7 research outputs found

    Analysis of static and dynamic test-to-code traceability information

    Get PDF
    Unit test development has some widely accepted guidelines. Two of them concern the test and code relationship, namely isolation (unit tests should examine only a single unit) and separation (they should be placed next to this unit). These guidelines are not always kept by the developers. They can however be checked by investigating the relationship between tests and the source code, which is described by test-to-code traceability links. Still, these links perhaps cannot be inferred unambiguously from the test and production code. We developed a method that is based on the computation of traceability links for different aspects and report Structural Unit Test Smells where the traceability links for the different aspects do not match. The two aspects are the static structure of the code that reflects the intentions of the developers and testers and the dynamic coverage which reveals the actual behavior of the code during test execution. In this study, we investigated this method on real programs. We manually checked the reported Structural Unit Test Smells to find out whether they are real violations of the unit testing rules. Furthermore, the smells were analyzed to determine their root causes and possible ways of correction

    A Study on Software Testability and the Quality of Testing in Object-Oriented Systems

    Get PDF
    Software testing is known to be important to the delivery of high-quality systems, but it is also challenging, expensive and time-consuming. This has motivated academic and industrial researchers to seek ways to improve the testability of software. Software testability is the ease with which a software artefact can be effectively tested. The first step towards building testable software components is to understand the factors – of software processes, products and people – that are related to and can influence software testability. In particular, the goal of this thesis is to provide researchers and practitioners with a comprehensive understanding of design and source code factors that can affect the testability of a class in object oriented systems. This thesis considers three different views on software testability that address three related aspects: 1) the distribution of unit tests in relation to the dynamic coupling and centrality of software production classes, 2) the relationship between dynamic (i.e., runtime) software properties and class testability, and 3) the relationship between code smells, test smells and the factors related to smells distribution. The thesis utilises a combination of source code analysis techniques (both static and dynamic), software metrics, software visualisation techniques and graph-based metrics (from complex networks theory) to address its goals and objectives. A systematic mapping study was first conducted to thoroughly investigate the body of research on dynamic software metrics and to identify issues associated with their selection, design and implementation. This mapping study identified, evaluated and classified 62 research works based on a pre-tested protocol and a set of classification criteria. Based on the findings of this study, a number of dynamic metrics were selected and used in the experiments that were then conducted. The thesis demonstrates that by using a combination of visualisation, dynamic analysis, static analysis and graph-based metrics it is feasible to identify central classes and to diagrammatically depict testing coverage information. Experimental results show that, even in projects with high test coverage, some classes appear to be left without any direct unit testing, even though they play a central role during a typical execution profile. It is contended that the proposed visualisation techniques could be particularly helpful when developers need to maintain and reengineer existing test suites. Another important finding of this thesis is that frequently executed and tightly coupled classes are correlated with the testability of the class – such classes require larger unit tests and more test cases. This information could inform estimates of the effort required to test classes when developing new unit tests or when maintaining and refactoring existing tests. An additional key finding of this thesis is that test and code smells, in general, can have a negative impact on class testability. Increasing levels of size and complexity in code are associated with the increased presence of test smells. In addition, production classes that contain smells generally require larger unit tests, and are also likely to be associated with test smells in their associated unit tests. There are some particular smells that are more significantly associated with class testability than other smells. Furthermore, some particular code smells can be seen as a sign for the presence of test smells, as some test and code smells are found to co-occur in the test and production code. These results suggest that code smells, and specifically certain types of smells, as well as measures of size and complexity, can be used to provide a more comprehensive indication of smells likely to emerge in test code produced subsequently (or vice versa in a test-first context). Such findings should contribute positively to the work of testers and maintainers when writing unit tests and when refactoring and maintaining existing tests

    Acta Cybernetica : Volume 23. Number 3.

    Get PDF

    Exploring the composition of unit test suites

    No full text
    suite is subject to the problem of design erosion as well, gradually loosing the initially intended design and thereby becoming harder to understand and modify. Constructs in the tests that hinder modification, e.g. complex test cases or a resource dependent test [10], directly affect developer productivity thereby amplifying the overall maintenance cost. Studies indicate that regression testing can account for as much as one-third of the total cost of a software system [16]. Therefore, in the context of a legacy system, the associated test suite contains both opportunities, in the form of well designed, isolated unit tests with a high coverage, as well as weaknesses, in the form of maintenance intensive test cases, components lacking coverage, etc. Evaluating the overall condition first requires identifying the location of test code and relating it to the corresponding productio
    corecore