collection of empirical studies in environmental and transport
economics. It contains five chapters in which natural experiments are employed to
quantify mechanisms in the realm of air pollution, road safety, congestion, and sub-
stitution in urban transport networks.

Chapter 2 tested the hypothesis that particulate matter has a direct effect on human
decision making. As a natural experiment, this study focused on whether PM in-
creases the probability of drawing in chess games using information from the Dutch
club competition. The results provide evidence for a reasonably strong effect: A 10µg
increase in PM10 (33.6% of mean concentration) leads to a 5.8% increase in draws. This
chapter has demonstrated that air pollution causes individuals to take less risk.

Chapter 3 estimated how air pollution in general, and ambient ozone in particular, af-
fects human physical activity through impaired lung functioning. The study provides
evidence of the immediate impact of air pollution on time delays in urban outdoor
activities. This effect is estimated on cycling speeds in London using several estima-
tion strategies. The results show that ozone reduces speed for concentrations above
20 ppb, which is far below the minimum threshold suggested by other studies. A 10
ppb increase in ozone concentration leads to a 0.3-0.4% reduction in cycling speed,
despite that most cycling trips are short so that exposure to ozone tends to be short. It
seems plausible that ozone induces time losses of similar magnitude of other outdoor
activities, such as walking.

Chapter 4 studied how public transport and cycling are related in a dense urban net-
work. Specifically, it focused on how demand for public rental bicycles is affected
by local and temporary metro interruptions in Paris. A unique dataset is constructed
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by linking metro interruptions announced in Twitter communication by the Parisian
metro operator to usage data on the Vélib’ PBS. The results show that, as a direct
consequence of a metro interruption, the consumption of bicycles within 100 metres
of metro stations increases by 0.72 bicycles per hour per docking station on average,
and with 1.54 bicycles per hour per docking station during the first 20 minutes; an
increase of approximately 11% and 22% respectively. Due to their effects on demand,
metro interruptions increase the probability of empty stocks at docking stations with
15%. The findings highlight that cycling is a local net substitute for metro service,
and that public rental bicycles can alleviate time losses stemming from interruptions
in public transport.

Chapter 5 focused on New York City and estimates the causal effect of protected
bike lanes on traffic speed and flow, and road safety. Because a street-level analy-
sis is prone to biases due to treatment-induced rerouting, aggregated observations
of streets in the same direction within narrowly defined areas on Manhattan are
used. Thereby, Manhattan’s elongated shape and grid-structured street network are
exploited to assure causality, but also to obtain policy-relevant area-level estimates.
Bike lanes are found to improve safety for cyclists both on streets and at junctions.
Once an area can be completely traversed on a protected bike lane, accidents with cy-
clists involved are estimated to be reduced by 34%. The results further indicate that
bike lanes have no statistically significant effect on overall road safety at junctions,
but reduce accidents away from junctions by 59% for all modes in the whole area.

Using taxi trips as an accurate proxy for traffic indicators, bike lanes appear to have
no statistically significant effect on traffic speed of traffic flow at the area-direction
level. However, traffic speed on streets with bike lanes is 1.3% lower compared to
streets in the same direction in the same area. At the same time, the results indicate
that streets with a bike lane accommodate a 2.3% higher throughput.

Chapter 6 investigates to what extent smartphones play a role in the number of road
accidents. The study exploits variation in phone usage fees in the Netherlands fol-
lowing the European Union (EU) roaming regulations in 2017, which abolished all
roaming surcharges for EU residents. This change is used to estimate a difference-
in-differences model where non-Dutch drivers from the EU are treated, while Dutch
drivers serve as a control group. Phone use patterns show that the growth rate of mo-
bile calls, texts, and particularly data usage increased substantially after the change
in roaming regulations, making roaming phone use more in line with usage in home
countries. While actual phone use of drivers is not directly observed, the in overall
phone use is likely to (partly) carry over to phone use while driving. The results then
suggest that 10% of accidents can be explained by the use of smartphones. The find-
ings further indicate that phone distraction increases accidents of all severity levels by
a similar magnitude, and that phone-related accidents mainly happen on local urban
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roads.

In addition to each chapter’s estimation results, this thesis has demonstrated how
one can use natural experiments in cases where traditional experiments are infeasi-
ble. For instance, it would be unethical to run an experiment where cyclists or chess
players are exposed to air pollution by a researcher. At the same time, the vast major-
ity of the world population is exposed to air pollution, such that it is highly relevant
to understand its impact on health and behaviour. Furthermore, the behavioural ef-
fects of air pollution are often modest. Therefore, even if society would consider
(lab) experiments with air pollution acceptable, then the subtlety of the impact of air
pollution requires a large study population. Running such large scale experiments
would make traditional experiments very costly, such that natural experiments are
an attractive method to improve our understanding of the impact of air pollution.

To study road safety, similar ethical concerns as above make it difficult to run (field)
experiments. Especially in the case of smartphone distraction of drivers, traditional
experiments are infeasible. This is because ethical concerns (researchers would put
participants in danger) are further exacerbated by the fact that the treatment (driving
while holding a smartphone) is prohibited. Therefore, most researchers in this field
use simulations to study the effects of driver distraction. However, with simulation
approaches, one cannot estimate the full extent of the problem. Hence, a natural ex-
periment is the only feasible method for analysing the aggregate effect of smartphone
distraction of drivers.

Finally, because new policies often induce variation, they reveal underlying mech-
anisms and can be exploited as natural experiments. The installation of bike lanes
in New York City is a prime example of such a policy. In that case, analysing ob-
servational traffic data not only allows inferring causal effects, but it allows for an
evaluation of the policy itself. In a world where evidence-based policy-making is in-
creasingly important, this thesis, therefore, also serves as an example of how policies
can be evaluated and used as natural experiments.

Overall, this thesis provides a collection of studies based on natural experiments.
It demonstrates that one can address important research questions in environmental
and transport economics using observational data. There are many more applications
possible, and data availability and computing power will arguably further increase.
Therefore, natural experiments are likely to be an essential method for future research
in a broad range of scientific fields.
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Samenvatting (Dutch summary)

Dit proefschrift is een collectie van empirische studies in het domein van
milieueconomie en transporteconomie. In vijf hoofdstukken worden natuurlijke
experimenten gebruikt om mechanismen te kwantificeren op het gebied van
luchtverontreiniging, verkeersveiligheid, verkeersdoorstroming, en substitutie in
stedelijke vervoersnetwerken.

Hoofdstuk 2 test de hypothese dat fijnstof een direct effect heeft op individuele
besluitvorming. Als een natuurlijk experiment, richt deze studie zich op de vraag
of fijnstof de kans op remise verhoogt in schaakpartijen, gebruik makend van
informatie van de Nederlandse clubcompetitie. De resultaten tonen een redelijk
sterk effect: een toename van 10µg fijnstof (met een diameter kleiner dan 10
micrometer) leidt tot een toename van 5.8% in remises. Dit hoofdstuk toont daarmee
aan dat luchtverontreiniging ervoor kan zorgen dat mensen minder risico nemen.

Hoofdstuk 3 toont aan dat luchtverontreiniging (ozon) de fysieke capaciteit van
mensen negatief beïnvloedt. Dit effect is gevonden door fietssnelheden van
miljoenen deelfietsgebuikers in Londen te analyseren. Uit de resultaten blijkt dat
ozon de snelheid van fietsers verlaagt voor concentraties vanaf 20 ppb. Dit is
een stuk lager dan in eerdere studies is gevonden, en ook lager dan de huidige
milieustandaarden. Een toename van de ozonconcentratie met 10 ppb leidt tot een
afname van fietssnelheden met 0.3-0.4%. Het lijkt aannemelijk dat ozon bij andere
buitenactiviteiten, zoals wandelen, tot tijdverlies van vergelijkbare omvang leidt.

Hoofdstuk 4 onderzoekt de samenhang tussen openbaar stadsvervoer en deelfietsen.
Specifiek wordt onderzocht hoe de vraag naar deelfietsen wordt beïnvloed door tij-
delijke storingen in het metronetwerk van Parijs. De studie koppelt Twitterberichten
over metrostoringen aan gebruiksgegevens van Vélib’ deelfietsen. De resultaten to-
nen aan dat als een metro (tijdelijk) uitvalt, het aantal gebruikte deelfietsen binnen
100 meter van metrostations toeneemt met 11%, en met 22% gedurende de eerste 20
minuten. De metrostoring verhoogt de kans op een leeg deelfietsstation met 15%.
Deze bevindingen impliceren dat deelfietsen een netto substituut zijn voor metro-
diensten, en dat deelfietsen het tijdverlies als gevolg van storingen in het openbaar
vervoer kunnen verminderen.

Hoofdstuk 5 richt zich op New York City en schat het effect van afgescheiden
fietspaden op verkeersveiligheid, snelheid, en volume. Voor verkeersveiligheid
wordt het stratennetwerk gekoppeld aan meer dan een miljoen geregistreerde
verkeersongevallen. Het effect op de volume van het verkeer is in kaart gebracht met
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de data van een half miljard taxiritten. Fietspaden blijken de veiligheid voor fietsers
te verbeteren, zowel op straten als op kruispunten. Zodra een gebied volledig
kan worden doorkruist op een beschermd fietspad, wordt het aantal ongevallen
met fietsers naar schatting met 34% verminderd. De resultaten tonen bovendien
aan dat de verkeersveiligheid ook verbetert voor alle andere weggebruikers, met
uitzondering van de verkeersveiligheid op kruispunten.

De analyse van taxiritten laat zien dat fietspaden geen significant effect hebben op
de verkeerssnelheid en verkeersvolume op wijkniveau, maar op straatniveau is er
een effect voor straten met fietspaden. De verkeerssnelheid op straten met fietspaden
ligt 1.3% lager dan op straten zonder fietspaden in dezelfde richting in dezelfde wijk.
Tegelijkertijd tonen de resultaten dat straten met een fietspad gemiddeld 2.3% hogere
verkeersvolumes hebben.

In hoofdstuk 6 wordt onderzocht in hoeverre smartphones een rol spelen
bij het aantal verkeersongevallen. De studie maakt gebruik van variatie in
telefoongebruikstarieven in Nederland als gevolg van de roaming-regelgeving van
de Europese Unie (EU) in 2017. Hierbij zijn alle roaming-toeslagen voor EU-inwoners
zijn afgeschaft. Deze verandering wordt gebruikt om een difference-in-differences
model te schatten waarbij niet-Nederlandse automobilisten uit de EU worden
vergeleken met een controle groep met Nederlandse automobilisten. De resultaten
suggereren dat 10% van de ongevallen kan worden verklaard door het gebruik van
smartphones. De bevindingen wijzen er verder op dat afleiding door smartphones
zowel ernstige als lichte ongevallen in een vergelijkbare mate laat toenemen.
Daarnaast blijkt dat telefoongerelateerde ongevallen vooral gebeuren op lokale
wegen binnen de bebouwde kom.

Naast de kwantitatieve resultaten van elk hoofdstuk geeft dit proefschrift
voorbeelden van natuurlijke experimenten in situaties waar gecontroleerde
experimenten niet haalbaar zijn door (onder meer) ethische bezwaren. Het zou
bijvoorbeeld onethisch zijn om een experiment uit te voeren waarbij fietsers
of schakers door een onderzoeker worden blootgesteld aan luchtvervuiling.
Natuurlijke experimenten zijn vrij van ethische bezwaren en bieden daarnaast veel
statistische kracht.

De gedragseffecten van luchtvervuiling zijn vaak subtiel. Dat betekent dat zelfs als
de samenleving (laboratorium)experimenten met luchtvervuiling aanvaardbaar zou
achten, de subtiliteit van het effect van luchtvervuiling een grote onderzoekspopu-
latie vereist. Het uitvoeren van dergelijke grootschalige experimenten zou zeer kost-
baar zijn. Natuurlijke experimenten zijn dus een aantrekkelijke methode om inzicht
te krijgen in de gevolgen van luchtvervuiling.

Voor het bestuderen van de verkeersveiligheid gelden soortgelijke ethische bezwaren,
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die het moeilijk maken om (veld)experimenten uit te voeren. Vooral in het geval van
smartphone-afleiding van bestuurders zijn gecontroleerde experimenten niet haal-
baar. In dit geval zouden onderzoekers de proefpersonen niet alleen in gevaar bren-
gen, maar ook een illegale activiteit laten uitvoeren. Tot nu toe maakten de meeste
onderzoekers in dit domein daarom gebruik van simulaties om de effecten van aflei-
ding te bestuderen. Met simulatiebenaderingen is het echter lastig de totaliteit van
het probleem in kaart brengen.

Ten slotte vormt nieuw ingevoerd beleid ook vaak een goede basis voor een natuur-
lijk experiment. De aanleg van fietspaden in New York City is een duidelijk voor-
beeld van zo’n beleid. In dit geval kunnen uit de analyse van waargenomen ver-
keersgegevens niet alleen causale effecten worden afgeleid, maar kan ook het beleid
zelf worden geëvalueerd.

169



The Tinbergen Institute is the Institute for Economic Research, which was founded
in 1987 by the Faculties of Economics and Econometrics of the Erasmus University
Rotterdam, University of Amsterdam and VU University Amsterdam. The Institute
is named after the late Professor Jan Tinbergen, Dutch Nobel Prize laureate in
economics in 1969. The Tinbergen Institute is located in Amsterdam and Rotterdam.
The following books recently appeared in the Tinbergen Institute Research Series:

728 I. SAKALAUSKAITE, Essays on Malpractice in Finance

729 M.M. GARDBERG, Financial Integration and Global Imbalances.
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772 I. NEAMŢU, Unintended Consequences of Post-Crisis Banking Reforms

773 B. KLEIN TEESELINK, From Mice to Men: Field Studies in Behavioral Economics

774 B. TEREICK, Making Crowds Wiser: The Role of Incentives, Individual Biases, and
Improved Aggregation

775 A. CASTELEIN, Models for Individual Responses

776 D. KOLESNYK, Consumer Disclosures on Social Media Platforms: A Global Investi-
gation

777 M.A. ROLA-JANICKA, Essays on Financial Instability and Political Economy of
Regulation


	Introduction
	Risk-taking and air pollution
	Introduction
	Empirical method
	Data
	Results
	Conclusion
	Appendix 2.A Additional descriptives
	Appendix 2.B Additional results

	Urban air pollution and time losses
	Introduction
	Data
	Empirical methods
	Results
	Conclusion
	Appendix 3.A Additional descriptives
	Appendix 3.B Additional analyses

	Metro interruptions and the demand for public rental bicycles
	Introduction
	Theoretical framework
	Data and descriptive statistics
	Estimation methods
	Results
	Conclusion
	Appendix 4.A Data collection
	Appendix 4.B Additional results

	Bikes lanes, road safety, and congestion
	Introduction
	Data
	Taxi data as proxy for traffic
	Identification strategy
	Results
	Conclusion
	Appendix 5.A Additional descriptives
	Appendix 5.B Additional results

	The effect of smartphone usage fees on road safety
	Introduction
	Data and context
	The Roam Like at Home Policy
	Empirical methods
	Results
	Conclusion
	Appendix 6.A Additional descriptives
	Appendix 6.B Predicting smartphone use per subscriber pre-2016
	Appendix 6.C Robustness checks and sensitivity analyses

	Summary and conclusions
	Bibliography
	Samenvatting (Dutch summary)

