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Abstract 

Software testing is known to be important to the delivery of high-quality systems, but it is 

also challenging, expensive and time-consuming. This has motivated academic and 

industrial researchers to seek ways to improve the testability of software. Software 

testability is the ease with which a software artefact can be effectively tested.  

The first step towards building testable software components is to understand the factors – 

of software processes, products and people – that are related to and can influence software 

testability. In particular, the goal of this thesis is to provide researchers and practitioners 

with a comprehensive understanding of design and source code factors that can affect the 

testability of a class in object oriented systems. This thesis considers three different views 

on software testability that address three related aspects: 1) the distribution of unit tests in 

relation to the dynamic coupling and centrality of software production classes, 2) the 

relationship between dynamic (i.e., runtime) software properties and class testability, and 

3) the relationship between code smells, test smells and the factors related to smells 

distribution. The thesis utilises a combination of source code analysis techniques (both 

static and dynamic), software metrics, software visualisation techniques and graph-based 

metrics (from complex networks theory) to address its goals and objectives.  

A systematic mapping study was first conducted to thoroughly investigate the body of 

research on dynamic software metrics and to identify issues associated with their selection, 

design and implementation. This mapping study identified, evaluated and classified 62 

research works based on a pre-tested protocol and a set of classification criteria. Based on 

the findings of this study, a number of dynamic metrics were selected and used in the 

experiments that were then conducted. 

The thesis demonstrates that by using a combination of visualisation, dynamic analysis, 

static analysis and graph-based metrics it is feasible to identify central classes and to 

diagrammatically depict testing coverage information. Experimental results show that, 

even in projects with high test coverage, some classes appear to be left without any direct 

unit testing, even though they play a central role during a typical execution profile. It is 
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contended that the proposed visualisation techniques could be particularly helpful when 

developers need to maintain and reengineer existing test suites. 

Another important finding of this thesis is that frequently executed and tightly coupled 

classes are correlated with the testability of the class – such classes require larger unit tests 

and more test cases. This information could inform estimates of the effort required to test 

classes when developing new unit tests or when maintaining and refactoring existing tests. 

An additional key finding of this thesis is that test and code smells, in general, can have a 

negative impact on class testability. Increasing levels of size and complexity in code are 

associated with the increased presence of test smells. In addition, production classes that 

contain smells generally require larger unit tests, and are also likely to be associated with 

test smells in their associated unit tests. There are some particular smells that are more 

significantly associated with class testability than other smells. Furthermore, some 

particular code smells can be seen as a sign for the presence of test smells, as some test and 

code smells are found to co-occur in the test and production code. These results suggest 

that code smells, and specifically certain types of smells, as well as measures of size and 

complexity, can be used to provide a more comprehensive indication of smells likely to 

emerge in test code produced subsequently (or vice versa in a test-first context). Such 

findings should contribute positively to the work of testers and maintainers when writing 

unit tests and when refactoring and maintaining existing tests.  
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 Introduction Chapter 1

1.1. Background and Motivation 

Although it has been defined in a number of ways, software testability is commonly 

interpreted as being indicative of the ease with which a software artefact can be 

effectively tested. In the last two decades the need to achieve improvements in 

software testability, alongside other quality and productivity improvement goals, 

has become an increasingly important aim of those involved in software 

development. There are numerous reasons for this increased attention. It is 

generally acknowledged that software systems are growing larger and are 

becoming more complex (Sommerville et al., 2012), and yet there is some evidence 

that the resources directed towards testing have not been keeping pace 

(Mouchawrab et al., 2005). Software testing activities can be costly, requiring 

significant time and effort in both planning and execution, and yet they are often 

unpredictable in terms of their effectiveness (Bertolino, 2007). As a result some 

estimates suggest that testing can consume as much as 50% of the total time and 

cost needed for software development (Brooks, 1975, Myers et al., 2011).  

Although such figures are typically associated with waterfall-like processes where 

testing is treated as a ‘phase’, the centrality of testing is not just a phenomenon of 

plan-based development approaches: Agile software development methods such 

as eXtreme Programming (XP) and Scrum also give testing significant attention in 

light of its importance. The practice of Test-Driven Development (TDD), for 

example,  requires that extensive test code be developed and maintained to ensure 

that the ‘furthermost’ components of the production code work correctly (Beck, 

2002). Such methods follow a test-first approach, which requires the designing 

and writing of test code (usually unit tests – see Chapter 2) before the production 
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code is written. In these methods, in fact, unit tests are viewed as core, integral 

parts of the program (Cheon and Leavens, 2002). In further noting the importance 

of testing in agile approaches, Beck (1994) recommended that developers spend 

between 25% and 50% of their time writing tests. In short, and irrespective of the 

development method adopted, testing is recognised as an important but high-cost 

activity, and so efforts to reduce the work effort required in testing, or to improve 

its cost-effectiveness, are sought after in research and practice. 

Initiatives designed to make software easier to test are thus directed towards 

improving its testability. However, defining and measuring testability brings 

significant challenges in its own right. Like many non-functional properties of 

software, testability has been acknowledged as an elusive concept, and its 

measurement and evaluation have been considered to be inherently difficult 

(Mouchawrab et al., 2005). Although several standards and individual studies 

have defined testability, they have done so in various ways, reflecting the fact that 

they were motivated by different purposes. These different views of software 

testability have directed researchers to investigate various factors of software 

processes, products and people that can impact – directly or indirectly – software 

testability. Among others aspects, testability has been previously evaluated in 

terms of effort expended (ISO, 2001, Freedman, 1991, Traon and Robach, 1995), 

test coverage (Bache and Mullerburg, 1990), and the size and quality of the test 

suite (Binder, 1994, Bruntink and van Deursen, 2006) (as discussed in more detail 

in the following chapter). 

The main goals and objectives of the research reported in this thesis are discussed 

next. 

1.2. Research Goal and Objectives 

The first step towards building more testable software components is to 

understand the factors that have an impact on their testability. The goal of this 
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research is to provide researchers and practitioners with a comprehensive 

understanding of design and source code factors that can affect the testability of a 

class. In light of their widespread use this thesis focuses on the testability of Object 

Oriented (OO) systems, and testability is addressed from a unit testing point of 

view (rather than, for example, a system testing perspective, which has been the 

focus of several prior studies (as described in Chapters 2 and 4)). 

As noted above, testability in the literature has been addressed from a range of 

perspectives, depending on the way it has been defined. In this thesis we consider 

three different views of software testability that address three different, yet 

related, aspects. 

1. The distribution and coverage of unit tests in relation to the centrality1 of 

software production classes. This research utilises a combination of 

dynamic metrics and analysis, software visualisation (i.e., network graphs) 

and graph metrics to understand the coverage and distribution of unit tests 

in programs.  

2. The impact of design and implementation factors in software production 

code on class testability. Previous research (such as Bruntink and van 

Deursen (2006),  Mouchawrab et al. (2005) and Zhou et al. (2012)) has 

addressed the relationships between several static software properties and 

class testability. This thesis additionally investigates the relationship 

between two dynamic (i.e., runtime) software properties and class 

testability.  

3. The relationships between design flaws (i.e., code smells) and code 

attributes in production code and test code. We also study the quality and 

design factors of unit tests (i.e., test smells) and their relationships with 

testability. 

                                                 
1 In graph theory, centrality is the measure of the importance of nodes within a graph.  
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All three aspects are investigated through experimentation in Open Source 

Software (OSS) contexts, as we use data obtained from various open source 

projects (as described and justified in Chapter 3). An overview of the aspects of 

software testability addressed in this research is shown in Figure 1, and a fuller 

explanation of the background to this research is provided in Chapter 2. As the 

thesis considers three different views of software testability, that are addressed by 

three different experiments, the specific motivation and research questions related 

to each experiment (underpinned by a systematic mapping presented in Chapter 

4) are set out within the chapter that contains each respective experiment 

(Chapters 5-7).  

 

Figure 1. An overview of the testability factors addressed in this thesis. 

1.3. Main Outcomes  

There are four major outcomes of this work:  

1. A detailed systematic mapping study of the research on dynamic software 

metrics and their application and usage in software quality, including 

dynamic metrics that are used to measure software testability. This is 

presented in Chapter 4. 

2. A visualisation approach that combines dynamic and static information to 

explore unit tests’ distribution. This is presented in Chapter 5. 
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3. A comprehensive empirical investigation of the relationship between 

dynamic software properties and class-level testability. This investigation is 

presented in Chapter 6 

4. A comprehensive empirical investigation of the quality of unit tests, and the 

relationship between several software characteristics and the presence of 

design flaws (smells) in unit tests. The outcomes of this study are presented 

in Chapter 7. 

1.4. List of Publications 

During the course of this doctoral thesis, several research papers have been 

submitted and published in relevant research venues. At the time of submission of 

this work, four papers have been published in four different peer-reviewed 

research venues, as follows: 

1. Tahir, A. & MacDonell, S. G. 2012, A Systematic Mapping Study on Dynamic Metrics and 

Software Quality.  IEEE 28
th
 International Conference on Software Maintenance (ICSM). pp. 

326-335, Riva del Garda, Italy. IEEE Computer Society. 

2. Tahir, A., MacDonell, S. G. & Buchan, J. 2014, Understanding Class-Level Testability through 

Dynamic Analysis. 9th International Conference on Evaluation of Novel Approaches to 

Software Engineering (ENASE). pp. 38-47, Lisbon, Portugal. 

3. Tahir, A., MacDonell, S. G. & Buchan, J. 2015, A Study of the Relationship Between Class 

Testability and Runtime Properties. Communications in Computer and Information - ENASE 

2014 Extended Versions of Selected Papers, Volume 551, pp. 63-78, Springer . 

4. Tahir, A. & MacDonell, S. G. 2015, Combining Dynamic Analysis and Visualization to Explore 

the Distribution of Unit Test Suites. 6
th
 ICSE Workshop in Emerging Trends on Software 

Metrics (WETSoM), Florence Italy. IEEE Computer Society 

Note that there is overlap between the material contained in this thesis and the 

published papers. 

 The first publication presents the results of a mapping study that 

investigates the use of dynamic metrics in software as used to measure 
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software quality characteristics. The main aim of this work is to 

systematically investigate the body of research on dynamic software 

metrics to identify issues associated with their selection, design and 

implementation. The findings of this work motivated the focus on software 

testability, as one of the factors that can potentially benefit from the use of 

dynamic software metrics. This work is presented in Chapter 4 of this 

thesis. 

 The second and the third publications2 examine the relationships between 

dynamic software properties, represented by dynamic coupling (motivated 

by the findings of the mapping study published in the first publication) and 

the newly defined concept of key classes, and software testability. The 

results of this work are provided in Chapter 6. 

 The fourth publication presents a new approach that visualises data 

obtained from both static and dynamic analysis to explore the distribution 

of unit tests in software projects. This work builds on the findings from the 

earlier publications. The results of this study are presented in Chapter 5 of 

this thesis.  

1.5. Structure of the Thesis 

An overview of the novel research presented in this thesis is shown in Figure 2. 

The remainder of this thesis is structured as follows: Chapter 2 presents a general 

literature review of the general topics addressed in this thesis. Chapter 3 discusses 

in detail the research methodology employed. Chapter 4 presents a systematic 

mapping study on the use of dynamic software metrics in software quality. In the 

first experiment presented in Chapter 5, we examine the combined use of dynamic 

analysis and visualisation to explore the distribution of unit tests in software 

systems. We then investigate the relationship between dynamic software 

                                                 
2 The third publication is an extended and revised version of the second publication, which was 

selected to be published as a chapter in a specially edited book.  
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characteristics and class testability, presented in Chapter 6.  We subsequently 

provide a detailed study in Chapter 7 on test smells and the relationship between 

test smells, code smells and the factors that might impact smell distribution. 

Finally, Chapter 8 presents a conclusion based on the findings of this thesis, it 

provides a discussion of the limitations of the research conducted, and it suggests 

a number of future research endeavours that could be carried out on topics related 

to those addressed here.  

 

Figure 2. An overview of the research conducted in the thesis  
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 Literature Review  Chapter 2

2.1 Introduction 

Although it can be defined and operationalised in many ways, the general notion 

of ‘quality’ rightly continues to attract extensive attention in the software industry, 

from the perspectives of both research and practice. Quality has long been viewed 

as an important success criterion in the software development industry 

(Osterweil, 1996) and it continues to play a prominent role in today’s competitive 

software market (Elberzhager et al., 2012). Users expect high-quality software 

products3 and they would normally evaluate a system’s performance as delivered, 

rather than in relation to the underlying development process (McManus and 

Wood-Harper, 2007). As such, the quality of the final product is paramount to 

users – if its performance (both functional and non-functional) does not meet their 

expectations then they are unlikely to use the product.  That said, continued use is 

very likely to be affected by the development process, as this process will have 

affected the internal quality of the product and will also affect the ease with which 

the product can be changed. It is known that adherence to quality concepts in the 

development process enables projects to better meet customers’ requirements and 

expectations, and also increases the efficacy and the quality of the resulting 

software product or service (Leung et al., 2007). Management priorities for 

software development must therefore take account of development cost, time, and 

effort, as well as the quality of the development process and of the final intended 

product. Certainly the short release cycles and competitive market pressures now 

                                                 
3 We use the single term software product to represent the collective of software products, 

components, systems, services, applications and apps. 
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predominant in the software sector are squeezing resources, and such pressures 

are known to have an impact on quality. 

In such a context, many software organisations have therefore sought effective 

ways to instil and monitor the ongoing quality of their software. One of the 

demonstrably effective ways to obtain an indication of the quality of software is to 

quantify some aspects of it, utilising a range of measures. This is the intent of the 

work undertaken in the field of software measurement and its constituent 

software metrics. Measurement is considered to be fundamental to software 

quality, drawing as it does on quality strategies in other fields (e.g., 

manufacturing). Software metrics traditionally defined how various attributes of 

software (such as size, cost, and defects) should be measured (Grady and Caswell, 

1987). More generally, metrics can be used to quantify characteristics of a software 

project, a development process and/or a final product. 

Numerous quality attributes have been identified in the literature and captured in 

various industry standards (Boehm et al., 1978, IEEE, 1990, ISO, 2001).  One of the 

key quality attributes that has been highlighted in many software quality models, 

and that is of particular relevance to this study, is testability. Testability, in simple 

terms, reflects how easy (or difficult!) it is to test a software product. Testability is 

believed to impact the cost and effort that are required during software testing 

(Elberzhager et al., 2012). The focus of the research conducted and reported in this 

thesis is on software testability at the class level. We refer to this level of testability 

as “class-level testability” (or simply: class testability).  

The remainder of this Chapter is structured as follows: we first explain the central 

concept of software testability in detail by looking at its definitions and its 

associated factors. We then examine software measurements and their two types: 

static and dynamic metrics. We follow this with a reflection on the importance of 

test comprehension. Finally, we specifically consider the notion of quality in unit 

tests, and we introduce the concept of test smells.  
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2.2 Software Testability 

Like many of the inherently ‘good’ but rather amorphous characteristics 

considered in software quality models, testability has been acknowledged as an 

elusive concept, and its measurement and evaluation have thus proved to be 

challenging (Mouchawrab et al., 2005). Difficulties arise, in particular, due to the 

many potential factors that might affect testability. In spite of this, there are good 

reasons to further pursue its measurement and evaluation. Software products 

with poor testability may be less trustworthy, even after successful testing 

(Bertolino and Strigini, 1996). Components with poor testability are also more 

expensive to repair when problems are detected late in the development process; 

conversely, components and products with good testability can dramatically 

increase the quality of software, as well as reduce the cost of testing (Gao et al., 

2003). Over time numerous researchers have come to relate software testability 

and test efficiency to the effort and cost of conducting those tests (Gao et al., 2003, 

Mouchawrab et al., 2005, Bache and Mullerburg, 1990).  

There is a clear economic incentive to improve testability – testing can be very 

expensive (Bertolino and Strigini, 1996) as it can consume up to 50% of the total 

cost and effort in software development (Brooks, 1975, Harrold, 2000, Myers et al., 

2011). In noting the importance of testing it has been recommended that 

developers spend between 25% and 50% of their time writing tests (Beck, 1994). 

Further, this is not just a function of waterfall-like processes: contemporary Agile 

software engineering processes, such as eXtreme Programming (XP) and Scrum, 

give testing significant attention (Cornelissen et al., 2007). The practice of TDD, for 

example,  requires that extensive test code be developed and maintained to ensure 

that the ‘furthermost’ components of the production code work correctly (Beck, 

2002). In these processes, in fact, unit tests4 - components written by the 

                                                 
4 In the context of Object Oriented, unit tests are also referred to as Test Classes 
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developers/tester designed to automatically test individual production classes - 

are viewed not as (albeit important) after-the fact add-ons but as core, integral 

parts of the program (Cheon and Leavens, 2002). These unit tests provide a 

powerful mechanism for validating existing features when in the process of 

developing new functionality (Cheon and Leavens, 2002). When well-designed, 

the use of unit tests is known to improve software quality from the early stages of 

development and to enable the detection of defects more effectively when 

compared to other verification strategies (Runeson and Andrews, 2003). Thus, the 

ideal ratio of test code to production code (particularly in systems implemented 

with test-focused methods similar to TDD) is said to be 1:1 (van Deursen et al., 

2001). 

In summary, the research consensus indicates that improving the testability of 

software has a direct, positive impact on overall quality, but that challenges in 

defining then measuring and assessing software testability remain. The 

subsections that follow explain how testability has been defined in previous 

research, particularly in studies conducted and reported early in the establishment 

of the field. Factors that are believed to strongly influence software testability, 

including some novel factors, are also identified and discussed. 

2.2.1 Testability Definitions  

Defining and measuring testability has long presented a significant challenge, and 

so an extensive research effort has been directed to defining the overall 

characteristic as well as its associated measures. As a result, several (purportedly) 

general standards and many more individual studies have defined testability in a 

variety of ways, reflecting the fact that they were conducted in parallel and/or 

were motivated by different purposes. This is particularly evident in the early 

works in the field, a selection of which we present here. The IEEE standard 

glossary of software engineering terminology (1990) in fact established two 

definitions for testability, as follows: (1) “the degree to which a system or 
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component facilitates the establishment of test criteria and the performance of 

tests to determine whether those criteria have been met”, and (2) “the degree to 

which a requirement is stated in terms that permit establishment of test criteria 

and performance of tests to determine whether those criteria have been met”. It is 

clear, then, that the IEEE definitions consider software testability from a test 

criteria point of view. The first definition focuses on defining test criteria and 

checking if these criteria have been met during actual testing, whereas the second 

considers test coverage and how the system’s requirements have been tested. The 

relevant ISO standard (ISO, 2001) defines testability as “attributes of software that 

bear on the effort needed to validate the software product”. Thus, the IEEE 

definitions consider software testability from a test criteria point of view, whereas 

the ISO definition, in contrast, considers testability based on the effort needed to 

test a software product. 

Bache and Mullerburg (1990) defined testability based on test coverage, as “the 

minimum number of test cases to provide total test coverage, assuming that such 

coverage is possible”(p. 3). The authors measured software testability statically 

using a flow graph model. Freedman (1991)  defined testability based on effort, 

time, and resources required in testing a software. Their goal was to drive towards 

producing easily testable – and therefore lower cost – software components. Traon 

and Robach (1995) extended the well-established notions of analysis of hardware 

testability to define software testability as “The effort needed to test and repair a 

considered system”. In their view, software testability is concerned with not just 

one but three different aspects, namely, test data generation, test result 

interpretation, and diagnosis. 

Although brief, this discussion should serve to demonstrate how testability has 

been viewed and defined in the seminal literature. These different views of 

software testability have led to multiple influential factors being identified, 

aligned with one or more of these different views. As we consider several of these 
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factors (or similar) in the work presented later in this thesis we now provide a 

brief background explanation of these factors.   

2.2.2 Testability Factors 

As just noted, different views have been adopted when authors have defined 

software testability; researchers have therefore identified multiple factors as 

having an impact on the testability of software. For instance, software testability is 

said to be affected by the extent of the required validation, by the process and 

tools used, and by the representation of the requirements, among other factors 

(Bruntink and van Deursen, 2006). Given their various foundations it is 

challenging to compile a complete and consistent view on all the potential factors 

that may affect testability, and the degree to which these factors are present and 

influential under different testing contexts. Several are considered here, intended 

to represent the breadth of issues of potential influence. 

In one of the earliest works of relevance Freedman (1991) extended a well-

established characterisation scheme used for assessing the testability of hardware 

components to software components (as did (Traon and Robach, 1995)). In 

Freedman (1991), the author defined what is called ‘domain testability’-which can 

be defined and measured using two attributes: observability (the ease of 

determining if specified inputs affect the outputs) and controllability (the ease of 

producing a specified output from a specific input). Traon and Robach (1995) 

categorized testability based on three main factors, namely, complexity of the 

unit/component/system under test, effort required in performing the testing of 

these units/components/systems, and diagnosability (allowing easy location of 

faults). 

Lo and Shi (1998) defined three factors that they claimed to substantially affect the 

testability of OO systems, namely, structure, communication, and inheritance 

factors. Jungmayr (1999) related testability to the dependency between software 

components: the greater the dependency, the more tests that are required to 
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exercise their interface; hence, the higher the dependency between components, 

the lower their testability.  

As with other quality attributes, in order to be effectively managed (i.e., planned, 

monitored and controlled), software testability and its constituent factors should 

be modelled, measured, analysed and interpreted. The following section describes 

the field of software measurement and metrics and explains the types of metrics 

than can be used to measure the characteristics of interest in this study.    

2.3 Software Measurement and Metrics 

Measurement is a key process in any engineering discipline, and while there 

remain some questions over the ‘engineering-ness’ of software engineering the 

importance of measurement is nevertheless widely acknowledged and accepted. 

The main goals of software measurement are to assist project managers and 

software engineers in making predictions to support planning, monitoring 

progress to enable control, and judging the performance of the software relative to 

goals and objectives (Stockman et al., 1990). The quantification of software 

characteristics is effected using software metrics. Software metrics are considered 

by many to be fundamental to software quality (McManus and Wood-Harper, 

2007), and as such they have played an important and long-established role in the 

analysis and improvement of software quality (Basili et al., 1996). Among other 

things, software metrics can help personnel to ensure, throughout the software life 

cycle, that quality requirements are indeed being met.  

As introduced previously, software metrics are commonly considered in relation 

to three main categories that are related to different aspects of software 

development: product, process and project (Fenton and Pfleeger, 1998, Kan, 2002). In 

the software engineering body of literature, quality has been most often associated 

with product and process metrics. In line with this thinking, Kan (2002) classified 

quality measurements into two classes: in-process and end-product metrics. In-
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process metrics help to characterise the quality of the development process, while 

end-product metrics reflect the relevant characteristics of the software itself 

(though more correctly, and importantly, they might also reflect characteristics of 

intermediate products, not just the ‘final’ version).  

Within the class of (end) product metrics there are two further sub-classes that 

gauge different aspects of a system: static and dynamic metrics. The ISO 9126  

model (ISO, 2001) reflects these two different views on software product quality:  

1. Attributes and properties that can be measured without executing or running 

the program – these attributes characterise the internal quality of the software 

and are quantified in the form of static metrics. 

2. Attributes and properties that can be measured only at run-time (software 

execution) – these attributes are quantified in the form of dynamic metrics. 

As both are important in terms of obtaining a complete view of software quality 

(discussed further below) both groups are explained in the following sub-sections. 

2.3.1 Static Metrics 

Static metrics are the group of software metrics collected by measuring non-

running system representations (Sommerville, 2006) and as such they capture only 

the static structure of a system (Cleland-Huang et al., 2001). They are typically 

collected using static analysis techniques, the ‘traditional’ means of understanding 

and measuring a program (or software component), enabling the interested 

stakeholder to explore and analyse the source code as well as any associated 

products or documentation (Ball, 1999, Pirzadeh et al., 2010, Cornelissen et al., 

2011). Static metrics are invariant (i.e., their values do not change whether they are 

collected before or during program execution). Most existing quality metrics come 

in static form. The most notable (while perhaps not the most useful) is the Lines of 

Code (LOC) metric, which measures the number of physical command lines in a 

program/component. McCabe’s well-known indicator of complexity, the 

Cyclomatic Complexity (CC) metric (McCabe, 1976), is another widely known  static 
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metric that has been used extensively in the past for assessing the complexity of 

software systems.  

The main advantage that comes from the use of static metrics is coverage 

completeness: static analysis supports the prediction of behaviour resulting from 

multiple scenarios/paths through the software, since it is performed without 

actually executing the program. Despite this high coverage level, a number of 

limitations have been noted with the use of static metrics. Unsurprisingly, 

empirical studies show that static measurement and analysis is insufficient for 

capturing dynamic dependencies among system modules, such as those related to 

polymorphism, dynamic binding, and inheritance (Arisholm et al., 2004). The 

presence of dead code in the production code is also difficult to detect statically 

(especially in the presence of polymorphism) (Zaidman and Demeyer, 2008). 

Furthermore, static analysis may result in the generation and/or collection of a 

huge amount of data (Ernst, 2003) that may be difficult to understand and 

summarize. These (and other) disadvantages have motivated researchers to look 

at possible solutions that can be provided by dynamic metrics, as now discussed. 

2.3.2 Dynamic Metrics 

Dynamic metrics are the sub-class of software measures that are used to capture 

the dynamic behaviour of a software system5 and, like their static counterparts, 

they have been promoted as being directly related to several software quality 

attributes of interest such as maintainability and reliability (Cai, 2008, Gunnalan et 

al., 2005, Scotto et al., 2006). As early as 1996, Basili et al.  (1996) stated that 

traditional static software metrics may not be sufficient for characterizing, 

assessing, and predicting the quality of OO systems, now the dominant structural 

                                                 
5 For the purpose of this thesis, we focus on specific types of dynamic metrics that are related to 

particular quality attributes such as maintainability, functionality and testability. Other forms of 

dynamic metrics, such as performance and time-related metrics, are considered to be outside the 

scope of this thesis.  
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form for software systems; hence the need for dynamic metrics. Dynamic metrics 

are usually computed based on data collected during program execution (i.e., at 

runtime) and may be obtained from the execution traces of the code (Gunnalan et 

al., 2005) (although in some cases simulation can be used instead of the actual 

execution), and as such they can directly reflect the quality attributes of that 

system in operation.   

Due to their more recent consideration, dynamic metrics have received less 

extensive attention in the OO metrics literature compared to that afforded to static 

metrics (Yuying et al., 2005). There exists a large body of research on static metrics 

and a rapidly growing body of work on dynamic metrics; however, research on 

the factors affecting dynamic metrics, and on any relationships with their static 

counterparts has been limited (Mitchell and Power, 2006, Hamou-Lhadj and 

Lethbridge, 2010).  It has been noted that developers have tended to focus more on 

static rather than dynamic metrics, at least partly because static metrics are much 

easier to compute (Dufour et al., 2003a). There are indeed several challenges 

associated with the collection of dynamic metrics, including code instrumentation 

and possibly limited availability of the source code. 

As stated briefly above, the collection of dynamic metrics can be accomplished in 

different ways. Most common is to collect the data by obtaining trace information 

using dynamic analysis techniques during software execution. Another method is 

to simulate runtime behaviour based on executable models and interaction 

diagrams (such as UML and Real-time Object Oriented Modelling (ROOM) 

languages). The first approach provides actual figures reflecting system 

behaviour, as it captures the true values that accrue under execution. The 

disadvantage of this approach is that it is only feasible in the later stages of 

development. On the other hand, simulation does not require executable code and 

so the metrics data can be collected at an earlier stage.  However, given likely 

changes between design and code, as well as the greater detail available in the 
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code, this technique tends not to be as accurate and precise as its execution-based 

counterpart. Despite these difficulties, both techniques have been empirically 

examined to collect and test several dynamic metrics (Cleland-Huang et al., 2001, 

Dufour et al., 2003a, Gupta and Chhabra, 2011, Yacoub et al., 1999). Both static and 

dynamic analyses return potentially useful information concerning software 

artefacts (e.g., methods and classes) and their relationships (e.g., method calls) 

(Stroulia and Systä, 2002). Table 1 summarises the key differences between static 

and dynamic metrics. 

 Comparison of static and dynamic metrics Table 1.

           Static Metrics             Dynamic Metrics 

Faster and Easier to collect  Slower and more difficult to collect  

Can be obtained in early stages of development 

(such as design-related metrics) 

In most cases, are available in later stages of 

development 

Provides wide coverage, but shallow (less 

precise)  

Provides narrow coverage , but very deep 

(more precise) 

Related to structural characteristics Related to behavioural characteristics  

Basic knowledge of the software is required  Advanced knowledge of the code required 

Capture only invariant properties (i.e., does not 

support certain OO features such as dynamic 

binding and relationships between objects) 

Suitable for collecting unique OO features 

(e.g. dynamic binding and relationships 

between objects) 

This research adopts dynamic analysis during execution, given its ability to 

provide more accurate and precise results in comparison to the simulation 

method. The intent of this research is to measure programs that have already been 

developed, so a prerequisite to inclusion is that the source code should be 

available during the measurement process.  
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Dynamic Analysis 

Dynamic analysis  is the process of analysing the properties of running programs 

(Ball, 1999). It focuses on a real product’s execution  (Ball, 1999) and occasionally 

or periodically requires run-time data collection to support the investigation of the 

properties of interest (Gupta and Chhabra, 2011). Studying the dynamic behaviour 

of a program can dramatically improve developers’ understanding of that 

program, by revealing characteristics that cannot be found from statically 

investigating the source code alone (Corbi, 1989). Data gathered from dynamic 

analysis are both detailed and more precise than are available from the analysis of 

static features (Pacione et al., 2003, Ernst, 2003, Richner and Ducasse, 1999) in 

terms of reflecting runtime behaviours. Another advantage of the use of dynamic 

metrics is the reduced level of detail that needs to be reviewed. Examining one or 

a few specific execution scenarios dynamically limits the scope of investigation, 

resulting in the provision of detailed results but only about those specific scenarios 

(Ernst, 2003, Richner and Ducasse, 1999). 

The reported disadvantages of dynamic analysis lie in two different but related 

points: incompleteness and limited generalisation. Incomplete coverage is one of 

the major arguments against the use of dynamic analysis, as the gathered data can 

reflect only the scenario that was executed (Cornelissen et al., 2011). However, it 

has been argued equally strongly that incomplete coverage of software code is not 

necessarily a weakness (Richner and Ducasse, 1999).  That is to say, to understand 

a program, evaluators need sufficient information to help them to form concepts 

about the essential software structure, not necessarily to understand its complete 

structure in full detail. This remains a somewhat contentious issue. The 

incomplete coverage ‘problem’ leads to the second disadvantage: limited 

generalisation of the results obtained. Dynamic metrics’ results may not generalise 

to future executions, given that the gathered data pertain solely to the scenario 

that was executed at a given point in time (Safari-Sharifabadi and Constantinides, 
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2008, Cornelissen et al., 2011). There is no way of assuring that the scenario under 

which the program was run is representative of all possible program scenarios 

and executions (Ernst, 2003). One of the obvious ways to mitigate this problem is 

to execute a range of scenarios that together represent all major execution paths 

(rather than all possible paths) according to cost-benefit. The combined results, 

compiled across multiple scenarios and paths, should consequently provide more 

complete as well as more accurate results.  

While the above description is sufficient for our purposes, the concepts 

underpinning dynamic analysis have been investigated and explained in far more 

detail in the literature – the interested reader is referred to the following sources 

for further coverage of this technique (Graham et al., 1982, Lange and Nakamura, 

1997, Pauw et al., 1998, Ernst, 2003). 

The two main techniques that have been used in performing dynamic program 

analysis are compiled code instrumentation and source code instrumentation. 

Compiled code instrumentation can be useful when source code is not available; 

however, given its richer coverage, source code instrumentation is normally 

preferred when it is possible. Source code instrumentation itself has two forms: 

manual and automatic code instrumentation. Manual instrumentation requires 

manual insertion of collection points, whereas automatic instrumentation can 

perform the insertion task under the control of a tool. Table 2 briefly describes 

these various dynamic analysis techniques and summarizes their advantages and 

disadvantages. 

One of the main challenges encountered when using software measurement for 

assessing product/system quality is achieving the optimum combination of 

metrics data. Many researchers have commented on the synergies that could be 

gained when combining both static and dynamic information (Rothlisberger et al., 

2009, Riva and Rodriguez, 2002, Ernst, 2003). Their data may complement each 
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other; therefore they could be used alongside one another in order to build 

stronger evidence about the software under investigation. 

 Dynamic analysis techniques Table 2.

Technique  Description  Advantages  Disadvantages 

Compiled code 

(binary) 

instrumentation 

Perform the 

instrumentation 

automatically, 

under the control 

of a debugger 

The availability of 

the source code is 

not required 

· Advanced 

knowledge of the 

binary code is 

needed 

· Slows down the 

execution 
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Manual 

instrumentation 

Insert data 

collection points 

manually in several 

locations in the 

source code 

Fast, as long as the 

source code is 

understandable  

· Prior knowledge of 

the source code is 

required before 

undertaking any 

analysis  

· The source code will 

be modified 

· It affects the source 

code’s  consistency, 

readability and 

understandability 

(as well as size 

metrics such as 

LOC)  

·  

Automatic 

instrumentation  

· Insert data 

collection points 

automatically in 

different locations 

all over the 

program 

· Example: Aspect-

Oriented 

Programming 

(AOP) 

· No need for any 

manual 

instrumentation 

· The source code 

does not need to 

be modified 

· Engineers do not 

need to read and 

understand the 

application’s 

source code 

· Source code has to 

be available 

· It can considerably 

slow down the 

performance 

  

Software metrics have been widely used to quantify several aspects of the 

software in order to help engineers in better understanding their architecture and 

source code. One of the important applications of software metrics is in program 

comprehension. The following section explains the concept of program 

comprehension, followed by a discussion on test comprehension and its 

relationship with testability.  



  

  

   22 

 

2.4 Program Comprehension 

Program comprehension (also referred to as program understanding) is a key 

prerequisite to software maintenance and evolution (Mayrhauser and Vans, 1995). 

Extensive effort in both software engineering research and practice has been 

directed to supporting the understanding and maintenance of software artefacts. 

Program comprehension is the process of obtaining knowledge about a program 

and trying to understand the program using the gained knowledge (Biggerstaff et 

al., 1993, Mayrhauser and Vans, 1995). Program comprehension is achieved when 

the following occurs: “A person understands a program when they are able to 

explain the program, its structure, its behaviour, its effects on its operational 

context, and its relationships to its application domain in terms that are 

qualitatively different from the tokens used to construct the source code of the 

program” (Biggerstaff et al., 1993). 

The long-held desire to achieve high levels of software reusability and lower 

levels of maintenance makes program understanding and comprehension even 

more important (Lange and Nakamura, 1997). Program comprehension research 

has helped researchers, engineers and quality assurance personnel to develop 

effective methods to understand and maintain large and complex software 

systems. Program comprehension is one of the key phases of any maintenance 

task. Software engineers usually spend a considerable amount of time, up to 60 

percent of their total maintenance effort (Corbi, 1989), trying to understand 

software code, especially with large software systems, before making any 

alteration to the software system (Ko et al., 2006, Singer et al., 1997, Pirzadeh et al., 

2010). Various researchers have examined the use of a range of methods and 

techniques to improve program understanding. Visualisation, in particular, has 

been used in several previous works for the purpose of supporting developer 

understanding of different aspects of production code (Lange and Nakamura, 

1997, Jerding and Rugaber, 2000, Cornelissen et al., 2011). Many works (including 
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(Systä et al., 2001, Lange and Nakamura, 1997)) have proposed and assessed 

various methods, techniques and tools that use data obtained from both static and 

dynamic analysis to support program understanding. 

While more conventionally associated with core application (production) code the 

concept of program comprehension also applies to test code. Moreover, given the 

centrality of testing to contemporary development methods, maximising test code 

quality is itself a worthy software engineering goal. Test comprehension can be 

defined as the process of understanding the structure and the functionality of test 

suites (e.g., unit tests). This involves understanding the design of the test code, the 

structure and design of the test cases, and the quality of its source code. This 

section now considers test comprehension and understanding from two different 

perspectives: test comprehension (i.e., test coverage and distribution) and test 

source code quality. 

2.4.1 Test Comprehension 

Test comprehension has been the focus of several works that have sought to 

explicate the relationship between production and test code, while other works 

have considered the structure of unit tests and test suites. It has been 

acknowledged that understanding test code and test suites can be a particular 

challenge due to the fact that tests are not always well-structured (Hauptmann et 

al., 2012). 

Test visualisation, as a means of supporting developer understanding, has also 

been considered in several previous works. However, and to the best of our 

knowledge, the combination of both dynamic analysis and visualisation has not been 

addressed in previous research. Cornelissen et al., (2007), based on information 

obtained through dynamic analysis (though generated via simulation), used UML 

sequence diagrams to visualize test cases to gain knowledge about the structure of 

software in order to support program understanding. They asserted that such 

visualisations could be beneficial in program understanding and for 
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documentation purposes. Visualisation of test code dependencies was used by 

van Rompaey and Demeyer (2008), to localise unit tests and to investigate the 

relationship between test and production code. Their focus was on both the 

composition of and dependency between test and production units as well as 

among the unit tests themselves. The dependency information was obtained from 

static analysis. The authors recommended that size and complexity information of 

the various software components should also be considered to provide a more 

detailed and comprehensive assessment of the proposed visualisation approach. 

In similar work, Zaidman et al. (2011) used visualisation to investigate the co-

evolution between software production code and test suites. Their study focused 

on mining software history information from repositories in order to detect testing 

information from different versions of software projects. The authors observed a 

significant correlation between test effort (i.e., test-writing activity) and test 

coverage levels in different releases. The work also proposed three different 

visualisation views that could be used to study how test code co-evolves over time 

between different releases. 

Hauptmann et al. (2012) used a clone detection technique (i.e., finding similar 

parts of the software artefacts) to identify and locate tests in order to support 

better understanding of those tests. The technique was applied to 4000 tests across 

seven industrial systems. In general, clone detection was found to provide useful 

information for targeting test automation effort. The findings also revealed that 

significant numbers of clones existed in all examined “manually written” tests.  

Other works have focused on studying the correlation between different software 

characteristics and software testability. The work of Bruntink and van Deursen 

(2006) studied the relationship between several external OO metrics and class 

testability. The authors found a strong association between several class-level 

metrics, such as size and complexity metrics, and unit test size, including the 

number of test cases and the lines of code per unit test. Five different software 
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systems, including one OSS, were traversed during their experiments. However, 

the authors did not find any evidence of correlations between inheritance and/or 

dependency related metrics, such as Coupling Between Objects (CBO), and the 

proposed testability metrics. This is likely to be because the metrics were 

considered in a static form. Such relationships can be confirmed through 

evaluation at the object level using runtime analysis. In a similar study, Badri et al. 

(2011) investigated the relationship between cohesion and testability using the a 

set of static Lack of Cohesion metrics. They found a significant relationship 

between this measure of static cohesion and software testability, where testability 

was measured using the metrics suggested by Bruntink and van Deursen (2006). 

In a more recent study, Zhou et al. (2012) analysed the relationship between 80 

different structural static metrics (including size and complexity metrics) and class 

testability (as in Bruntink and van Deursen (2006), class testability is also 

measured in terms of unit test size). Although the study confirmed that there is a 

statistical relationship between static size and complexity metrics and class 

testability, it did not confirm if these attributes can be used to accurately predict 

the testability of a class.  

The above section discusses the concept of test comprehension. Given the 

particular focus in this work on code quality, test quality and testability the 

following section provides an overview of the concepts of code and test smells in 

detail. 

2.4.2 Test and Code Smells  

The term code smells was coined to refer to parts of code  that ‘scream out’ to be 

refactored (Fowler et al., 1999). Code smells reflect design flaws and/or 

implementation issues in the source code that are known to have a negative 

impact on software quality attributes such as readability, understandability and 

maintainability (Abbes et al., 2011, Yamashita and Counsell, 2013). Code smells 

therefore indicate code structures that can lead to difficulties during software 
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evolution and maintenance. While they become evident, code smells can be the 

result of poor design decisions (also known as anti-patterns). Previous empirical 

studies have highlighted several relationships between code smells and software 

artefact characteristics such as size (Yamashita and Counsell, 2013), change- and 

fault-proneness (Khomh et al., 2012), program comprehension (Abbes et al., 2011) 

and other maintenance-related tasks (Sjoberg et al., 2013, Yamashita, 2014). Given 

their negative impact on both the software and the work of developers, code 

smells should be considered for treatment through suitable refactoring actions.  

Researchers have also used the term test smells to refer specifically to smells that 

affect only unit tests/test classes. The term was first defined by van Deursen et al. 

(2001) and was further explained by Meszaros (2006). Test smells, as with code 

smells, can result from the poor design or implementation of a unit test.  

Society’s growing reliance on software has led to increased research attention 

being directed to the study, and prevention, of software quality issues as indicated 

by smells. Researchers have therefore been working to provide empirical evidence 

of the impact of code smells on software artefacts and processes. In contrast, there 

has been relatively little attention given to the study of test smells and their 

impact on software artefacts and activities.  

A. Code Smells 

In 1999, Fowler et al. (1999) introduced the notion of code smells by providing an 

explanation of 22 different structures that negatively affect software programs. 

The authors also suggested a set of refactoring techniques that could be applied to 

eliminate these code smells. Soon afterward a taxonomy of code smells and a set 

of possible relationships between different smells was proposed (Mäntylä et al., 

2003). More recently, Zhang et al. (2011) reported a detailed review study of the 

research on code smells. The authors found that the Duplicated Code (or code 

clones) smell has received the most research attention in the literature. The 

authors also reported that only a few works have studied the impact of code 
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smells on software programs, with the majority of studies instead focusing on 

designing and developing code smell detection techniques and tools. Examples of 

code smell tools are presented in Marinescu (2004), Tsantalis and Chatzigeorgiou, 

2009 (2009) and Moha et al. (2010). Code smells detection techniques include both 

manual (such as Travassos et al. (1999)) and automated methods (such as Moha et 

al. (2010) and Marinescu and Ratiu (2004)). Mäntylä and Lassenius (2006) 

compared manual (subjective) code smell detection methods with automated 

detection approaches, and found that experienced developers usually report more 

complex smells than less experienced developers.  

Several empirical studies have been directed towards studying the impact of code 

smells on software quality attributes. For instance, Sabane et al. (2013) studied the 

impact of 13 different code smells on class testability. Class testability was 

measured based on the number of test cases required to test individual production 

classes using the minimal data member usage matrix (MaDUM) technique. This 

technique suggests a larger number of test cases than other similar techniques. 

The study found that, on average, production classes with code smells required 

substantially more test cases compared to classes without smells. Some particular 

smells, such as Blob, Anti-Singleton and Complex Class, are shown to be more 

strongly associated with the number of test cases in a unit test than other smells.  

D’Ambros (2010) found that an increase in the number of code smells in the code 

is more likely to introduce faults and bugs. However, the authors did not find any 

particular code smell that consistently correlates with the number of faults across 

all examined systems. Khomh et al., (2012) also investigated the impact of 13 code 

smells on change- and fault-proneness. They studied 54 releases of four different 

systems and found that classes with code smells were more change-prone and 

fault-prone than others. In a more recent study, Hall et al. (2014) investigated the 

impact of five under-studied code smells on faults in three large OSS. The Switch 

Statement smell was found to have no effect on faults in the systems examined. 
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Other smells show varied impacts on faults in different systems. For example, 

Data Clump was found to be associated with increased incidence of faults in one 

system, but reduced faults in two other systems. Middle Man and Speculative 

Generality (individually) were found to be related with reduced faults in at least 

one system.  

Abbes (2011) conducted a controlled experiment on the impact of two code smells 

(i.e. Blob and Spaghetti code) on program comprehension and understanding using 

students and professionals as subjects. The authors found that the appearance of 

one code smell in the code does not significantly impact its understandability 

when compared to code that does not contain either of the two smells. However, 

the combination of Blob and Spaghetti Code negatively (and significantly) affected 

the subjects' comprehension and understanding of the code. 

A series of recent studies (Yamashita, 2014, Sjoberg et al., 2013, Yamashita and 

Counsell, 2013, Yamashita and Moonen, 2013) intensively investigated the impact 

of code smells on software maintainability and maintenance tasks across multiple 

case studies. Yamashita and Counsell (2013) found the number of code smells at 

the system level to be correlated with system size. However, their study also 

suggested that code smells may not be sufficient for comparing systems that are 

significantly different in size, but can potentially be useful for comparing systems 

of similar size. Yamashita and Moonen (2013) found that the proportion of 

problems associated with code smells was not as large as they initially expected, 

with only 30% of maintenance problems being related to components containing 

code smells. Finally, Yamashita (2014) stated that the Interface Segregation Principle 

smells are more strongly associated with maintenance issues than other studied 

smells. Sjoberg et al. (2013) investigated, through a controlled industrial 

experiment, the impact of 12 code smells on maintenance effort. They found that 

none of the 12 investigated smells was significantly associated with increased 

maintenance effort. The authors go on to assert that code size and work practices 
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that limit the number of changes in the code may be more beneficial, from a 

maintenance point of view, than focusing on code smells. 

To summarize, previous studies have shown that code smells might be harmful in 

software systems from a range of perspectives. Authors have intensively studied 

the impact of code smells on software maintenance and evolution. In general, code 

smells (combined or sometimes only individual smells) have been shown to 

negatively impact program comprehension (Abbes et al., 2011) and testability 

(Sabane et al., 2013), and to increase the possibilities of developing faults and 

introducing changes in the associated software systems (Khomh et al., 2012). 

B. Test Smells 

van Deursen et al. (2001) defined and explained a set of smells that are likely to 

impact unit tests in object-oriented systems. To distinguish these special code 

smells from other general code smells the authors used the name “test smells” to 

mark those smells that affect unit tests only, and not the production classes. The 

authors followed the same approach that was used by Fowler et al. (1999) to 

define code smells, and several refactoring techniques have been suggested to 

overcome these smells. One example of these smells is Assertion Roulette, which is 

also known to be one of the most diffuse (i.e., common) smells in software systems 

(Qusef et al., 2014, Bavota et al., 2014). This smell appears when a test case comes 

with too many assertions. This smell affects developers’ error traceability (and 

also maintainability), since if one of the assertions fails, it makes it hard to identify 

where the error has occurred. General Fixture is another example of a test smell 

that appears when a test fixture6 is too general (i.e., the fixture is set to test 

multiple classes) and the class under test only accesses part of this fixture.  This 

smell affects test comprehension and understandability, as it could be hard for 

developers other than those who wrote the test to trace back the main target of the 

                                                 
6 in the xUnit framework, this is also known as test setup 
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test in the fixture. Meszaros (2006) provided a further comprehensive explanation 

of these smells and their possible effects.  

Most of the work on test smells has focused on designing and implementing smell 

detection techniques and tools (mirroring the situation with respect to code 

smells). Van Rompaey et al. (2007) proposed a set of metrics that can be used to 

detect two test smells i.e., General Fixture and Eager Test. The authors later 

proposed a test smell detection tool for the xUnit framework called TestQ 

(Breugelmans and Van Rompaey, 2008). Greiler et al. (2013a) presented a tool 

called TestHound that targets smells related to the test fixture. The authors defined 

six different test fixture related smells, including the well-known General Fixture. 

Besides the identification of smells, the proposed tool can also provide 

recommendations for refactoring opportunities to overcome these smells. 

Reichhart  et al. (2007) presented a tool called TestLint that detects, analyses and 

quantifies 27 different test smells in Smalltalk programs.  

Although many works have considered the issue of test smells, to the best of our 

knowledge there are only two studies that have empirically investigated test 

smells and their impact on software artefacts. Greiler et al. (2013b) studied how 

test fixture smells are distributed in OSS and how they evolve over time by 

analysing several releases of five OSS. The main finding of their study shows that 

test fixture smells do not continually increase over time (from one release to 

another), even when the system’s complexity increases. The study also provided 

evidence of a significant correlation between the number of tests cases and the 

number of test fixture smells in a system. More recently, Bavota et al. (2014) 

conducted two empirical studies on test smells. The first study was concerned 

with the distribution of test smells and investigated unit tests in 27 different Java-

based systems (25 OSS and 2 industrial projects). The authors found that test 

smells are widely distributed in both OSS and industrial systems. Almost 86% of 

the unit tests analysed contained at least one test smell.  In the second study, the 
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authors conducted a controlled experiment using 61 students and practitioners to 

study the impact of test smells on program comprehension and understanding 

during maintenance tasks. The authors reported that the presence of test smells in 

unit tests negatively impacted developers’ comprehension during maintenance 

activities.  

The focus of most of these previous studies was on the effect of test smells on 

software maintenance activities such as program comprehension and 

understanding. Many of these previous studies, including those reported in the 

last year, have suggested the need for more empirical investigations of the impact 

of test smells on different software artefacts.  

Having presented the relevant background literature, we turn now to discuss the 

research methodology used in this thesis. The research methodology chapter that 

follows includes detailed information concerning the techniques and methods 

employed to study the range of aspects of testability and test quality addressed in 

subsequent chapters of the thesis.   
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 Research Methodology Chapter 3

3.1 Introduction 

Computer science, information systems, and software engineering are all 

considered as relatively new research disciplines compared with other more 

established fields, including many of the social and physical sciences. Moreover, 

these disciplines draw on a number of established foundations. As a wide-ranging 

discipline, software engineering, in particular, leverages pure mathematics, logic 

and statistics but also engineering, psychology and sociology (as reflected in the 

IEEE Software Engineering Body of Knowledge (SWEBOK)). As a result it can 

utilise a broad range of approaches to research, depending on the particular focus 

of the work at hand.  Research that seeks to solve problems through the building 

and evaluation of novel artefacts – be they concepts, models, processes or tools – 

increasingly derives methods from the science of design.  

The research reported in the chapters that follow is empirical – that is, it primarily 

draws on observation and data rather than on prior theory (as general theories of 

software practice are still nascent) – and as such it follows a now well-established 

pattern for empirical software engineering research. Empirical methods have been 

used extensively in engineering fields in general, and in the software engineering 

context in particular in the last twenty years. While not a ‘pure’ engineering 

discipline due to the intangible nature of the software product, software 

engineering is a field highly influenced by engineering schools, and engineering 

thought, as it works explicitly to link theory and practice (Nunamaker et al., 1990). 

Empirical software engineering aims to connect theory and models evident and 

observable in real-life software engineering problems and solutions. The general 

form of empirical software engineering research and practice is shown in Figure 3.  
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Figure 3.  The empirical software engineering model used in this thesis 

This chapter presents the general aspects of the research methodology used in this 

thesis. The more specific aspects of the methodology, including the specialist 

methods that are applied in each particular experiment, are presented in each 

relevant chapter (Chapters 5, 6 and 7). Note that Chapter 4 presents a systematic 

review study; as such it follows a separate method (described in that chapter) to 

those employed in the empirical analyses that follow it.   

The remainder of this chapter is structured as follows: Section 3.2 presents the 

experimental design of the thesis, including a discussion on system selection and 

the statistical procedures used to analyse the data, Section 3.3 defines and justifies 

the metrics used in the thesis, Section 3.4 describes the data collection procedures 

and methods, Section 3.5 discuss the possible threats to the experimental validity 

and Section 3.6 provides a summary of the chapter.  
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3.2 Experimental Design 

Empirical software engineering research activities may be conducted in many 

forms, including field studies, surveys, laboratory experiments, and case studies. 

A wide range of these and other research methods have therefore been employed 

in both academic and industrial software engineering research. The choice of 

plausible and appropriate methods depends on several factors, such as the 

theoretical stance of the researcher, access to resources, and the nature of the 

research questions posed by the researcher (Easterbrook et al., 2008, Wohlin et al., 

2012). Given that this thesis addresses a number of research questions each of 

which investigates a different aspect of software testability, the specific research 

questions and hypotheses examined in this thesis are presented in each relevant 

Chapter (Chapter 5-7). 

As the current research is empirical in nature, five main methods relevant to this 

form of software engineering research are suitable in principle: Laboratory 

Experiments, Case Studies, Surveys, Ethnographies, and Action Research. In-depth 

discussion of these methods and their relevance to software engineering research 

can be found in Easterbrook et al. (2008), Wohlin et al. (2006) and Wohlin et al. 

(2012). This thesis presents a number of laboratory experiments that examine several 

research questions and hypotheses.  

Experimental methods are commonly used in engineering, physics and medicine 

research. As in other disciplines, experiments can be particularly helpful in 

software engineering as they enable the researcher to work with a limited scope of 

effects. The most widely used form of experiment in software engineering is the 

laboratory experiment. This type of experiment provides a means of examining an 

approach (or a method, technique, tool and so on) in a controlled environment. In 

this type of experiment, one or more independent variables are manipulated to 

vary their effect on one or more dependent variables (Easterbrook et al., 2008) and 

in software engineering these effects are typically analysed by performing 
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appropriate statistical analyses (Wohlin et al., 2006). In our case the independent 

variables are not manipulated as such, as they are drawn from existing software 

systems, but the opportunity to consider the relationships between and effects of 

differences in independent variables on potentially dependent variables still 

applies. In this thesis, we are using secondary sources compiled by others rather 

than sources we have obtained directly ourselves.  Specifically, these experiments 

enable us to statistically examine the presence and strength of any relationships 

between characteristics of different software artefacts and software testability. The 

hypotheses that reflect these relationships are laboratory tested using a number of 

OSS. The principal, pragmatic reason for using OSS is their ready availability. OSS 

are publicly available and, in many instances, their source code is completely 

accessible7. The OSS selection criteria applied in this research and the resultant list 

of the selected OSS are explained in more detail in the following section.  

3.2.1 Open Source Systems 

Much of the research reported in this thesis utilises data obtained from OSS. As 

the name implies, OSS grant free and full access to software projects. Nine 

different OSS have been selected for use in the experiments conducted in this 

research and reported in subsequent chapters. These OSS were identified from 

similar previous empirical studies as well as from well-known OSS repositories 

such as SourceForge8, GitHub9and Google Code10. The systems were selected 

based on the selection criteria that all systems should: 

 be fully11 written in Java  (Java is one of the most widely used OO 

programming languages in the OSS domain, based on the number of projects 

                                                 
7  In some cases, parts of source code might not be publicly available.  
8  http://sourceforge.net/  
9  https://github.com/  
10 https://code.google.com/  
11 Only comprising Java code and not other languages 

http://sourceforge.net/
https://github.com/
https://code.google.com/
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developed in Java,12 and it is also considered to be one of the most popular 

programming languages in terms of the number of developers using it13) 

 be fully open source (i.e., giving unrestricted access to all core project artefacts) 

 contain a reasonable number of unit tests (i.e., at least 20 observation points in 

each system, for statistical significance14).  

A further, important consideration in system selection was applied across the set 

of systems, rather than to each individual system, and that was that the systems 

should be of different sizes. Consideration of systems of different sizes is intended 

to enable assessment of the scalability of the analyses conducted in this work, 

which can help in generalising the findings presented here. The goal is to be able 

to conduct experiments without having to make any assumptions regarding the 

size of the software system being examined. Based on the above criteria a set of 

nine OSS were selected for use across the experiments that follow (though it 

should be noted that not all systems were used in all experiments). The selected 

systems are further classified based on their sizes, according to the LOC metric, 

using a classification scheme motivated by the prior work of Zhao and Elbaum 

(2000), but with changes in its structure in order to meet the growing scale of OSS. 

Application sizes are therefore categorized into bands based on the number of 

Kilo LOC (KLOC) in the system:  

 Tiny: fewer than 1 KLOC 

 Small: 1 up to 10 KLOC 

 Medium: 10 up to 100 KLOC 

 Large: 100 up to 1000 KLOC 

 Extra-large: comprising more than 1000 KLOC.  

 

                                                 
12 http://githut.info  

13 http://stackoverflow.com/research/developer-survey-2015#tech-lang  

14 This does not apply to JDepend, as this particular system was not used in any experiments that 

involve examining the significance of a correlation between two variables. The system was used 

only in the experimental work presented in Chapter 5. 

http://githut.info/
http://stackoverflow.com/research/developer-survey-2015#tech-lang
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 List of selected OSS Table 3.

System Version URL Description 

JFreeChart 1.0.17 
http://www.jfree.org/jfree

chart 

Java chart library that creates a variety of 

professional quality charts and graphs  

FindBugs 2.0.3 
http://findbugs.sourceforg

e.net 

Static code analyser that analyses Java 

bytecode to find and detect a wide range 

of pre-defined bugs and defects. The tool 

includes more than 200 bug patterns. 

JMeter 2.9 http://jmeter.apache.org/  

An application designed to load test 

functional behaviour and measure 

performance of software application 

JabRef 2.9.2 
http://jabref.sourceforge.n

et  

Bibliography tool that provides GUI-

based reference management support for 

BibTeX files - the standard LaTeX 

bibliography format.  

Apache 

Commons 

Lang 

3.3.2 
http://commons.apache.or

g/proper/commons-lang  

Helper utilities for the java.lang API, 

notably String manipulation methods, 

basic numerical methods, object 

reflection, concurrency, creation and 

serialization and System properties. It 

contains basic enhancements to 

java.util.Date and a series of utilities 

dedicated to help with building methods, 

such as hashCode, toString and equals. 

Dependency 

Finder 

1.2.1-

beta4 

http://depfind.sourceforg

e.net 

An analyser that extracts dependencies 

and dependency graphs of complied Java 

code and mines some other useful 

dependency information. The tool also 

provides basic OO quality metric 

assessment of source code.  

MOEA 1.17 
http://www.moeaframew

ork.org 

A framework that supports development 

and experimentation of multi-objective 

evolutionary and optimisation 

algorithms. The tool is intended to 

provide fast and reliable implementations 

of several state-of-the-art multi-objective 

algorithms.  

Barcode4J 2.1 
http://barcode4j.sourcefor

ge.net  

A free and flexible automatic barcodes 

generator. 

JDepend 2.9 
http://www.clarkware.co

m/software/JDepend.html 

Lightweight analysis tool that evaluates 

Java packages using several OO quality 

metrics. The tool provides an automated 

way to measure the quality of software 

design.  

http://www.jfree.org/jfreechart
http://www.jfree.org/jfreechart
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://jmeter.apache.org/
http://jabref.sourceforge.net/
http://jabref.sourceforge.net/
http://commons.apache.org/proper/commons-lang
http://commons.apache.org/proper/commons-lang
http://depfind.sourceforge.net/
http://depfind.sourceforge.net/
http://www.moeaframework.org/
http://www.moeaframework.org/
http://barcode4j.sourceforge.net/
http://barcode4j.sourceforge.net/
http://www.clarkware.com/software/JDepend.html
http://www.clarkware.com/software/JDepend.html
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The aim was to have at least one OSS fit into each of the small, medium and large 

size categories, as considering systems of different size should enable the 

applicability of each experimental technique to be assessed at different scales. 

It is important to note that, although there have been some efforts to investigate 

testing in OSS, the actual extent of testing performed and the way developers test 

their projects in OSS are still unclear. A large scale study conducted on 20,000 OSS 

projects hosted in GitHub reports that almost 62% of the studied projects have 

unit tests (Kochhar et al., 2013), although other recent figures from a smaller-scale 

study (of 460 projects) note that the proportion of active tests (i.e., tests that are 

working and being maintained) is less than 35% (Beller et al., 2015).   

 Characteristics of the selected OSS Table 4.

System 
Total Size 

(KLOC) 
Size 

Production Code 

Size (KLOC) 

#Classes 

(NOC) 

Total #of 

unit tests 

JFreeChart 140.6 Large 99.4 669 366 

FindBugs 117 Large 114.5 1245 46 

JMeter 106.4 Large 90.8 1150 127 

JabRef 90.4 Medium 84.7 616 68 

Apache Commons Lang 63.6 Medium 23.5 132 142 

Dependency Finder 58 Medium 26.7 450 280 

MOEA 42 Medium 25.5 407 209 

Barcode4J 16.4 Medium 13.2 158 42 

JDepend 3.6 Small 2.460 29 18 

A short description of each of the nine selected OSS is shown in Table 3. General 

characteristics of the selected systems are shown in Table 4, where Table 5 

provides information about the project’s age and the number of developers that 

contribute to the project’s repository. The number of systems used within each 

experiment is noted in the relevant Chapter (Chapters 5, 7 and 8). Similarly, the 
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numbers of unit tests analysed vary from one experiment to another, depending 

on the specific objectives of each experiment. Together these systems form around 

638 Kilo lines of code (KLOC) and contain in total 4856 production classes and 

1298 unit tests.  

 Age and the number of contributors in all selected systems Table 5.

System 
System’s age  

(1st version release date - age) 

# Contributors 
(all releases) 

JFreeChart 2000 – 15 Years  8 

FindBugs 2007 – 8 Years 11 

JMeter 2001 – 14 Years 15 

JabRef 2003 – 12 Years 38 

Apache Commons Lang 2002 – 13 Years 15 

Dependency Finder 2003 – 12 Years 2 

MOEA 2011 – 4 Years 1 

Barcode4J 2004 – 11 Years 17 

JDepend 2003 – 12 Years 2 

3.2.2 Statistical Analysis Procedures 

A number of statistical analysis procedures are used in this thesis. The selection of 

procedures again depends on the objectives of the designed experiment, as well as 

on characteristics of the data being analysed. This section discusses general 

statistical procedures that have been applied in all chapters. 

The Shapiro-Wilk test is used to check whether a data distribution adheres to the 

characteristics and assumptions of a normal distribution. Shapiro-Wilk is reported 

to be one of the most powerful normality tests (Razali and Wah, 2011) and it has 

been recommended for use over other normality tests, such as the Kolmogorov-

Smirnov test (Thode, 2002). The Shapiro-Wilk test has been recommended to be 
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used for sample size up to 2000 data points (Royston, 1992, Razali and Wah, 2011). 

Use of such a test is necessary as selection of statistical analysis tests should be 

informed by the nature of the distributions being normal or non-normal. 

Parametric tests assume the data being analysed comes from an underlying 

distribution, most often the normal distribution, and so the null hypothesis for the 

Shapiro-Wilk test is that data is normally distributed. Further common statistical 

analysis procedures and tests are now also explained. Note that for the statistical 

tests undertaken a threshold of 5% for all obtained significance values (p-values 

[p]) is employed. 

Given the intent to seek evidence of possible relationships among variables, 

several tests of correlation are conducted across the experiments. Where data 

distributions are skewed, a rank order test is preferred, so in the experiments 

reported in this thesis the non-parametric Spearman's rho (ρ) rank correlation 

coefficient test is used. Spearman's ρ is a non-parametric procedure to test for 

statistical association between two independent variables. In some instances the 

examined correlations are for binary variables (i.e., zero or one, representing 

absence or presence of a phenomenon). Such data are first classified using the 

binary classification mechanism (through the use of a 2×2 contingency table15), and 

then the correlations are examined using the Phi (φ) Correlation Coefficient test (a 

statistical measure of association between two binary variables).  

Phi correlation is computed from the contingency table (shown in Table 6). The Phi 

correlation for variable x and y is calculated using the following formula (1):  

     𝜑 =
(𝑎×𝑑)−(𝑏×𝑐)

√𝑎𝑐×𝑏𝑑×𝑎𝑏×𝑐𝑑
                (1) 

                                                 
15  A contingency table (or a cross tabulation) is a matrix based table that categorises variables based 

on their distribution frequency.  
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 A 2×2 contingency table Table 6.

 Y=1 Y=0 Total 

X=1 a b ab 

X=0 c d cd 

Total ac bd n 

Effect size (ez) (for non-parametric data) is measured using the following formula 

(2) (Fritz et al., 2012, Coolican, 2014): 

ez = 
𝑍

√𝑁
                     (2) 

where N is the number of observations, Z is the standard score (z-value). 

Cohen’s classification (Cohen, 1988) is used to interpret the degree of association 

(measured using Spearman’s rho, ρ) between variables: there is said to be a low 

association when 0 < ρ < 0.3, medium when 0.3 ≤ ρ < 0.5 and high when ρ ≥ 0.5. This 

interpretation also applies to negative correlations, but the association is inverse 

rather than direct (Daniel, 2000). Cohen’s classification scheme (Cohen, 1988) is 

also used to classify effect size values as small (0 < ez < 0.3), medium (0.3 ≤ ez < 0.5) 

or high (ez ≥ 0.5).  

To compare differences in distribution between two independent groups the non-

parametric Mann–Whitney U test is used. Where multiple tests are conducted the 

significance values obtained from the Mann–Whitney U test are adjusted/corrected 

using the Holm-Bonferroni correction procedures (Abdi, 2010) using the following 

formula (3):  

p H-Bi =  (C - i + 1) × p               (3) 
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where C is the number of tests conducted; p is the original p-value; i is the rank order of the p-value 

A summary of the general statistical analysis procedures used in this thesis is 

shown in Table 7. The majority of the tests performed in this research are 

conducted using the IBM SPSS16 (version 22) toolset. Graphs are generated using 

both Microsoft Excel17 and R18.  

 Summary of the general statistical analysis procedures used in this thesis Table 7.

Test nature 
Statistical analysis 

procedure  

Relevant 

Chapters 

Measuring the dependence between two 

variables of non-parametric data 

Spearman's rho (ρ) rank 

Correlation Coefficient test 

6 

7 

Measuring the dependence between two 

binary variables of non-parametric data 

Phi (φ) Correlation 

Coefficient test 
7 

Compare the significance differences 

between two independent groups 
Mann–Whitney U test 

5 

7 

3.3 Metrics Selection 

One of the well-known challenges faced by researchers and practitioners when 

measuring software products is the choice of appropriate measurements. Metric 

selection in this research has been determined in a ‘goal-oriented’ manner using 

the Goal/Question/Metrics (GQM) framework (Basili and Weiss, 1984) and its 

extension, the GQM/MEtric DEfinition Approach (GQM/MEDEA) framework 

(Briand et al., 2002). The GQM concept was first introduced by Victor Basili to 

encourage selection and use of software metrics in a more systematic manner – as 

opposed to the prior prevailing convention to measure whatever could be 

                                                 
16 http://www-01.ibm.com/software/analytics/spss  
17 http://products.office.com/en-us/excel  
18 http://www.r-project.org  

http://www-01.ibm.com/software/analytics/spss
http://products.office.com/en-us/excel
http://www.r-project.org/
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measured. The approach was developed originally to support the evaluation of 

software defects in a set of NASA projects (Basili and Weiss, 1984). GQM is 

acknowledged as the most widely known and used goal-oriented approach to 

software measurement (Solingen and Berghout, 1999, Patzke et al., 2012). GQM 

and other similar goal-oriented frameworks enable researchers and practitioners 

to transition from what knowledge might be potentially available to that which is 

actually needed.  

The main goal of this thesis is to better understand what affects software 

testability, and our objective is to assess the presence and strength of any 

relationships between different software characteristics on the one hand and 

software testability on the other. The specific purpose is to measure and ultimately 

predict class testability in OO systems. Our viewpoint is as software engineers, 

and more specifically, testers, maintainers and quality engineers. The targeted 

environment is Java-based OSS. 

The following section presents the general metrics used in this thesis.  

3.3.1 Source Code Metrics 

Program size is measured using the two well-known static metrics: LOC19 and 

Number of Classes (NOC). Class size is measured in terms of the Number of 

Methods (NOM) within a class and the number of LOC within that class. We also 

measure the complexity of a class using the class’s Cyclomatic Complexity (CC). 

Dynamic Coupling is measured using the Dynamic Coupling Between Objects 

(DCBO), Import Coupling (IC) and Export Coupling (EC) metrics (dynamic 

coupling metrics are explained in more details in Sections 5.5 and 6.2.1, 

respectively). Details of the selection of these dynamic metrics and their 

specialised data collection procedures are provided in Chapters 5 and 6.  

                                                 
19  LOC counts the number of all lines other than blank and comments-only lines. This also applies to 

the TLOC metric.   
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3.3.2 Class Testability Metrics  

Testability in this study is considered at class-level. As explained previously, class 

testability refers to the one-to-one relationship between each production class and 

the corresponding unit test that is designed to test the production class. Following 

the ISO definition of testability, we define class testability in terms of the attributes 

of a class that bear on the effort needed to validate the class. Class testability is then 

measured in terms of the size of the unit test. Two static metrics are used for this 

purpose: the Test Lines of Code (TLOC) and Number of Test Cases (NTC). These 

metrics are motivated by the test suite metrics suggested by Bruntink and van 

Deursen (2006). TLOC, derived from the classic LOC metric, is a size measure that 

counts the total number of physical lines of code within a test class.  NTC is a 

design metric that counts the total number of test cases in a unit test. These same 

testability metrics have been widely used in several previous studies (e.g., 

(Bruntink and van Deursen, 2006, Badri et al., 2010, Zhou et al., 2012)). Note that 

the two class testability measures are themselves known to be correlated i.e., 

TLOC increases with NTC.  

Because the two metrics are collected at post-production phase, they may in fact 

represent the effort expended to test a class. The assumption here is that the effort 

expended is indicative of the effort needed.  This has a reflection on the test suites 

of the OSS we used in the thesis. We conduct some of the analysis of this thesis 

(especially in Chapters 6 and 7) under the assumption that the two class testability 

metrics are representative of the effort needed to test a class, leading us to make 

some conclusions about  the relationship between several class artefacts and class 

testability.  

We examined the suitability of the test suites to ensure that the set of unit tests we 

are using here are representative of the effort needed to test production classes. 

We first check the relationship between unit tests size and production class size in 

all examined systems. Size has been widely used as an indicator of many aspects 
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of software development processes. For instance, well-established effort 

estimation models such as the COnstructive COst MOdel (COCOMO) (Boehm, 

1981) and the Software LIfecycle Management (SLIM) model (Putnam, 1978) use 

size (and specifically LOC) as the main input to their models. In keeping with 

such models, in this study there is an expected relationship between the effort 

required to develop a class and the effort required to test the class. In other words, 

there is an expected strong relationship between the size of a class and the size of 

the unit test that is designed to test the same class. (Such a relationship has been 

shown in previous research (Bruntink and van Deursen, 2006).) We checked if 

such a relationship existed in the systems we examined in this thesis, to get an 

indication whether the effort expended to develop a production class is related to 

the effort expended to test the class. We therefore statistically examine the 

correlation between LOC and TLOC in all eight systems using the Spearman's rho 

test (see Section 3.2.2). Detailed results of the correlations are shown in Table 8.  

The results of this test showed that both metrics are significantly correlated in all 

but one of the examined systems (with FindBugs being the exception (showing no 

significant correlation)). There is a strong positive correlation between the size of a 

class and the size of its associated unit test in six systems (JFreeChart, JabRef, 

Commons Lang, Dependency Finder, MOEA and Barcode4j); and one system 

showed a medium, significant correlation (JMeter). In considering size as a proxy 

for effort, these relationships suggest that the more effort that is needed to write a 

class, the more effort will be expended to test that class. 

 Spearman’s ρ correlations between LOC and TLOC Table 8.

LOC 

  JFreeChart FindBugs JMeter JabRef 
Commons 

Lang 

Dependency 

Finder 
MOEA 

Barco-

de4J 

TLOC ρ .50 -.11 .30 .68 .71 .56 .52 .52 

p .00 .26 .01 .00 .00 .00 .00 .00 
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A second task was carried out to check the extent of the test suites’ coverage – 

high coverage provides some assurance of the completeness of the testing (though 

it is acknowledged that high coverage does not necessarily indicate ‘high quality’ 

tests20). We measure four different types of coverage: statement coverage (number of 

executed (tested) statements), branch coverage (number of executed control 

structures (such as if-else and case statements), line coverage (number of executed 

lines of code) and method coverage (number of executed methods). Descriptive 

statistics of the retrieved coverage information are provided in Table 9. 

 Coverage infromation from a selected set of classes Table 9.

System 
Statement 

Coverage 

Branches 

Coverage 

Line 

Coverage 

Method 

Coverage 

JFreeChart Mean  58% 89% 60% 65% 

Median  60% 51% 65% 63% 

Std dev.  0.275 3.189 0.260 0.228 

FindBugs Mean  51% 37% 52% 57% 

Median  46% 29% 43% 49% 

Std dev. 0.285 0.348 0.276 0.270 

JabRef Mean  77% 70% 77% 82% 

Median  98% 84% 96% 100% 

Std dev.  0.323 0.342 0.316 0.280 

Commons Lang Mean  87% 79% 88% 89% 

Median  96% 82% 97% 100% 

Std dev. 0.216 0.232 0.209 0.216 

We collected test coverage information for a sample of classes over a number of 

the systems investigated in detail in Chapters 6 and 7. Specifically, we examined a 

selection of classes from two of the large-size systems (JMeter and JFreeChart) and 

two of the medium-size systems (JabRef and Apache Commons Lang). In total we 

examined 20% of the unit tests (and their associated production classes) from each 

                                                 
20 http://martinfowler.com/bliki/TestCoverage.html  

http://martinfowler.com/bliki/TestCoverage.html
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of the abovementioned systems. The 20% of classes were selected based on the 

size of the unit tests – half of these (10%) are selected from the ‘smallest’ unit tests 

in each system, while the other half (10%) are selected from the set of ‘largest’ unit 

tests. In total, we examined the test coverage of 72 unit tests from JFreeChart, 8 

from FindBugs, 12 from JabRef and 24 from Commons Lang. 

The results (Table 9) show that all of the investigated classes exhibited fair to high 

levels in regard to method coverage (between 57% and 89%) and branch coverage 

(between 37% and 89%). Branch and method coverage are relatively high in 

JFreeChart, JabRef and Commons Lang. Taken together, the results of the 

correlation analysis between class size and unit test size and the analysis of unit 

test coverage provide reasonable evidence that an appropriate level of effort had 

been expended when constructing the test suites. We therefore believe that the 

unit tests used in the experiments that follow are indeed generally representative 

of the effort needed to test the targeted production classes.  

3.3.3 Code and Test Smells 

All code and test smells are detected using automated tools, and some of the 

smells are identified using a metrics-based approach. Details of the test and code 

smells considered in this thesis are provided in Chapter 7.   

3.4 Data Collection Methods and Procedures 

To identify unit tests and associate them with their corresponding production 

classes in the selected OSS, two established test-to-code traceability techniques are 

used (Van Rompaey and Demeyer, 2009). First, we used the Naming Convention 

technique, which reflects the widely suggested practice (for instance, in the JUnit 

documentation) that a unit test should be named after the corresponding class that 

it tests, by adding “Test” to the original class name. For example, the unit test for 

class ‘Domain’ should be: ’DomainTest’. Second, we used a Static Call Graph 

technique, which inspects method invocations in the test case. Both processes 
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were carried out manually. The effectiveness of the Naming Convention technique 

is reliant on developers’ efforts in conforming to the recommended coding 

standard, whereas the Static Call Graph approach reveals direct references to 

production classes in the unit tests. Van Rompaey and Demeyer (2009) explained 

that traceability strategies such as Naming Convention results in high precision and 

recall but also they depend on the testing strategy and guidelines followed. Other 

strategies such as Static Call Graph and Last Call before Assertion have high 

applicability but score low in accuracy. Therefore, the authors recommended 

using a combination of strategies, which we did here. 

It is important to note here that only core system code is considered: that is, only 

production classes that are developed as a part of the system are assessed. 

Additional classes (including those in jar files and external libraries) are excluded 

from the measurement process. These files are generally not part of the core 

system under development and any dependencies could negatively influence the 

results of the measurement process. 

A set of tools and procedures has been used to collect and analyse the data. A 

summary of the tools used in this thesis, and in which specific chapters their use is 

reported, are noted in Table 10. In terms of the metric collection tools employed, 

we selected tools that follow the same metric definitions that we identified for all 

static metrics. For example, we defined LOC as the number of all lines other than 

blank and comment-only lines in class. Therefore, we sought automated tools that 

measured LOC following the same definition. The same applies to all other static 

metrics of interest, such as NOM, CC and TLOC.   

All data (i.e., metrics) collection and access to the OSS were performed in Eclipse. 

All static metrics, including LOC, NOC, NOM, CC and TLOC, are collected using 

the CodePro Analytix tool. The values of these metrics were later checked and 

verified using the Eclipse Metrics Plugin. Values for the NTC metric are collected 

directly from the JUnit framework and these values were verified manually.  
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 List of Tools Used in the Thesis Table 10.

Tool  Description Usage Chapter 

Eclipse IDE21 
A multi-language integrated 

development environment 

Development and access to 

OSS. Most of the tools listed 

below have plugins that 

integrate well with Eclipse 

5,6,7 

AspectJ22 
An AOP implementation for 

Java language  

Collection of the dynamic 

metrics data  
5,6,7 

JUnit23 
Unit testing framework for 

Java 
Analysis of unit test suites 5,6,7 

CodePro 

Analytix24 

Java source code analytical 

tool 

Collection of a set of static 

metrics 
5,6,7 

InCode25 
An industrial code smell and 

design flaw detection tool 

Collection of a set of code 

smells 
7 

JDeodorant26 
Code smell detection and 

refactoring tool 

Collection of a set of code 

smells 
7 

PMD27 
Static Java source code 

analyser 

Collection of a set of code and 

test smells 
7 

Eclipse Metrics 

Plugin28 

Static metrics tool for Java 

code 

Collection of a set of static 

metrics 
5,6,7 

NodeXL29 
Template for Microsoft Excel 

that creates network graphs 

Creation of dependency 

graphs and extraction of 

graph metrics 

5 

Emma30 Code coverage tool 
Measurement of several test 

coverage levels 
5,6,7 

CodeCover31 Code coverage tool 
Measurement of several test 

coverage levels 
5,6,7 

                                                 
21 https://eclipse.org 

22 https://eclipse.org/aspectj 

23 http://junit.org 

24 https://developers.google.com/java-dev-tools/codepro/doc  

25 https://www.intooitus.com/products/incode  

26 http://www.jdeodorant.com   

27 http://pmd.sourceforge.net  

28 http://metrics2.sourceforge.net 

29 http://nodexl.codeplex.com  

30 http://emma.sourceforge.net  

31 http://codecover.org  

https://eclipse.org/
https://eclipse.org/aspectj
https://developers.google.com/java-dev-tools/codepro/doc
https://www.intooitus.com/products/incode
http://www.jdeodorant.com/
http://pmd.sourceforge.net/
http://metrics2.sourceforge.net/
http://nodexl.codeplex.com/
http://emma.sourceforge.net/
http://codecover.org/
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3.5 Threats to Experimental Validity 

There are a number of threats that can affect the results presented in this thesis. 

Some of these validity threats are common threats that could impact the results of 

two or more experiments – these are therefore considered here. Details of the 

specific validity threats that could affect each individual experiment are presented 

in the relevant Chapters. Note that the validity threats to the mapping study 

(Chapter 5) are different in nature than those relevant to the experiments 

presented in Chapters 6, 7 and 8. 

3.5.1 Internal Validity  

Ambiguity about Direction of Causal Influence 

This refers to the question of which variable causes or influences the other (e.g., A 

causes B, B causes A, or even X causes A and B). In some of the analyses that 

follow we build in assumptions of directionality (impact or cause-effect) in the 

correlations between different variables based on the theory and findings 

identified in previous research. However, we do not investigate the directed 

impacts between individual variables per se. Further specific details of this internal 

validity threat are presented in Chapters 6 and 7. 

Confounding Variables 

Some of the correlations identified between variables might be influenced by 

confounding factors (e.g., A causes X which causes B). A confounding factor is an 

unmeasured mediating factor, whose presence means it is difficult to distinguish 

the effects of factors on each other (Wohlin et al., 2012). These confounding factors 

might be the reason why some of the discovered correlations appear. Thus, 

although we study the strength of correlation between different variables, in the 

experiments reported here we ignore the possibility that there are other factors 

that could cause or influence the discovered correlations. The influence of 

confounding variables is discussed further in Chapter 7.  
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Selection of Executions Scenarios 

This threat applies specifically to the experiments in Chapters 5 and 6. Execution 

scenarios are designed to mimic as closely as possible ‘actual’ system behaviour, 

based on the available system documentation and, in particular, indications of 

each system’s key features. However, it is important to acknowledge that the 

selected scenarios might not be fully representative of the typical uses of the 

systems. Analysing data that is collected based on different scenarios might give 

different results. This particular issue is very common in most research that 

employs dynamic analysis techniques. However, this threat is mitigated by 

carefully checking user manuals and other documentation of each of the examined 

systems and deriving the chosen scenarios from these original sources. Most listed 

features were used (at least once) during the execution.  

Class Testability Metrics 

Class testability is measured in this thesis using two unit tests metrics i.e., TLOC 

and NTC. As explained in Section 3.3.2, these metrics have been used in several 

previous works to measure class testability. However, if best practice is not 

followed then the two metrics may not necessarily correspond to class testability. 

For example, these metrics do not take into account the number of test cases that 

are actually required to effectively test a production class. Rather, these metrics 

reflect the true development practice in the examined OSS. To reduce the impact 

of this threat we decided to use OSS that have been in use (and under continuous 

improvement) for several years (see information about systems’ ages in Table 5). 

We chose the latest available version of each system at the time when they were 

selected. Furthermore, we also included well-known systems (such as JFreeChart, 

FindBugs and JabRef) and systems from well-established open source 

groups/foundations such as the Apache Software Foundation (i.e., JMeter and 

Commons Lang). Therefore, given the maturity and long-term use of the selected 
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systems, we would expect that they would have adequate test suites, following 

best practice. This threat applies to the experiments in Chapters 6 and 7. 

Selection of Classes and Unit Tests  

Production classes and unit test selections can be another validity threat. Only 

production classes that have corresponding unit tests are included, which may 

lead to a selection bias. Since none of the examined systems have available unit 

test for all production classes (i.e., provide a complete class coverage), classes that 

are extremely difficult to test, or are considered too simple, might have no 

associated unit test and, hence, would not be considered in our analyses.  

3.5.2 External Validity 

Generalisation of Findings 

A total of nine different OSS are examined in the course of the research conducted 

for this thesis. The number of examined systems varies from one experiment to 

another, however. While in each experiment a minimum of four systems is used, 

and those systems have been selected with deliberate criteria in mind and to cover 

a range of system sizes (see Section 3.2.1), there is still a possibility that 

consideration of other systems might affect the results obtained, and that more 

systems are needed to validate the results for the purpose of wider generalisation. 

This threat applies to all three experiments (Chapters 5, 6 and 7). 

Limited Scope of System Coverage 

This thesis presents analysis that has been conducted on OSS applications due to 

the availability of their source code (both production code and unit tests). 

Therefore, the results of this study are limited to OSS and cannot be directly 

generalised to include closed-source, industrial applications. Although we have 

used a variety of systems in this study (i.e., applications of different sizes and 

from different domains), we acknowledge that experiments across more 



  

  

   53 

 

applications will build greater assurance regarding our current conclusions. This 

threat applies to all three experiments (Chapters 5, 6 and 7). 

Efficacy of Tools Used 

All metrics used in this research are collected using automated tools (see Section 

3.4). The accuracy of these tools – or lack thereof – could be a threat to the 

findings. To address this threat we selected tools that have been used in previous 

research in empirical software engineering. Where possible, data collected by one 

tool was cross-validated by those obtained from a similar tool32. (For example, 

static metrics data were collected using CodePro Analytix (see Table 4) and were 

validated using the Eclipse Metrics plugin.) Some of the tools are open source, 

free-access tools (such as CodePro Analytix), while others are closed-source, 

industrial-based tools (such as InCode).  

3.5.3 Conclusion Validity 

Selection of Statistics Methods 

The use of statistical analysis procedures in this work is central to its outcomes. 

Therefore, the decisions made regarding the selection and application of all 

statistical methods used in this research must be robust and appropriate. In all 

cases the analyses are driven by clearly defined research questions and 

hypotheses. The specific statistical analysis methods used are selected based on 

well-known reference works in statistics and on the conduct of previous similar 

research in empirical software engineering. Moreover, the selected tests 

(especially for the experiment used in Chapter 7) were further validated through 

discussions with two academic statisticians from the Department of Mathematics 

and Statistics, University of Otago. 

                                                 
32 Note that using multiple tools was not possible in many cases due to the availability of the tools. 
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3.6 Summary 

This Chapter has described the research methodology that applies across the work 

reported in the thesis. It explains the general experimental design, the systems 

used in the experiments, the data collection methods and the statistical procedures 

used to analyse the data, as well as possible general validity threats. 

The following Chapter presents the results of a systematic mapping study on 

dynamic metrics and their use in measuring software quality.   
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 A Systematic Mapping Chapter 4

Study on Dynamic Metrics 

4.1 Introduction 

After early advances in the adoption of systematic measurement programmes in 

the 1980s software measurement went out of favour in industry. Organisations 

saw measurement as a costly overhead that was delivering limited, if any, benefit. 

This was due to over-zealous promotion of the use of software metrics as a 

panacea to the major challenges of software project management, poor alignment 

of measurement programmes with organisational goals and priorities, and high 

compliance costs. The relatively recent emergence of analytics as a real-time 

component of organisational intelligence and improvement, however, has seen a 

resurgence in interest in software measurement – ‘rebranded’ as software 

analytics. Managers are once again seeking efficient ways to continually evaluate 

and improve their software processes and products. A renewed research focus has 

therefore been directed to the use of software metrics in helping software 

engineers to measure and assess various characteristics of the software 

components they produce. As introduced in Chapter 2 (Section 2.3), there are two 

different sets of software metrics that might be useful: static metrics and dynamic 

metrics. The latter is the subject of the systematic mapping study presented in this 

chapter.  

A systematic mapping study is intended to deliver a comprehensive summary of 

the body of research related to a specific topic, based on primary studies identified 

through a robust search strategy. As such, mapping studies tend to cover a wider 

spectrum of work in comparison to systematic literature reviews. Once found, the 



  

  

   56 

 

body of prior work related to a topic area is then categorised and quantitatively 

characterised based on a variety of dimensions (Kitchenham et al., 2011). 

Systematic mapping studies are mainly concerned with structuring a research area 

under investigation, whereas systematic literature reviews aim at synthesising 

evidence (Petersen et al., 2015). Results from systematic mapping studies can help 

to highlight issues that could benefit from further investigation via new primary 

studies, or new research perspectives that could be brought to bear on the topic. 

(Differences between systematic mapping and review studies are covered in 

Kitchenham and Charters (2007), Petersen et al. (2008) and Kitchenham et al. 

(2011)). 

This chapter presents the results of one such mapping that sets out to identify and 

classify relevant research on the topic of dynamic software metrics. The objectives 

of this review are to obtain a general overview of the prior research conducted on 

this topic and to inform researchers and other readers of potential research gaps 

that could be studied further. In terms of its role in this thesis, the particular 

motivation behind this review is to systematically investigate which dynamic 

metrics have been used to measure aspects of software quality. Dynamic software 

metrics, their key advantages and the techniques used to the collect them have 

been explained in detail in Chapter 2 (Section 2.3.2). As also noted, it is a goal of 

this research to use dynamic metrics to measure software testability.  

As far as can be ascertained there has been just one prior review on the topic of 

dynamic metrics (Chhabra and Gupta, 2010), and this was not a systematic 

review. In that work Chhabra and Gupta (2010) summarised the research 

problems, challenges and opportunities relevant at that time in the dynamic 

software metrics domain. The paper discussed some of the most notable works in 

the field of Object Oriented (OO) metrics, such as the ‘CK’ metric suite 

(Chidamber and Kemerer, 1994) and the MOOD metrics suite (Harrison et al., 

1998). While undoubtedly informative, the review was informal; i.e., there were 
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no defined research questions, search process or data extraction process. Perhaps 

as a result, the review overlooked some important works in the area of dynamic 

metrics, including those of Dufour et al. (2003a), (2003b) and (2004) that addressed 

dynamic metrics for Java programs and compiler developers, and the AspectJ tool, 

and the early work of Voas (1992) on software reliability. 

Initial observations of the relevant body of literature indicates that the first paper 

to study dynamic metrics is indeed that of Voas (1992) just noted. (Note that this 

study does not consider other forms of run-time measurements such as those 

concerned with system performance and other time-dependent measurements. 

These reflect aspects of systems not relevant to maintenance or re-engineering 

effort, and as such, we consider such work to be outside the scope of this thesis.) 

This work proposed the Revealing Ability metric, a dynamic metric that predicts a 

program's ability to allow faults to be undetected during dynamic testing. 

Another work published in the same year, by Munson and Khoshgoftaar (1992), 

used a unique run-time metric called Functional Complexity to measure the 

dynamic complexity of a software system. The publication of these papers 

signalled the beginning of the research effort on the topic of dynamic software 

metrics. 

The review methodology used in this systematic mapping study is detailed in the 

following section.  

4.2 Review Methodology 

This review targets the topic area of dynamic software metrics. It is intended to 

characterise and evaluate the use and utility of dynamic metrics, identifying the 

benefits and drawbacks of this group of software metrics as described in the body 

of literature. This work was conducted according to the guidelines suggested by 

Kitchenham and Charters (2007) and informed by the mapping study-specific 

guidelines of Petersen et al. (2008).  
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The remainder of this Section discusses the research questions, search strategy and 

search process. The review protocol, which provides a high-level overview of the 

steps in the review study, is shown in Figure 4 

 

Figure 4. Review protocol 

4.2.1. Research Questions  

For any review work, defining the set of research questions is a critical first step, 

as the research questions directly inform the search and data extraction strategies. 

The two research questions for this systematic mapping study are:  
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RQ4.1: Which aspects of dynamic metrics have been most frequently subjected 

to study? 

RQ4.2: Which aspects of dynamic metrics could be recommended as topics for 

future research?  

RQ4.1 addresses recent and current research addressing the use of dynamic 

software metrics, categorizing all research activities in the field within a defined 

time window. In terms of advancing the field it is essential to have a baseline as to 

what metrics have already been developed and an understanding of the 

characteristics that these metrics actually measure. Answering this question 

should also contribute to an understanding of the usefulness and the drawbacks 

of this group of metrics. By fully understanding the metrics, their coverage and 

their mechanisms of action, we should then be in a position to identify any current 

difficulties or limitations associated with their use, as a precursor to suggesting 

solutions or possible avenues of further primary investigation – thus informing 

RQ4.2. RQ4.2 is expected to be of help in directing future research in the field, based 

on stated, and implied, research limitations, open problems and newly identified 

gaps. 

4.2.2. Search Strategy 

The search process is divided into two main phases: Automatic and Manual. The 

Automatic search is used to search for materials via electronic search engines 

using a defined (and pre-tested) search string. The Manual search, on the other 

hand, is performed by researchers scanning and reading through selected journals 

and conference proceedings manually. This step can help to assure coverage of a 

wider range of materials, enabling verification of the efficacy of the automatic 

search and helping to ensure that the review does not miss relevant primary 

studies in the literature. Our search was conducted for the period between 

January 1992 and December 2014. As stated in Section 4.1, initial evidence 

suggests that the first two papers to study dynamic metrics were both published 
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in 1992.  In order to confirm the appropriateness of the selected search period, a 

brief search was conducted in IEEEXplore database using the term “dynamic 

metrics” seeking articles published in the two years before the suggested starting 

date of our search period (i.e., between 1990 and 1992). No related articles were 

found. Thus, it was confirmed that the search period should begin from January 

1992.  

A) Automatic Search 

The automatic search was conducted using two different electronic sources, 

namely:  SCOPUS and Google Scholar. SCOPUS has a user friendly search engine 

that provides efficient and complete web access to over 5,000 international 

publishers as well as hundreds of open access journals. SCOPUS indexes well-

known publishers that publish papers in computer science and information 

technology, including: IEEE, ACM, Elsevier, Springer and Wiley-Blackwell 

publishers. In addition, Google Scholar is used to reveal technical reports and 

articles that could not be found by SCOPUS (e.g., have not been published by the 

abovementioned publishers). Google Scholar is a powerful search engine that 

provides very wide coverage of articles and materials on the web.   

The search string that is used in the automatic searching process is shown in 

Figure 5. It has been noted previously that using a specific and verified search 

string (see Section 4.3.3) may improve the search process by increasing the 

likelihood of finding relevant studies while reducing search workload (MacDonell 

et al., 2010).  

 

Figure 5.  Search string 

((software OR program) AND ("dynamic metrics" OR "dynamic 

metric" OR "dynamic measurement" OR "runtime metrics" OR 

"dynamic measure")) OR ("dynamic analysis" AND ("program 

comprehension" OR "program understanding") AND metrics) 
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 Manual search results  Table 11.

Type Names Acronym 

No of Retrieved 

Articles (filtered 

by title ) 

No of Selected 

Papers (filtered 

by abstracts ) 

No. after 

Removing 

Duplications 

Jo
u

rn
al

s 

IEEE Transactions on Software 

Engineering 

TSE 15 6 3 

ACM Transactions on Software 

Engineering and Methodology 

TOSEM 0 0 0 

Journal on Systems and Software JSS 14 6 6 

IEEE Software IEEE Softw. 2 2 2 

Information and Software Technology IST 6 3 3 

Journal on Software Maintenance and 

Evolution  

JSME 7 2 1 

Empirical Software Engineering 

Journal 

ESEJ 10 4 2 

Software Quality Journal SQJ 4 2 1 

   
58 28 18 

C
o

n
fe

re
n

ce
s 

 

International Conference on Software 

Engineering 

ICSE 9 7 7 

International Conference (Workshop) 

on Program Comprehension 

ICPC 

(IWCP) 

13 13 13 

IEEE International Software Metrics 

Symposium 

METRICS 4 4 2 

International Conference on Software 

Maintenance   

ICSM 12 8 5 

Workshop on Program 

Comprehension through Dynamic 

Analysis 

PCODA 6 5 5 

International Symposium on 

Empirical Software Engineering 

ISESE 0 0 0 

International Symposium on 

Empirical Software Engineering and 

Measurement 

ESEM 4 3 2 

 Workshop on Dynamic Analysis WODA 2 0 0 

 Workshop on Emerging Trends in 

Software Metrics 

WETSoM 2 2 1 

   52 42 35 
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This search string was used only with the SCOPUS database portal. 

Unfortunately, the nature of Google Scholar’s search structure did not support us 

effectively using our search string as defined. When it was attempted to do so it 

returned a huge, unworkable number of papers and materials, many of which 

were not even related to the field. Therefore, it was decided to use a much simpler 

search string term, “Dynamic Metrics”, to search for papers via Google Scholar. It is 

important to highlight that Google Scholar was used here mainly as a secondary 

source to improve the level of assurance regarding coverage of the relevant 

literature. 

B) Manual Search  

Unless an automatic search string is extremely obscure it is basically a given that 

such a search will find more results in comparison to a necessarily labour-

intensive manual search. However, if they are not conducted with care, automatic 

searches can be of poor quality (Kitchenham et al., 2010). The value of a manual 

search is in increasing the reliability of the search process, through increased 

assurance that important literature in the field that cannot be found using the 

search string is not missed in the review. The overlooking of studies in automatic 

searchers occurs mainly due to restriction criteria on the scope of automatic 

searches. Combining the two techniques, automatic and manual, can thus solve 

problems that might arise when using either the manual or automatic search only.  

During this phase we searched manually for relevant articles in a list of eight 

journals and nine conference and workshop proceedings relevant to the defined 

research topic. Based on our prior knowledge of the research domain, these 

journals, conferences and workshops were known to be closely related to software 

metrics, program analysis and comprehension, and the software maintenance and 

reengineering fields. The retrieved articles were filtered based on titles and then 

abstracts. The full list of the selected journals and proceedings traversed in the 

manual search is shown in Table 11. 
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C) Reference Checking 

In addition, the lists of references of all the selected articles relevant to our study 

were examined. This additional process can add to the coverage of the literature 

and further reduce the chances of omitting any significant work in the field 

(Cornelissen et al., 2009). Potentially relevant studies identified through this 

process are added to the selection loop so that they too are examined for relevance 

in terms of the review and their adherence to the defined selection criteria.  

4.3 Search Process 

The review process was composed of six main stages. Figure 6 highlights the 

review process and the numbers of publications identified by the end of each 

stage.  

As shown in Figure 6, the automatic and manual searches are conducted in stage 

one. The process began with the automatic search of the SCOPUS database (which 

found 487 papers) and was followed by the manual search of the list of journals 

and proceedings noted in Table 11. In stage 2, the first filtration was performed by 

discarding papers with irrelevant titles that had been returned by the automatic 

search, leaving 97 papers. In stage 3, articles were filtered based on their abstracts 

leaving 74 papers, although when the abstract was ambiguous or unclear, the 

introduction was also checked. The latter two stages (stages 2 and 3) were not 

needed for the manual search, as selection in the first place was based on the title 

and abstract.  This was followed by the second automatic search, this time on 

Google Scholar, which resulted in the identification of 20 potentially relevant 

articles (filtered by titles and abstracts). In stage 4 of the search process, the results 

of both the automatic and manual searches are then combined, giving 95 studies.  

A full text review of those studies was then performed in stage 5, leaving 64 

papers. Finally, a reference check was then conducted on all selected papers in the 

final list. During this step, 20 additional papers were retrieved, and 8 of these 

were added to the final list of selected articles and another round of reference 
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checking was conducted on the newly added papers. Inclusion and exclusion 

criteria (Section 4.3.2) were applied through all stages. The final list included 69 

studies. 

4.3.1 Study Selection Criteria 

Based on the goals of the review and the identified research questions, a set of 

selection criteria is defined. The selection criteria of the identified studies are as 

follows:  

 All works must be relevant to dynamic software metrics. The main goal is to 

select works related to dynamic software metrics and their applications. This 

may exclude related but separate topics as tracing, debugging, and program 

slicing. 

 The review strongly focuses on dynamic metric topics (processes, 

techniques, methods and tools); works that only address static metrics will 

not be considered.  

 This work studies dynamic metrics and their collection techniques. Studies 

such as those focuses on the use of dynamic analysis in trace visualisation 

are not considered.   

4.3.2 Inclusion and Exclusion Criteria  

Inclusion and exclusion criteria are used to filter and rule out studies that are not 

relevant to our defined research questions. The review included papers published 

between January 1992 and December 2014. Only primary studies were included; 

secondary studies (such as review studies) are excluded.  

We also exclude the following: 

· Papers not written in English.  

· Editorials, prefaces, covers, article summaries, books, interviews, news, 

correspondence, discussions, comments, tutorials, readers’ letters and 

summaries of workshops and symposia. 
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· Duplicated studies (e.g. several reports of the same study published in 

different places or on different dates). 

· Studies that did not specify which particular dynamic metrics were used. 

4.3.3 Selection Pilot Study 

 It has been suggested that those undertaking a review of this nature should 

conduct a pilot study to validate the selection approach and verify the 

effectiveness of the search string before conducting the actual review (Kitchenham 

and Charters, 2007). Thus a pilot study was conducted using a short search string 

(software AND dynamic AND metrics) to search for materials in the IEEEXplore 

database. We searched for articles between January 2001 and January 2011. Based 

on the pilot automatic search, the total number of articles retrieved was 298. After 

applying the defined inclusion and exclusion criteria (Section 4.3.2), 22 relevant 

articles were selected. The results of this pilot study were validated by checking 

whether the pilot search returned articles that are known in the field. Fifteen of the 

22 articles were identified as being familiar, and the other seven were deemed to 

be relevant based on a review of their content. Based on these results, we 

concluded that these terms should be included in the search string, as they 

returned relevant articles. The list of the selected papers from the pilot study is 

found in Appendix A. 
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Figure 6. Overview of the mapping review process 
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4.3.4 Paper Classification Schemes 

The general classification scheme proposed by Petersen et al. (2008), in their 

foundation work on systematic mapping studies in software engineering, is used to 

classify the retrieved studies. Publications were categorized in three distinct 

classification schemes:  research type, research focus and contribution type. For the 

research type, the categorization scheme proposed by Wieringa et al. (2006) is used. 

This scheme was recommended by Petersen et al. (2008) and has been used in several 

recent systematic review and mapping studies, such as that of Kitchenham et al. 

(2011). Research type is categorized into the following categories, as suggested by 

Wieringa et al. (2006) and summarised by Petersen et al. (2008): 

1) Evaluation papers: evaluate the use and implementation of different problems, 

techniques or solutions. It shows how the technique or method was 

implemented and what the consequences of implementation are. 

2) Proposal papers: solutions are proposed. It also argues for the relevance of the 

proposed solution without any providing any in-depth analysis. The proposed 

solution must be novel, or a significant improvement of an existing one.  

3) Validation papers: investigate novel techniques or methods that have not been 

implemented previously.  

4) Philosophical papers: propose a new way of looking at existing things.   

5) Opinion papers: express the personal opinion on certain techniques or 

methods. Opinion papers do not usually rely on related literature or specific 

research methodology.  

6) Experience papers: focus on the personal experience of the author on specific 

matter (e.g. project). Experience papers must contain some of the lessons 

learned in practice by the author(s).  

Contribution type is classified into five main categories as follows:  

1) Method: description of how to measure specific software aspects. 

2) Process: research that deals with the measurement process itself.  
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3) Tool: any automated tool that is designed to support the measurement process 

(in the form of a prototype). 

4) Metrics: any metrics designed to measure aspects of software programs (both 

new metrics and claimed improvements on existing metrics).   

Finally, research focus is classified into four main categories:  

1) Estimation: metrics that are used for the purpose of estimation (e.g. size or 

complexity estimation metrics). 

2) Design level: metrics that can be collected at the design level or early in the 

development process (e.g. metrics that may be collected from UML diagrams). 

3) Code level: metrics that are related to the source code level (e.g. code 

complexity and size metrics). 

4) Reengineering/comprehension: metrics that are used for the purpose of 

reengineering, comprehension, understanding or maintenance. Some of these 

metrics can also be related to the design or code level, but here we consider 

them separately from the other groups. 

4.4 Results 

After determining all of the relevant articles the total number of selected primary 

studies was 69. (The numbers of articles found using the manual search were shown 

in Table 11.) The distribution of the selected studies (Table 12) shows that the 

majority were published in conference proceedings. Table 13 shows the distribution 

of articles per publication venue.  

 Distribution of articles per source type Table 12.

Publication Type No. of Studies Percentage 

Journals 19 27% 

Conferences 38 54% 

Workshops 9 13% 

Technical Reports/ Newsletters 4 6% 
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As shown in Figure 7, it is evident that the number of publications addressing 

dynamic metrics has not been particularly steady since 2002, and that 41 of the 69 

articles (59%) were published between 2007 and 2014.  

 

Figure 7. Articles distribution per year 

In order to provide a more accessible representation of the extracted results we chose 

to summarise the data using tables and visual representations. Figure 8 depicts a 

map of publications over the defined classification criteria. Research focus is shown 

on the Y axis, Contribution type is shown on the right X axis, and Research type is 

shown on the left X axis. Each bubble’s size represents the number of publications in 

the corresponding category pair. As is evident, the proposal and evaluation of code 

metrics and methods currently dominate the body of literature on this topic. 

Breaking Figure 8 down, Figures 9, 10 and 11 show the distributions of articles per 

research type, contribution type and research focus respectively.  
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 Top publication venues Table 13.

Conference Name Abbreviation Type 
No. of 

articles 

ACM SIGPLAN Conference on Object-Oriented 

Programming, Systems, Languages, and Applications 
OOPLSA Conference 3 

IEEE Transactions on Software Engineering TSE Journal 2 

International Workshop/Conference on Program 

Comprehension 
IWPC/ICPC 

Workshop/ 

Conference 
2 

ACM Software Engineering Notes ACM SIGSOFT Newsletter 2 

International Conference on the Principles and 

Practice of Programming in Java 
PPPJ Conference 2 

IEEE International Working Conference on Source 

Code Analysis and Manipulation 
SCAM Conference 2 

Journal of Systems and Software JSS Journal 2 

Workshop on Program Comprehension through 

Dynamic Analysis 
PCODA Workshop 2 

We also considered classifying metrics in terms of the software 

engineering/programming paradigm that they belong to (Figure 12). Based on the 

retrieved data, it was found that a high proportion of the papers dealt with OO 

metrics: over 78% of the studies (Figure 12). The remainder addressed a mix of 

procedural, aspect-oriented and service-oriented approaches. Studies of specific 

named metrics were categorized based on their use. It is important to note that many 

of the metrics and factors are interrelated. For example, coupling metrics are related 

to complexity. However, the work distinguished between metric categories based on 

the stated (or in a few cases, presumed) intent of each study.  

Having covered the general topics in the area of dynamic metrics (defined in the 

three classification schemes), we next provide a detailed explanation of the groups of 

metrics that are covered most often in the selected papers. There are several groups 

of dynamic metric topics that appear to be the central focus of the studies, described 

in the sections that follow. A detailed distribution of papers per topic and metric 

types is provided in Appendix B.  
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Figure 8. Map of research focus over research and contribution types
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Figure 9. Articles distribution by research type 

 

Figure 10.  Articles distribution by contribution type 

 

Figure 11.  Articles distribution by research focus 
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4.4.1 Coupling  

A relatively strong body of research related to dynamic coupling was found (e.g. 

(Arisholm et al., 2004, Hassoun et al., 2005, Mitchell and Power, 2006, Yacoub et al., 

1999)). Of note is that most of the dynamic coupling measurement works were 

motivated by the C&K metrics suite (Chidamber and Kemerer, 1994) and their well-

known static coupling measure Coupling Between Objects (CBO). Cho et al. (1998) 

introduced a metric that assesses dynamic coupling at an object level by measuring 

the message passing load. Yacoub et al. (1999) proposed two dynamic coupling 

metrics (i.e. Import and Export object coupling) to measure coupling at the design 

level using Real-time Object Oriented Modelling (ROOM) charts. These authors later 

applied the same set of metrics to estimate and assess reliability risks during early 

phases of development (Yacoub and Ammar, 2002). Arisholm et al. (2004) introduced 

a set of code-level dynamic coupling metrics based on the dynamic analysis of 

systems. The authors found that dynamic coupling measures can be a good indicator 

of the complexity and change-proneness of a system. Burrows et al. (2010, 2011) 

empirically examined several dynamic coupling metrics, in the context of Aspect 

Oriented Programming (AOP). It was found that most of the existing AOP coupling 

metrics did not correlate well with several faults related specifically to aspect-

orientation. Out of these metrics, the authors found that Base-Aspect Coupling (BAC) 

and Crosscutting Degree of an Aspect (CDA) were the two metrics that displayed the 

strongest correlation with faults (Burrows et al., 2010). Furthermore, the authors 

indicated that the extensions of C&K object-oriented based metrics had not proven to 

be good indicators of fault-proneness in AOP. 

4.4.2 Cohesion 

Cohesion is another reasonably well-studied topic and, as with coupling, most of the 

proposed dynamic cohesion metrics are based on the C&K metrics suite (Chidamber 

and Kemerer, 1994). One of the earlier works on runtime cohesion (Gupta and Rao, 
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2001) uses a novel program execution-based approach to measure the module 

(functional) cohesion of legacy systems, by applying a dynamic slicing approach to 

overcome the limitations of over-estimation resulting from the classic static slice. The 

more recent work of Gupta and Chhabra (2011) defined a set of dynamic metrics to 

measure cohesion at an object level.  The authors defined four types of metrics to 

measure four levels of relationships. Their empirical evaluation showed that these 

new measures were more accurate when compared to other existing cohesion 

metrics. 

A runtime form of C&K‘s Lack of Cohesion in Methods (LCOM) metric was introduced 

by Mitchell and Power (2004). Two new metric variants are the Run-time Simple 

LCOM, which is derived directly from the C&K static LCOM metric, and the Run-

time Call-Weighted LCOM metric, which measures each instance variable by the 

number of times it is accessed at runtime. Three dynamic measures were proposed 

by Khurana and Kaur (2009) based on the Read/Write interactions between methods. 

These metrics were also inherited from the C&K static cohesion metrics. Cho et al. 

(1998) measured cohesion based on the message passing load, taking into account 

both the number of messages as well as the load carried in each. 

4.4.3 Complexity  

Like software quality, complexity is an amorphous concept that, when measured, is 

operationalized in other terms.  That said, the studies considered here utilized the 

term ‘complexity’ so we have retained it for this discussion. Munson and 

Khoshgoftaar (1992) defined their Functional Complexity metric, said to measure the 

dynamic complexity of systems. This metric was further used in a later, related study  

(Munson and Hall, 1996) to estimate and examine the test effectiveness of software 

programs. Two additional dynamic complexity measures were introduced in their 

work, namely the Fractional and Operational Complexity metrics. The latter study 

(Munson and Hall, 1996) found a direct relationship between these dynamic metrics 

and software faults. Yacoub et al. (1999) later used the Operational Complexity metric 
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to measure the ‘dynamic complexity’ of software. This metric is based on McCabe's 

static Cyclomatic Complexity metric and can be collected during the early stages of 

development using State Charts of the ROOM simulation modelling environment. 

Voas (1992) introduced the Revealing Ability dynamic metric, which proposed to 

measure semantic software complexity by predicting a program’s ability to allow 

faults to be undetected during dynamic random testing. Another run-time 

complexity metric was introduced by Mathur et al. (2010) based on decision points in 

code, where one option is chosen from an available selection. 

4.4.4 Other Metrics 

Burrows et al. (2011) used dynamic metrics to measure code churn33, which has been 

shown to have a direct effect on the incidence of faults. Cai (2008) proposed a set of 

dynamic metrics that was used to measure the modularization of software 

components during maintenance tasks. This was achieved by comparing different 

versions of a program. The metrics considered the differences between versions, in 

terms of modules added, deleted, and changed.  

A requirement-based dynamic metric was proposed by Cleland-Huang et al. (2001) 

as being useful in predicting network communication loads. The authors contended 

that this metric could be applied during the early stages of development, using data 

collected from a system’s requirement specification and defining a ‘typical’ usage 

scenario. Mendes et al. (2005) empirically tested a size-based dynamic metric to 

measure the features and functionalities of web-based applications. This metric was 

used alongside other static metrics for the purpose of cost estimation during the early 

stages of development. 

Gani et al. (2006) proposed a solution for dynamic metric collection to support 

adaptation via object mobility, for mobile applications. Six different metrics were 

used in their work to measure aspects related to execution frequency, performance, 

                                                 
33 Code churn is the measure of the amount of added or modified code in a software component over time.   
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execution time, and resource utilization. In a similar work, Shtern et al. (2014) 

proposed a dynamic metric for cloud computing that is said to assess how effectively 

an application uses cloud infrastructure.  

4.4.5 Metrics Suites 

Several works have introduced metrics suites (i.e., sets of dynamic metrics) that 

could be used to collectively measure various aspects of software programs. These 

metrics could be collected either separately or as a set. In addition to broad coverage 

a key benefit of using a metrics suite is that there is potential for multiple measures 

of the same underlying construct (Chidamber and Kemerer, 1994), potentially of use 

for result triangulation.  

Dufour et al. (2003a) proposed a set of dynamic metrics for Java programs that could 

be used to measure several runtime properties of software programs. These dynamic 

metrics were gathered into five main groups: size and structure of programs, data 

structures, polymorphism, memory, and concurrency. These metrics were examined 

empirically against several well-known Java benchmarks. The authors contend that 

these metrics could be used to capture relevant qualities; especially for compiler 

optimisation developers. More recently, Sarimbekov et al. (2013) proposed a similar 

set of dynamic metrics targeting JVM languages.  

A metrics suite for Component Based Development (CBD) was presented by 

(Narasimhan and Hendradjaya, 2007). Several metrics, both static and dynamic, were 

designed to measure the complexity and criticality of component assembly. 

Röthlisberger (2010) designed and implemented five different dynamic metrics to 

enhance the Eclipse IDE analysis of Java applications, in order to help developers 

achieve a better understanding of their software. These metrics collect method 

execution and memory-related data.  
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4.4.6 Tools 

Several tools have been implemented to help automate the dynamic measurement 

process. Some of these tools are implementations of some of the metrics suites just 

described. A summary of these tools is shown in Table 14.  

 Summary of current dynamic metrics tools Table 14.

Tool Description 

*J 

 (Dufour et al., 2003b) 

*J is a tool designed to ease the dynamic metrics data collection 

process. The tool is used to gather, compute and present dynamic 

metrics data for Java programs.  

A new debugging tool  

(Aggarwal et al., 2003) 

A debugging tool to compute the number of executions for 

individual methods. This is the only tool found that has been 

designed specifically for the C language.  

AOP Hidden-Metrics  

(Cazzola and Marchetto, 2008) 

An AOP-based adaptable tool that collects dynamic metric data in 

a non-invasive way. They employ an AOP technique using 

AspectJ. 

Senseo  

(Rothlisberger et al., 2009) 

A plugin to enhance the traditional static information provided 

by Eclipse with various dynamic metrics information. Senseo 

collects both runtime information and performance-related 

metrics.  

DynaRIA  

(Amalfitano et al., 2010) 

A tool designed to support and enhance the comprehension of 

Ajax applications for the purpose of maintenance, reverse 

engineering and testing.   

A new (CCRCs) profiler  

(Moret et al., 2010) 

A profiler that uses (CCRCs) visualisation charts to enable 

efficient construction and navigation of large Calling Context Trees 

during execution. It also provides a visualisation environment for 

the collected dynamic data.  

The *J tool (Dufour et al., 2003b) was one of the first tools designed to collect 

dynamic metrics’ data. This tool supported the metrics suite designed in Dufour et al. 
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(2003a) (described in Section 4.3.5) and so collected measures of Size, Data structures, 

Polymorphism, Memory allocation and Concurrency and Synchronization. 

AOPHiddenMetrics (Cazzola and Marchetto, 2008) uses AspectJ to collect dynamic 

metrics in execution time. The data collected addresses Coupling, Cohesion, Code 

Coverage, Code Execution, Memory Usage, and Concurrency metrics. Rothlisberger et al. 

(2009) implemented an Eclipse plugin called Senseo that could be support to ease the 

measurement and analysis process, using the same set of dynamic metrics that was 

presented in (Rothlisberger, 2010). Similar to the tool developed by (Cazzola and 

Marchetto, 2008), Senseo also employs an AOP technique to gather the required 

runtime data. The main goal of Senseo is to dynamically analyse software and 

augment the static perspectives of Eclipse with dynamic metrics data, including 

method invocations, method execution, and counts of objects created during a 

particular execution scenario. These dynamic metrics are aggregated over several 

runs of the subject system, and the developer then decides which runs to take into 

account. The DynaRIA tool (Amalfitano et al., 2010) was designed to support the 

comprehension of Ajax web applications. In addition to other dynamic information, 

the tool collects dynamic metrics data such as size and code coverage metrics. Moret 

et al. (2010) presented a profiler that used visualisation charts, called Calling Context 

Ring Charts (CCRCs), to enable efficient construction and navigation of a large 

Calling Context Tree (CCT) while the program is being executed.  

All of the works just described targeted the OO paradigm. Aggarwal et al. (2003) 

designed a tool to generate the execution sequence of modules during a run of any 

software. That said, this tool was mainly designed for procedural C programs, to 

measure the number of executions of all modules, using the Most Frequently Executed 

Module (MFEM) dynamic metric.  

4.5 Discussion 

The results of this mapping study indicate that issues related to dynamic metrics are 

receiving increased attention from researchers. Over half the body of relevant papers 
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were published between 2007 and 2011. However, there has been a drop in the 

number of publication between 2012 and 2014, compared to the number of articles 

published between 2009 and 2011. In this section we address the research questions 

noted in Section 4.2.1.  

RQ4.1: Which aspects of dynamic metrics have been most frequently subjected to 

study?  

The most widely studied aspects of dynamic metrics have been software complexity, 

memory allocation and usage, and code execution metrics. A relatively large 

proportion of research has been focused on coupling, cohesion and other complexity 

and maintainability metrics. Coupling has been the most studied single metric type. 

A number of studies have proposed new or amended sets of coupling-related 

metrics. Several empirical studies used dynamic coupling metrics to collect data for 

the purpose of software comprehension and/or reengineering.  

RQ4.2: Which aspects of dynamic metrics could be recommended as topics for 

future research?  

In respect to the many dimensions of software quality, it is clear that complexity- and 

maintainability-oriented dynamic metrics have been the most widely discussed in 

the literature; however the same high level of attention has not been directed to 

metrics for other quality dimensions such as reusability, testability and portability. In 

our view dynamic metrics could be well suited to measure, and predict, testability. 

Measuring testability dynamically could be effective, particularly when considering 

different levels of testing (e.g., unit, integration, system) and the relationships 

between components. In addition, we considered the use of dynamic metrics at 

various levels of development and found that the proportion of investigations into 

design-level metrics is relatively low when compared to that for code-level studies. If 

useful metrics can be determined at the design stage this could help to reduce or 

minimize the risk of later costly errors and failures.  
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4.6 Threats to Validity 

The main validity threat to this review study is the incomplete or inappropriate 

selection of publications. In spite of us following a systematic approach, it is still 

possible that we have missed some relevant studies especially if they were published 

in sources other than those we considered or that had not been cited in any of the 

articles selected in our search. To mitigate this risk we defined our search string for 

the automatic search alongside the search strategy. We also conducted our search 

using multiple automatic search sources. A manual search was then conducted to 

manually check for articles in a list of selected journals and conferences. In addition, 

we used a reference checking procedure to carefully look at the list of references in 

all identified articles. Thus, while it is still possible that we may have missed a small 

number of relevant papers, we would contend that the impact of such an oversight 

on the overall conclusions of the mapping study, given the number of papers that 

were selected and reviewed, would not be significant.  

There is also a chance that some related papers have used terms other than those we 

used in our search string. If terms other than “dynamic metrics”, “dynamic 

measurement”, or “runtime metrics” were used then the possibility of us missing a 

study is high. To avoid such a problem we repeatedly refined our search string and 

performed sequential testing in order to recognize and include as many relevant 

studies as possible. In addition, we conducted reference checks on all reference lists 

of the selected articles on the topic, to locate any missing influential articles. The 

selected studies were then examined and subsequently added to the final set of 

papers to be reviewed. In our view this was of use in limiting the number of missing 

influential articles (although we are unable to ‘prove’ this). Furthermore, the manual 

search we conducted was intended to fill any gaps by directly targeting relevant 

reputable publishing venues. 

Another possible threat to the validity is the way the studies are classified. The 

classification was done mainly by one researcher. It is possible that some of the 
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articles can be classified differently by different researchers due to the possibility that 

some of these articles can fit into multiple categories of the same classification 

scheme.  

4.7 Summary 

This Chapter has reported a systematic mapping study of dynamic software metrics. 

In summary, this work presented 1) a general overview of the field of dynamic 

software metrics, 2) the selection of key works in the area based on number of 

inclusion and exclusion criteria, and 3) a mapping and classification of the selected 

articles. Detailed review results are shown in Figure 6, and a map of all the selected 

articles is shown in Figure 8. The classification results of these works are given in 

Figures 9-12. A list of all recognized metrics is provided in Appendix B.  

The results of this mapping study indicate that there is indeed ongoing interest in 

dynamic metrics among the software engineering research community. That said, 

most prior studies on dynamic metrics have focused specifically on software 

complexity aspects (either directly or indirectly). Moreover, with most of the studies 

focusing on OO systems, a great deal of emphasis has been directed towards OO-

related factors such as coupling and cohesion. Beyond complexity, these metrics have 

been identified as being relevant to a number of other software quality attributes, 

such as complexity and maintainability. Given this, the empirical analyses that 

follow investigate the potential of these and other relevant metrics in relation to 

testability and test quality. 

The following chapter presented the results of our first experiment on the use of 

visualisation and dynamic analysis to explore the distribution of unit test suites.    
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 Exploring the Distribution Chapter 5

of Unit Test Suites 

5.1 Introduction 

This chapter analyses test adequacy in several OSS. It presents a novel approach that 

combines dynamic coupling and unit test static data in order to enable developers 

and those undertaking re-engineering to gain greater visibility into unit tests’ 

distribution (i.e., the distribution of the unit tests over a system’s classes), across five 

OSS. In this experiment, a visual representation (based on complex network and 

dependency graph theories) of dynamic information is developed to present the 

dynamic information directly in relation to unit tests.  

The field of software visualisation has long offered substantial promise in aiding 

software developers and maintainers to better understand certain aspects of software 

behaviour (Maletic et al., 2002). Researchers have also suggested that software 

metrics should be examined through appropriate visualisations, thus achieving 

improved understanding beyond the ‘raw’ numbers of the metrics alone (Lanza and 

Marinescu, 2006). In short, using visualisations to support program comprehension 

and the understanding of software artefacts (including test artefacts) appears to be 

effective and useful (Lange and Nakamura, 1997, Jerding and Rugaber, 2000, 

Cornelissen et al., 2007, van Rompaey and Demeyer, 2008, Cornelissen et al., 2011). 

Section 2.4.1 provides a discussion on the previous works that used test visualisation 

as a means of supporting developer comprehension and understanding.  

We contend that visualising such data could be especially helpful when maintenance 

and reengineering activities take place, as the visualisation process elucidates the 

hierarchy of the production classes and the distribution of unit tests corresponding to 
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the production classes. In addition, such visualisations would provide developers 

and maintainers with a high-level view of the dependencies between different classes 

within a system and the possible utilisation of methods for future testing activities, 

i.e., what components are not being tested, the degree to which other components are 

tested, and where testing effort should be focused.  

The experimental design is discussed in the following section.  

5.2 Experimental Design 

Understanding test code and its use in systems is an important task in software 

development, and particularly during software maintenance, reverse engineering 

and refactoring. In the object-oriented paradigm, production code and test code are 

similar in nature (i.e., they are written in a similar manner); thus, analysing and 

understanding test code requires similar skills and methods as used with production 

code. The following subsections present the specific objectives and contributions of 

this experiment, along with a description of the metrics used in its conduct.  

5.2.1 Objectives 

The main objective of this experiment is to explore unit test distribution by using a 

novel visualisation approach that combines specific static and dynamic information. 

We demonstrate the application of the visualisation on sample OSS, including 

systems of different sizes and with different test coverage levels.  

In achieving the above objectives this research will enable us to assess whether 

dynamic information, here represented by dynamic coupling, might be useful when 

added to unit test information to represent the distribution of unit tests in OSS. The 

goal is to develop a visualisation approach that combines dynamic information 

associated with production code and test information, with a view to supporting 

better understanding of the distribution of unit test suites in OSS. Then this 

experiment studies the distribution of unit tests to determine whether production 
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classes and unit tests are evenly distributed; that is, do all highly and/or tightly 

coupled classes have dedicated unit tests?  

5.2.2 Contribution 

The findings of this work contribute to the general body of knowledge on program 

comprehension and understanding (and more specifically, test comprehension) by 

enabling the visualisation of a new combination of static and dynamic data that 

could aid the test understanding process. The methods developed in this study 

should provide developers with knowledge of the unit test distribution in OSS. 

One possible use of the proposed visualisation is when maintenance and 

reengineering activities are planned. The visualisation should enable software 

developers, maintainers and reengineers to explore the distribution of unit tests in 

relation to the dynamic behaviour of the software before conducting their work. It 

should also benefit program understanding by providing a visual representation of 

the dependencies based on actual use of the functional capabilities of the system. 

Newcomers to a project could also use the proposed visualisation to understand 

which aspects have been directly covered with unit tests in relation to their dynamic 

dependencies view (van Rompaey and Demeyer, 2008). The visualisation could also 

be beneficial in dynamic or Agile-like development contexts, in which unit tests serve 

as a key form of documentation (Cornelissen et al., 2007). 

5.2.3 Metrics Definition 

In this study Dynamic Coupling has been selected as one of the system 

characteristics to measure and investigate regarding its relationship to class 

testability. Coupling has been shown in prior work to have a direct impact on the 

quality of software, being linked in particular to software complexity and 

maintainability (Offutt et al., 2008, Al Dallal, 2013, Arisholm et al., 2004). It has been 

shown that, all other things being equal, the greater the coupling level, the greater 

the complexity, and the harder it is to maintain a system (Chaumun et al., 2000). This 

suggests that it is reasonable to expect that coupling will be related to software 
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testability in general. Dynamic rather than static coupling has been selected for this 

work to address some of the expected shortcomings of the traditional static measures 

of coupling. As noted above, coupling has generally been measured statically, based 

on limited structural properties of software. This misses the coupling that occurs 

between objects at execution-time – such as typical interactions that happen during 

polymorphism and dynamic binding. Dual consideration of this form of coupling 

should capture a more complete picture (as it captures runtime dependencies 

between different classes/objects (Arisholm et al., 2004)) and so relate better to class 

testability. The notion of measuring dynamic coupling is quite common in the 

emergent software engineering research literature. 

For the purposes of this work, dynamic coupling metrics that capture coupling at the 

object level (at runtime) are used. In this work, we define dynamic coupling 

following the definition proposed by Zaidman and Demeyer (2008): dynamic 

coupling is defined based on an analysis of runtime interactions between 

classes/objects - “two objects are dynamically coupled when one object acts upon the 

other. Object X is said to act upon object Y, when there is evidence in the execution 

trace that there is a calling relationship between objects X and Y, originating from X. 

Furthermore, two classes are dynamically coupled if there is at least one instance of 

each class for which that [sic] they are dynamically coupled holds” (p 391).  

There are various ways to measure dynamic coupling. The specific measure of 

coupling used here is based on runtime method invocations/calls: two classes, class A 

and class B, are said to be coupled if a method from class A (caller) invokes a method from 

class B (callee) at run-time, or vice versa. Multiple invocations to the same class are still 

counted as a single (one) coupling. 

In this experiment the Dynamic Coupling Between Objects (DCBO) metric is used. As 

the name implies, DCBO is the dynamic form of the well-known CBO metric 

(Chidamber and Kemerer, 1994). For any class, the DCBO metric computes the total 

number of classes that are invoked by that class during program execution (and note 
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that self-calls to cohesive methods from the same class are excluded). This metric is 

collected through an AOP approach using the AspectJ framework (see Section 3.4). 

The following shows our defined AOP (AspectJ) rules that detect calls made during 

typical program execution:   

pointcut capture() : call (* *..*(..)) // capture all method calls made during the execution 

pointcut exclude(): !call (system-under-examination)// excludes all calls that are not relevant to 
the program under examination such as default java libraries and default AspectJ compiler’s calls 

before() : capture() && !excluded()  

 { 

// capture the name of the caller class  

caller = thisEnclosingJoinPointStaticPart.getSignature().getDeclaringTypeName();  

// capture the name of the callee class  

callee = thisJoinPoint.getSignature().getDeclaringTypeName(); 

} 

As explained above, dynamic instead of static coupling is used to measure coupling 

between classes. As shown in Chapter 4 dynamic coupling has received increasing 

research attention in recent years, but looking at the relation between such metrics 

and testability has not been done previously.  

5.3 Data Collection and Execution Scenarios 

Five of the OSS from the list presented in Section 3.2.1 were used in this study: 

FindBugs, JabRef, Dependency Finder, MOEA and JDepend. General characteristics 

of these systems are shown in Table 4. As is evident in Table 4, the five selected 

systems represent a variety of sizes (one large, three medium and one small). Table 

15 shows detailed test coverage information for all five systems. 

In order to arrive at dynamic analysis values that are associated with typical, genuine 

use of a system, the selected execution scenarios must be representative of such use. 

The goal is to mimic ‘actual’ system behaviour, as this will enhance the utility of our 

results. Execution scenarios are therefore designed to use all key system features, 

based on the available documentation and user manuals for the selected systems, as 

well as our own prior knowledge of these systems. Note that all five systems have 
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GUI components, and the developed scenarios assume use via the available GUI. 

Details of the particular execution scenario developed for each system, and used in 

this experiment, now follow. 

FindBugs: FindBugs’ main GUI tool is used to analyse JAR and source code files of 

three other Java OSS, two of large size (FindBugs itself and Apache 

JMeter) and one of medium size (Dependency Finder). During execution, 

cloud-based storage was activated by loading the tool’s external cloud 

plugin. Finally, all analysis reports were exported for all three systems in 

various formats. 

JabRef:   The tool is used to generate and store a list of references from an original 

research report. References of all types supported by the tool were 

included (e.g., journal articles, conference proceedings, reports, 

standards). Reports were then extracted using all available formats 

(including XML, SQL and CSV). Finally, the list of references was 

managed using all the provided features. All additional plugins provided 

at the tool’s website were added and used during this execution. 

Dependency Finder: This scenario involves using the tool to analyse the source code 

of three large systems (FindBugs, Apache JMeter, and Apache Ant) and 

one medium-sized system (Colossus). This scenario involves computing 

dependencies, dependency graphs and OO metrics at all layers (i.e., 

packages, classes, features). Analysis reports were extracted and stored 

individually in all possible formats. 

MOEA:  The tool has a GUI diagnostic tool that provides access to a set of 

algorithms, test problems and search operators supporting multi-objective 

optimization. The diagnostic tool was used to apply those algorithms on 

all of the predefined test problems. The algorithms were executed at least 

once on each problem. The tool was then used to display metrics and 

performance indicators for all results obtained from those different 
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problems and algorithms. Statistical results of these multiple runs were 

displayed and stored at the end of the execution. 

JDepend:   A small GUI was designed as part of this research to provide access to all 

of the quality assessment and reporting functionalities of JDepend (Note: 

this additional code was excluded from the measurement collection and 

analysis.) The tool was then used to load and analyse four different OSS, 

three of medium size (Dependency Finder, JabRef, and barcode4j) and one 

of large size (FindBugs). All three user interfaces provided by the tool 

(namely: swing-graphical, textual and XML) were used during this 

execution.  

 Test coverage data  Table 15.

 

5.4 Results 

This section presents the results and analysis of the empirical investigation of the 

proposed measurement and visualisation approach. A dependency graph is used to 

visually depict the dependencies between classes with each system. Dependencies, 

shown here with undirected edges, represent method invocations (calls sent or 

received) between classes, shown as nodes. An undirected edge between nodes A 

and B means that the two nodes are coupled. That is, a dependency between classes 

A and B represents at least one invocation from a method in class A to a method in 

System 
Class 

Coverage 

Statement 

Coverage 

Branch 

Coverage 

Line 

Coverage 

Methods 

Coverage 

FindBugs 26.5% 13.3% 6.9% 14.1% 18.6% 

JabRef 46.7% 29.6% 14.2% 29.5% 31.0% 

Dependency Finder 59.5% 59.8% 44.3% 57.2% 43.3% 

MOEA 86.5% 77.2% 46.2% 66.6% 60.5% 

JDepend 41.8% 25.9% 14.9% 28.1% 28.5% 
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class B, and/or vice versa. A description of the dependency graph node symbols is 

provided in Table 16. For tightly coupled classes the size of the vertex represents the 

relative degree of coupling measured by DCBO. 

Graph metrics are used here to quantify the level of association that a node (i.e., 

class) has with other nodes in the graph. Centrality, in graph theory, is defined as the 

level of reachability of two different nodes of a graph (Boccaletti et al., 2006). Graph 

centrality is a well-known concept in graph theory that has been applied increasingly 

in recent times to analyse Complex Networks34. It has been long used across multiple 

domains to analyse large, complex networks such as those used in Social Network 

Analysis (SNA)35 (Freeman, 1978, Borgatti, 2005).  

 Dependency graph node symbols Table 16.

Symbol   Description 

 Tightly coupled class, with at least 1 associated unit test 

 Tightly coupled class, with no associated unit test 

 Loosely coupled class, with at least 1 associated unit test 

 A production class with no associated unit test 

In particular, we identified two centrality metrics to be used: Degree Centrality and 

Betweenness Centrality. Degree Centrality is defined as the number of ties upon a node 

in a graph (Borgatti, 2005), and it is measured based on the total number of links 

(connections) for a node. This metric directly reflects the dynamic coupling 

information, which is obtained from the DCBO metric, reflecting messages sent or 

received by a class (also known as Import and Export Coupling). Betweenness 

Centrality, on the other hand, is defined as “the share of times that a node i needs a 

                                                 
34  Complex Networks are widely used in many fields; include physics, biology, epidemiology and computer 

network and telecommunications.   

35 SNA is the study of relationships between different social entities (such as communications between 

different members of a social group) through the use network graphs. 
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node k (whose centrality is being measured) in order to reach a node j via the shortest 

path” (Borgatti, 2005). In other words, this metric calculates the number of times a 

node acts as a bridge between two other nodes in the graph. Both centrality metrics 

are computed for each individual node on the graph.   

Figures 13 to 17 show dependency graphs for all five systems. Given that all 

visualisation graphs should be presented in a complete form and seen in clear 

colouring, a full-size, high-resolution version of these graphs is provided in an 

external webpage36.  

 Centrality metrics for JDepend Table 17.

Class 
Degree 

Centrality 

Betweenness 

Centrality 

Unit 

test 
Class 

Degree 

Centrality 

Betweenness 

Centrality 

Unit 

test 

framework.JDepend 9 92.8 Yes FileManager 2 0.5 Yes 

JavaPackage 9 72.6 Yes AbstractParser 2 18.0 No 

swingui.JDepend 5 37.5 No 
PropertyConfigur

ator 
2 0 Yes 

JavaClass 5 8.6 No xmlui.JDepend 2 0 No 

PackageComparator 4 5.0 No ParserListener 1 0 No 

textui.JDepend 4 3.2 No AfferentNode 1 0 No 

JavaClassBuilder 3 34.0 Yes DependTree 1 0 No 

PackageNode 3 18.0 No DependTreeModel     1 0 No 

ClassFileParser 3 0.8 Yes EfferentNode 1 0 No 

PackageFilter 3 0.5 Yes StatusPanel 1 0 No 

 

As shown in Table 17 and visually in Figure 13, the framework.JDepend and 

JavaPackage (highlighted) classes of the JDepend system are shown to have the 

highest levels of (Degree and Betweenness) Centrality. Both classes are also directly 

                                                 
36 http://goo.gl/nuGZ4u 
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tested through dedicated unit tests. Other classes, including swingui.JDepend and 

JavaClass, have high levels of Degree Centrality (both have the second-highest value) 

but have no associated unit tests. In contrast, we also note that the FileManager and 

PropertyConfigurator classes have dedicated unit tests associated with them even 

though they are not shown to be central to the system’s operation (i.e., their 

Centrality levels are low, especially in terms of Betweenness Centrality). 

 

Figure 13.  JDepend full dependency graph 

Table 18 shows a comparison of the Centrality values (both Degree and Betweenness 

Centrality) for tested classes across the five systems, using a proportion of classes 

from the ‘top’ and ‘bottom’ of their ranked lists. For each system, Centrality values 

are ranked and then divided into four groups based on three quartile data points. The 

1st (Q1 - the lower) and the 3rd (Q3 - the upper) quartiles split off the bottom and top 

25% of the data points in terms of their centrality values, respectively, whereas the 

2nd quartile (Q2 - the median) reflects the middle 50% of the data. Those classes with 

Centrality values above the Q3 threshold are relatively highly coupled, and those 

with values below the Q1 threshold are coupled loosely. 
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 Levels of centrality in all examined systems Table 18.

System 

Number and 

proportion of 

tested classes 

above Q3 for 

Degree Centrality 

Number and 

proportion of tested 

classes above Q3 for 

Betweenness 

Centrality 

Number and 

proportion of 

tested classes 

below Q1 for 

Degree Centrality 

Number and 

proportion of tested 

classes below Q1 for  

Betweenness 

Centrality 

FindBugs 
11 

7% 

4 

2% 

1 

1% 

2 

1% 

JabRef 
9 

13% 

11 

15% 

9 

13% 

4 

6% 

Dependency 

Finder 

31 

69% 

24 

53% 

3 

7% 

19 

42% 

MOEA 
25 

66% 

21 

55% 

17 

45% 

20 

53% 

JDepend 
2 

40% 

3 

60% 

0 

0% 

2 

40% 

For the Dependency Finder system (Figure 14), classes with Centrality values above 

the Q3 threshold are examined (being 46 classes, with some exceeding the threshold 

for both Centrality measures). It is found that almost half of the classes in the Q3 

threshold had no associated unit tests. For example, the dependency.Printer 

(highlighted) class has a Degree Centrality value of 53 (which is the second highest 

value in the system) and its Betweenness Centrality is 2032 (ranked fifth highest in 

the system), yet it has no associated (dedicated) unit tests. The same applies to 

dependency.VisitorBase (highlighted), which has a Degree Centrality of 52 (third 

largest Degree Centrality value) and has a Betweenness Centrality of 1283, and yet 

has no associated unit tests. These classes are considered to be central to the system 

based on its dynamic coupling values. In contrast, we observed other classes with 

very low levels of Centrality but with dedicated unit tests. For example, the 

RegularExpressionParser and PrinterBuffer classes both have devoted unit tests even 

though they have the lowest Centrality values, with only a value of one for Degree 

Centrality and zero for Betweenness Centrality. This latter result indicates that these 
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classes do not appear to be central to the system’s operation in terms of their 

dynamic coupling. A similar pattern is repeated in JabRef. As shown in Figure 15, the 

central classes of Globals, JabRefPreferences and BasePanel have no devoted unit tests 

while they still have high Degree and Betweenness Centrality values (these classes 

have the highest two Degree Centrality values respectively). On the other hand, 

classes such as CaseChanger and DOICheck appear to be less central (i.e. with low 

Centrality values) but they still have dedicated unit tests. In considering the Q3 

classes by Degree Centrality in JabRef (71 classes), only nine classes (among the 71) 

were found to have dedicated unit tests. Similarly, only eleven classes with the 

highest Betweenness Centrality measure (among those 71 classes, which form only 

15% of the classes in Q3 threshold) were found to have dedicated unit tests. 

A generally similar pattern of unit tests’ distribution is evident in all other examined 

systems. Figures 16 through 17 show dependency graphs for MOEA and FindBugs, 

respectively. Full Centrality metrics values (i.e., Degree and Betweenness Centrality) 

for all system are provided in the Appendix C.  

In regard to the MOEA system (Figure 16), unit tests are present for 25 (66%) of the 

classes above the Q3 Degree Centrality threshold and for 21 (55%) classes above the 

Q3 value for Betweenness Centrality. However, MOEA also has the highest 

proportions of tested classes below the Q1 Centrality measure thresholds of the five 

systems considered, with 45% and 53% of these classes having unit tests. This may be 

a reflection of the generally high levels of test coverage in MOEA, as MOEA has 

around 87% class coverage (which means that 87% of the production classes are 

covered by unit tests, see Table 18). The lowest percentages of tested classes above 

Q3 for both Degree and Betweenness Centrality are evident for FindBugs (although it 

is also the largest of the five systems examined). It has 11 (~7%) classes with 

associated unit tests among the 164 classes in Q3, and only 1 tested class (< 1%) in Q1 

for the Degree Centrality classes. For Betweenness Centrality, there are 4 tested 

classes in Q3 and 2 tested classes in Q1. 
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Figure 14.  Dependency Finder dependency graph 



  

  

   95 

 

 

Figure 15.  JabRef dependency graph 
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Figure 16.  MOEA dependency graph 
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Figure 17.  FindBugs dependency graph 



98 

 

To provide a more formal statistical analysis of the relationship between the two 

Centrality metrics’ values and the availability of unit tests for production classes 

the non-parametric (two-tailed) Mann-Whitney U test is used (as the data come 

from non-normal distributions – see Section 3.2.2 for more details about this 

statistical test). The following research hypothesis is investigated: “there is a 

significant difference between the Centrality metrics’ values of production classes with 

associated unit tests and those without associated unit tests”. In addition, the effect size 

(ez) of these differences is calculated using equation (2) in section 3.2.2 and is then 

classified into small, medium and large using Cohen’s classification (Section 3.2.2). 

 Centrality metrics Mann-Whitney U test results with effect size Table 19.

Metrics FindBugs JabRef 
Dependency 

Finder 
MOEA JDepend 

Betweenness 

Centrality 

p 0.00* 0.50 0.00* 0.08 0.11 

ez 0.12 0.04 0.27 0.14 0.36 

Degree 

Centrality 

p 0.01* 0.16 0.03* 0.45 0.26 

ez 0.10 0.08 0.16 0.06 0.25 

Table 19 reports the results of the Mann- Whitney U test (with effect size) of the 

Centrality metrics and the presence of unit tests. All Significant p-values (p) are 

marked with an asterisk (*). As shown in Table 19, significant p-values are shown 

for only two of the five systems examined (i.e., FindBugs and Dependency Finder). 

Furthermore, even though the p-values are significant in these systems, the effect 

size values are small for both Centrality metrics. No significant values are shown 

for the other three systems. This result leads to a rejection of the hypothesis – there 

is no evidence of a significant difference between Centrality metrics’ values of 

production classes with associated unit tests and those without associated unit 

tests. 
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5.5 Discussion 

Several observations can be made based on the results just presented. The main 

observation, enabled by the visual representations of the dependency graphs and 

the two graph centrality metrics, is that there is no statistically significant 

association between the centrality metrics of Degree Centrality (which is also a 

representation of the dynamic coupling level in the systems) and Betweenness 

Centrality, and unit test coverage – unit tests do not appear to be distributed in 

line with the systems’ dynamic coupling and centrality values. In all five OSS 

examined, it is evident that many classes (i.e., over 40% of the classes as shown in 

three of the five examined systems) that are loosely coupled and have few 

connections have received testing attention and effort, as they have dedicated unit 

tests. Loosely coupled classes, shown at the outside of the graphs, have fewer 

connections and so are not intensively accessed by other classes. On the other 

hand, high proportions of classes in each system (up to 69% of the classes as 

shown in Dependency Finder) that are tightly coupled, in terms of being linked to 

or accessed by other classes, have no dedicated unit tests. 

Of particular note is that this distribution pattern is present in all five systems, 

regardless of their other test coverage information, such as class and statement 

coverage (although, the specific numbers of tested and untested classes naturally 

varies from one system to another). As shown in Table 19, it is evident that the 

proportion of unit tests in relation to coupling and centrality levels is different in 

all five systems. This suggests that, even in mature OSS such as those used in this 

experiment, the dispersed nature of contributions to the project may mean that 

test distribution can be uneven, and provision of tests is reliant on the 

commitment or otherwise of individual developers. 

We acknowledge that the current visualisation tends to become dense with large 

systems, i.e., when the numbers of nodes and edges increase (as in the case of 

FindBugs – see Figure 17). In such cases the visualisation could be simplified if 
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needed, by reducing the numbers of nodes and edges that are depicted in the 

graph. One option could be to show only certain classes (i.e., nodes) of interest and 

to hide all other classes. For instance, an interest in tested classes would mean that 

only classes with associated unit tests would appear in the visualisation – Figure 

18 shows such a simplified version of FindBugs (after removing additional nodes 

and edges). The results presented in this experiment suggest that the distribution 

of unit tests may require more attention from software engineers and testers, but 

also from those managing software development. We contend that the suggested 

visualisation can help in focusing and optimising testing effort by allowing 

engineers to identify and initially target central system classes and to dedicate 

relatively less effort to non-central classes. We also suggest that the centrality 

metrics themselves could be helpful in providing quantitative support for the 

visualisations of the dependency graphs. The two centrality metrics provided us 

with a comprehensive insight into the levels of dependency between system 

classes. Such data could be used to supplement other test optimisation and 

prioritization techniques, alongside other considerations, to enhance future testing 

decisions. The same approach could also be applied to explore test distribution at 

smaller scales, such as at sub-system level or even at a package level.  

While we believe that the results we have achieved so far are interesting, we 

readily acknowledge the need for user evaluation of the utility of the visual 

representations. The work presented in this chapter is exploratory (a proof of 

concept) in nature, and it was driven purely by an open question as to the 

feasibility of combining dynamic and static metrics with visualisations in the 

context of testing. Certainly we recognise the need for external evaluation, and this 

is planned for future work. This could be undertaken through a controlled 

experiment using real software developers/testers. 
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Figure 18. FindBugs dependency graph. 
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5.6 Threats to Validity  

A number of threats to the validity of the results presented above are 

acknowledged here. Note that the nature of some of these threats is explained 

more fully in Section 3.5.  

Selection of the Execution Scenarios 

The selection of the execution scenarios is another possible threat to the validity of 

our results. Execution scenarios are designed to mimic as closely as possible 

‘actual’ system behaviour, based on the available system documentation and, in 

particular, indications of each system’s key features. However, it is acknowledged 

that the selected scenarios might not be fully representative of the typical uses of 

the systems. Analysing data that is collected based on different scenarios might 

give different results. This is a very common threat in most dynamic analysis 

research. However, we tried to mitigate this threat by carefully checking user 

manuals and other documentation of each of the examined systems and deriving 

the chosen scenarios from these sources. Most listed features were visited (at least 

once) during the execution. More scenarios will be considered in the future in 

order to extend the presented analysis and to compare the results obtained from 

these different scenarios. 

Generalisation of Findings  

Results discussed here are derived from the analysis of five OSS (including one 

large, three medium and one small system). This threat is also discussed in more 

detailed in Section 3.5.2.  

Availability of Testing Information 

The varied availability of detailed testing information could be another threat to 

the validity of this experiment. Whatever test information was available for the 

five systems was used in the analysis, but this did not extend to information 
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regarding the testing strategy employed. Test strategy and criteria information 

could be informative if combined with the test metrics, given that test criteria can 

inform testing decisions, and the number of test cases designed is highly 

influenced by the selected test strategy. Moreover, a more comprehensive picture 

of the analysis could be gained by also considering indirect tests. 

Test Quality 

Finally, no attempts were made to direct attention to test quality – the intent at this 

stage was to investigate the existence or otherwise of unit tests for system classes. 

An analysis approach that considers both the quantity and quality of the tests 

developed would seem likely to be optimal, however, and should be the subject of 

future research. 

5.7 Summary 

This chapter has presented a new visualisation approach that combines dynamic 

information obtained from production code with static test information to depict 

the distribution of unit tests in OSS. Five such systems of different sizes were 

selected for examination in this experiment. For each system, a full dependency 

graph was generated to show the dependencies between classes using the 

collected dynamic coupling information. Test information was then extracted and 

added to the dependency graphs to illustrate how unit tests were distributed in 

comparison to the dynamic coupling information. The goal of this visualisation is 

to assist engineers and maintainers – and their managers – to observe and 

understand the distribution of unit tests in a software system based on a dynamic 

view of that system. The visualisation is further supported by the use and analysis 

of graph Centrality metrics that provide insight into the relationship between 

production classes and their unit tests. 
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Having investigated unit test distribution based on dynamic analysis in this 

chapter, the following chapter explores the relationship between particular 

dynamic software properties (i.e., runtime characteristics) and class testability. The 

goal is to provide a general understanding of what affects class testability and how 

dynamic analysis can help in this regard.  
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 Investigating Class Chapter 6

Testability through 

Dynamic Analysis 

6.1 Introduction 

The diversity of design and code characteristics that can affect the testability of a 

software product has been the subject of a large body of work. For example, the 

relationships between internal class properties in OO systems and characteristics 

of the corresponding unit tests have been investigated in several previous studies 

(e.g., (Bruntink and van Deursen, 2006, Badri et al., 2011, Zhou et al., 2012)). In 

these studies, OO design metrics (drawn mainly from the C&K suite (Chidamber 

and Kemerer, 1994)) have been used to explore the relationship between 

class/system structure and test complexity. Some strong and significant 

relationships between several complexity- and size-related metrics of production 

code and internal test code properties have been found (e.g., (Bruntink and van 

Deursen, 2006, Zhou et al., 2012)).  

However, as far as could be ascertained from the systematic mapping study, all 

previous research addressing class testability has used only static software 

measures. As explained in Chapter 4, it has been noted for some time that 

traditional static software metrics may be necessary but not sufficient for 

characterising, assessing and predicting the entire quality profile of OO systems 

(Basili et al., 1996). Additional characteristics of interest can be captured through 

the use of dynamic metrics. As described in Section 2.3.2., dynamic metrics have 

been shown to directly reflect the quality attributes of a system in operation. The 
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work described in this chapter extends the investigation of software features as 

factors in class testability by characterising that code using dynamic metrics. A 

fuller discussion of dynamic metrics and their relative advantages over static 

metrics is presented in Chapters 2 and 4. 

In this chapter, the relationships between dynamic software properties and class 

testability are investigated. In particular, two dynamic concepts are investigated: 

Dynamic Coupling (i.e. highly coupled classes) and Key Classes (i.e. frequently executed 

classes). The two concepts are contended to be related to class testability, as 

described in the section that follows. 

6.2 Testability Concepts 

6.2.1 Dynamic Coupling 

Dynamic, instead of static, coupling is used to measure coupling between classes, 

for the many advantages of this group of metrics over the static ones (See Section 

2.3.2). As shown in Section 4.4.1, the measurement of dynamic coupling was found 

to be the most widely investigated topic in the literature on dynamic metrics. 

Although dynamic coupling has been used to measure several quality attributes, 

no previous work have attempted to relate dynamic coupling to testability. Section 

2.3.2 provides a detailed overview on how dynamic coupling metrics can provide 

more insight compared to other traditional coupling metrics. 

For the purposes of this work, dynamic coupling metrics that capture coupling at 

the object level are used. The specific measure of coupling used here is based on 

runtime method invocations/calls, and also on the direction of the invocation: two 

classes, class A and class B, are said to be coupled if a method from class A (caller) 

invokes a method from class B (callee), or vice versa. This relationship is described 

as a ‘client-server’ relationship: a ‘client’ class imports services from a ‘server’ 

class.  
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Therefore, coupling is measured in the following two forms (i.e., to account for 

both callers and callees): 

1) When a class is accessed by another class at runtime, and  

2) When a class accesses other classes at runtime.  

To measure these levels of coupling we select the previously defined Import 

Coupling (IC) [also known as Efferent Coupling (EC)] and Export Coupling (EC) 

[also known as Afferent Coupling (AC)] metrics (Arisholm et al., 2004).  

The IC for class A is the number of method invocations/calls received by class A 

(callee) from other classes (callers) in the system (4). This metric is also referred to 

as IC_CC (Import Coupling, Class-level, Distinct Class). 

The EC for class A is the number of method invocations/calls sent from methods 

within class A to other classes (callees) in the system (5). This metric is also referred 

to as EC_CC (Export Coupling, Class-level, Distinct Class). 

For both the IC and EC metrics, all invocations to and from methods within the 

same class (i.e., cohesive methods) are excluded. Also, multiple invocations to the 

same class are counted as a single (one) coupling. The formal definition of both 

metrics are given as follows (Arisholm et al., 2004): 

𝐼𝐶𝐶1
= {(𝑚1, 𝑐1, 𝑐2)|(∃(𝑚1, 𝑐1), (𝑚2, 𝑐2) ∈ 𝑅𝑀𝐶) ^ 𝑐1 ≠ 𝑐2^ (𝑚1, 𝑐1, 𝑚2, 𝑐2) ∈ 𝐼𝑉}       (4) 

𝐸𝐶𝐶1
= {(𝑚2, 𝑐2, 𝑐1)|(∃(𝑚1, 𝑐1), (𝑚2, 𝑐2) ∈ 𝑅𝑀𝐶) ^ 𝑐1 ≠ 𝑐2^ (𝑚2, 𝑐2, 𝑚1, 𝑐1) ∈ 𝐼𝑉}     (5) 

Where 

C: set of classes in a systems. 

M: set of methods in a system (as identified in each class in the system). 

RMC: set of all methods that are defined in a class: 𝑅𝑀𝐶 ⊆ 𝑀 × 𝐶. 

IV: set of all possible method invocations in the system:  𝐼𝑉 ⊆ 𝑀 × 𝐶 × 𝑀 × 𝐶 . An 

invocation is characterized by the invoking class and the class that has been 

invoked.  
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6.2.2 Key Classes 

The notion of a Key Class is introduced in this study as a new production code 

property to be measured and its relationship to class testability investigated.  

OO programs are formed around groups of classes that interact with each other. In 

typical software development, the number of classes increases as software systems 

and programs grow in size. To analyse and understand a software program, how 

it works, its potential for decay and its need for repair, it is important to know 

where to start and which aspects should be given priority. From a program 

comprehension and software maintenance perspective, understanding the roles of 

classes and their relative importance in a system is essential. In this respect, there 

are classes that could have more influence and play more prominent roles in the 

program design and architecture than others. In this thesis this group of classes is 

referred to as ‘Key Classes’. We define a Key Class as a class that is executed 

frequently in the typical use profile of a system. Identifying these classes should 

inform more effective planning. One of the potential uses of these classes is in 

prioritising testing activities – quality assurance personnel and software testers 

could usefully prioritise their work by focusing on testing these Key Classes first, 

alongside consideration of other factors such as risk and criticality information. 

The concept of a key class has been used in a different way in previous work (e.g., 

(Tahvildar and Kontogiannis, 2004, Zaidman and Demeyer, 2008)). For example, 

in the work of Zaidman and Demeyer (2008), classification as a key class is based 

on the level of coupling of a class: key classes are those that are tightly coupled. In 

contrast, the definition presented in this work is based on the usage of these 

classes: Key Classes are those that have high execution frequency at runtime. The 

goal here is to examine whether Key Classes (i.e., those classes with higher 

frequency of execution) have a significant relationship with class testability. A 

new dynamic metric called Execution Frequency (EF) is proposed to identify and 
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locate those Key Classes (6). EF for class C counts the number of executions of 

methods within class C, excluding self-calls.  

Consider a class C, with methods m1, m2,..... mn. Let EF(mi) be the number of 

executions of method mi of class C, then: 

         EF(𝐶) =  ∑ EF(𝑚𝑖)

𝑛

𝑖=1

                                                                  (6) 

where n is the number of executed methods within class C 

6.3 Experimental Design 

As explained in Chapter 3 (Section 3.3), metric selection in this research has been 

determined in a ‘goal-oriented’ manner. Our goal in this experiment is to better 

understand what affects class testability, and the objective is to assess the presence 

and strength of the relationships between dynamic complexity attributes 

(represented here by Dynamic Coupling and Key Classes) on the one hand and 

class testability (measured in terms of unit test size) on the other. The specific 

purpose is to measure and ultimately predict class testability in OO systems. The 

viewpoint is as software engineers, and more specifically, testers, maintainers and 

quality engineers. The targeted environment is Java OSS.  

6.3.1 Research Questions and Hypotheses 

The design above reflects the contention that two factors of interest are, in 

principle, related to class testability: Dynamic Coupling and Key Classes. To 

evaluate this contention the following research question is investigated: 

RQ6.1: Is class complexity significantly correlated with class testability?  

The following two research hypotheses are investigated to answer RQ6.1:  

H6.1: Dynamic Coupling has a significant correlation with unit test size. 

H6.2: Key Classes have a significant correlation with unit test size. 

The corresponding null hypotheses are:  
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NH6.1: Dynamic Coupling has no significant correlation with unit test size. 

NH6.2: Key Classes have no significant correlation with unit test size 

6.3.2 Data Collection and Execution Scenarios  

As explained in Chapter 2, the collection of dynamic metrics data can be 

accomplished in various ways. The most common (and perhaps the most accurate) 

way is to collect the data by obtaining trace information using dynamic analysis 

techniques during software execution. Such an approach is taken in this study and 

is implemented by collecting metrics using the AspectJ framework, a well-

established Java implementation of AOP. Previous works (including those of 

Cazzola and Marchetto (2008), Adams et al. (2009) and Tahir et al. (2010)) have 

shown that AOP is an efficient and practical approach for the objective collection 

of dynamic metrics data, as it can enable full runtime automatic source-code 

instrumentation to be performed. For coupling metrics, we used the same AOP 

(AspectJ) rules explained in Section 5.2.3 to collect these metrics. For EF metric, we 

use the following AspectJ rules:  

pointcut capture_execution(): execution (* *..*(..)) // capture the executed classes 

pointcut exclude(): ! execution (system-under-examination) // excludes all classes executions 
that are not relevant to the program under examination such as the execution of default java 
and AspectJ compiler’s classes 

executedClass_count  = 0; // for each executed class 

before (): capture_execution() &&  exclude()  

{  

// capture the name of the executed class  

   executedClass = thisJoinPoint.getSignature().getDeclaringTypeName(); 

  // count the frequency of the execution (for each executed class) 

  executedClass_count = count + 1;  

} 

In this study four OSS are selected for examination: FindBugs, JabRef, 

Dependency Finder and MOEA. Information about the selection process of these 

systems is shown in Section 3.2.1. General characteristics of the selected systems 
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are provided in (Tables 3 and 5). As explained in Section 5.3, execution scenarios 

are designed to use key system features, based on the available documentation 

and user manuals for each system, as well as any prior knowledge of the systems 

held by those running the scenarios. Details of the execution scenario for each 

system are now explained. 

FindBugs: the tool is run to detect bugs in a large-scale OSS (i.e., JFreeChart) by 

analysing the source code and the associated JAR files. The web plugin 

was installed during the execution and data were uploaded to the 

FindBugs webserver. Results were stored using all three file formats 

supported. 

JabRef:    the tool is used to generate and store a list of references from an original 

research report. All reference types supported by the tool were 

included (e.g., journal articles, conference proceedings, reports, 

standards). Reports were then extracted using all available formats 

(including XML, SQL and CSV). References were managed using all the 

provided features. All additional plugins provided at the tool’s website 

were installed and used during this execution.  

Dependency Finder: this scenario involved using the tool to analyse the source 

code of four medium- to large-sized systems one after another, namely, 

FindBugs, JMeter, Ant and Colossus. Dependencies were computed and 

depicted (in dependency graphs) and OO metrics at all layers (i.e., 

packages, classes, features) were calculated. Analysis reports on all four 

systems were extracted and saved individually. 

MOEA: MOEA has a GUI diagnostic tool that provides access to a set of 6 

algorithms, 57 test problems and search operators. This tool was used to 

apply the different algorithms to the predefined problems. Each of these 

algorithms was applied at least once on each problem. Metrics and 

performance indicators for all results provided by those different 
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problems and algorithms were displayed. Statistical results of these 

multiple runs were displayed at the end of the analysis. 

6.4 Results 

On applying the Shapiro-Wilk test to the collected data for all four systems, the 

results confirmed that the data were not normally distributed (see Figures 19 and 

20). Therefore, it was decided to use Spearman’s ρ correlation test (Spearman’s ρ is 

explained in more detail in Chapter 3 (Section 3.2.2)). In this work Spearman’s ρ is 

calculated to assess the degree of association between each dynamic metric of the 

production code (i.e., IC, EC and EF) and the class testability metrics (defined in 

Section 3.3.2). 

 

Figure 19. Boxplots of TLOC in all four system. 
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The number of observation points37 considered in each test varies in accordance 

with the systems’ execution scenarios described in Section 6.3.2. The numbers of 

observations are: FindBugs (23), JabRef (26), Dependency Finder (80) and MOEA (76). 

The total number of unit tests for each of these systems is shown in Table 4 

(Chapter 3). 

Table 20 shows the Spearman’s ρ results for the two dynamic coupling metrics 

against the class testability metrics. Corresponding results for the EF metric 

against the test suite metrics are presented in Table 21. For all analyses, it is 

interpreted that there is a significant correlation between two variables if there is 

statistically significant evidence of such a relationship in at least three of the four 

systems examined. All significant values in Tables 20, 21 and 22 are marked with 

an asterisk (*) and all medium and high correlations are shown in Bold 

 

Figure 20. Boxplots of NTC in all four systems 

                                                 
37 The number of observation points here is represented by the number of the tested classes that were 

traversed in the execution (i.e., classes that have corresponding tests and that were captured during 

the execution by any of the dynamic metrics used).  
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As is evident in Table 20, EC is observed to have a significant medium to high 

correlation with the TLOC metric in all four systems. The correlation was found to 

be high in Dependency Finder and medium in FindBugs, JabRef and MOEA. A 

similar significant correlation between EC and NTC is evident in three of the four 

systems: FindBugs (high association), JabRef and Dependency Finder systems (both 

medium associations). In terms of relationships with the IC metric, a significant 

correlation between IC and TLOC is evident only in one system (high association 

in Dependency Finder). For the relationship between IC and NTC, a direct medium 

correlation was found only in one system i.e., Dependency Finder. A low inverse 

association between IC and NTC is evident for the MOEA system. 

 Spearman’s ρ correlations between dynamic coupling and class Table 20.

testability metrics 

Systems Metrics 

TLOC NTC 

ρ p-value ρ p-value 

FindBugs 

EC .43 .04* .58 .00* 

IC -.07 .77 -.09 .69 

JabRef 

EC .35 .04* .33 .05* 

IC .28 .09 .23 .13 

Dependency Finder 

EC .52 .00* .41 .00* 

IC .52 .00* .33 .00* 

MOEA 
EC .30 .01* .12 .16 

IC -.08 .24 -.24 .02* 

As shown in Table 21, positive significant associations were found between EF 

and the class testability metrics in three of the four systems (the exception being 

MOEA). A significant medium correlation between EF and TLOC was found in 

FindBugs, JabRef and Dependency Finder. Also, a medium correlation between EF and 

NTC was found in JabRef, and a low correlation is found in Dependency Finder.  
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  Spearman’s ρ correlations between EF and class testability metrics Table 21.

Systems Metrics 
TLOC NTC 

ρ p-value ρ p-value 

FindBugs EF .42 .05* .37 .09 

JabRef EF .44 .01* .38 .03* 

Dependency Finder EF .33 .00* .22 .03* 

MOEA EF .03 .41 -.10 .19 

 

 

 

Figure 21. Scatter plot of the relationship between EC and TLOC in Dependency 
Finder (top) and FindBugs (bottom) 
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Figure 22. Scatter plot of the relationship between EC and NTC in Dependency 
Finder (top) and FindBugs (bottom) 

Based on our analysis H6.1 is accepted and NH6.1 is rejected; that is, there is 

evidence of a significant association between dynamic coupling (either EC or IC) 

and the two class-testability metrics for all four systems. As EF is also found to be 

significantly associated with the testability metrics for three of the four systems 

considered, H6.2 is also accepted and NH6.2 is rejected on the balance of evidence. 

Scatter Plot graphs of the most significant (and highly associated) correlations are 

now depicted. Figure 21 shows Scatter Plots of the relationship between EC and 

TLOC in Dependency Finder and FindBugs. Figure 22 shows Scatter Plots of the 
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of the relationship between EF and TLOC in JabRef and FindBugs are shown in 

Figure 23. Note that these graphs are from the systems with the most significant 

(and highly associated) correlations (this also applies to Figures 21-24). Graphs for 

all other significant correlations are provided in Appendix D. As shown in these 

graphs, there are a number of outlier and leverage points that should be taken into 

consideration if a prediction model is developed based on these results.  

 

 

Figure 23. Scatter plot of the relationship between EF and TLOC in JabRef (top) 
and Dependency Finder (bottom) 
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performed to investigate this correlation. The results show that the two dynamic 

coupling metrics used here (i.e., IC and EC) are correlated with EF to varying degrees 

for the four systems investigated (with Scatter Plots shown in Figure 24). High direct 

and medium direct associations between EC and the EF metric are evident in three 

systems (the only exception is FindBugs). IC is correlated with EF in only two systems 

(high correlation in Dependency Finder and low in MOEA). 

 

 

Figure 24. Scatter plot of the relationship between EF and EC in JabRef (top) and 
Dependency Finder (bottom) 
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There is statistical evidence of a significant association between dynamic coupling 

(via either the EC or IC metric) and unit test size in all four OSS that were 

examined in the experiment. Coupled classes are ‘connected’ with other classes 

within the program. It seems plausible to assert that, when writing a unit test to 

test a tightly coupled class, a developer/tester will require adequate coverage of 

the code. This might mean a need to include all other dependent components 

related via method calls/invocations made from and to these classes. This would 

result in an increase in the size of the unit test, due to the extended connections 

that the unit test might need to cover. Additionally, Key Classes (i.e., frequently 

executed classes) is also found to be significantly associated with the testability 

metrics collected, for three of the four systems considered. This suggests that 

tightly coupled classes and classes that are executed frequently in genuine use 

scenarios for a program are more likely to have larger unit tests compared to other 

classes within a system.  

Thus, in revisiting the list of the investigated research questions, dynamic 

coupling has been found to have a significant (although not very strong) direct 

association with class testability (H6.1). A more significant correlation was found 

between key classes (i.e., frequently executed classes) and class testability metrics 

(H6.2). By answering RQ6.1, this suggests that dynamic coupling and key classes can 

act, to some extent, as initial complementary indicators of class testability. It is 

contended here that a tightly coupled or frequently executed class would need a 

large corresponding unit test (i.e., higher numbers of TLOC and NTC). Such 

results could be helpful for testers and maintainers as they provide empirical 

evidence regarding the relationship between two important dynamic properties 

and class testability. We recommend that similar dynamic information should be 

taken into consideration when developing unit tests or maintaining existing unit 

tests. While further testing is needed we would at this stage conclude that the two 
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dynamic properties examined should be used ahead of static properties as they 

provide a more comprehensive indication of class testability. 

An additional test of relevance in this study is to consider whether the dynamic 

metrics used are themselves related, since this may indicate that only a subset of 

these metrics should be collected. Therefore, a further correlation analysis was 

performed to investigate this. The results indicate that the two dynamic coupling 

metrics are correlated with EF (Table 22) to varying degrees for the four systems 

investigated. That is, Key Classes are also associated with dynamically coupled 

classes: a Key Class is most likely to be a tightly coupled class, and vice-versa. 

Which particular metrics should be used in a given analysis is an appropriate 

subject of future study.  

 Spearman’s ρ results for the correlation between coupling and EF Table 22.

dynamic metrics 

Systems Metrics 
IC EC 

ρ p-value ρ p-value 

FindBugs EF .32 .14 .31 .15 

JabRef EF .27 .09 .81 .00* 

Dependency Finder EF .56 .00* .51 .00* 

MOEA EF .29 .01* .40 .00* 

 

6.6 Threats to Validity 

A number of threats that could affect the validity of the results of this experiment 

are acknowledged in the following. Note that the nature of these threats is 

explained in more detail in Section 3.5.1.  

Ambiguity about the Direction of Causal Influence 

In this chapter, the directions and impacts of the correlation between individual 

variables were not investigated (directly). This thesis makes assumptions of 
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directionality (impact or cause-effect) in the correlations between different 

variables based on the theory and findings identified in previous research. 

However, it has not been considered if there are other factors that can cause the 

discovered correlations. Obtaining testing strategy information can be helpful to 

reduce this threat. Such information can help to identify which pieces of the code 

were developed first.  

Generalisation of Findings  

One of the possible threats to the validity of this study is the limited number of 

systems used in the analysis. The results discussed here are derived from the 

analysis of four open source systems. The consideration of a larger number of 

systems, perhaps also including closed-source or industrial based systems, could 

enable further evaluation of the associations revealed in this study and so lead to 

more generalizable conclusions. 

Selection of the Execution Scenarios 

One of the possible threats is the subjective selection of the execution scenarios. 

This threat and its mitigation have been discussed in more detail in Section 3.5.1.  

6.7 Summary 

In this chapter the presence and significance of associations between two runtime 

code properties, namely Dynamic Coupling and Key Classes, and the internal 

testability of classes has been investigated using four OSS. Class testability was 

measured using two size metrics, namely TLOC and NTC, while Dynamic 

Coupling and Key Classes were measured using dynamic software metrics 

collected via AOP. Correlations were analysed statistically using the Spearman’s ρ 

test to study the strength of the associations.  

The resulting evidence indicates that there is a significant association between 

Dynamic Coupling and internal class testability – Dynamic Coupling metrics, and 

especially EC, have a significant direct association with TLOC. A less significant 
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association was found between IC and NTC. Similarly, Key Classes are also shown 

to be significantly associated with the class testability metrics in two of the three 

systems examined.  

The following Chapter looks in more detail at the issue of code and test smells and 

their impact on both unit test and production classes.   
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 On the Quality of Unit Tests Chapter 7

The Impact of Test Smells  

7.1 Introduction 

Society’s growing reliance on software has led to increased research attention 

being directed to the study, and prevention, of software quality issues as indicated 

by smells. Researchers have been working for several years to provide empirical 

evidence of the impact of code smells on software artefacts and processes. In 

contrast, there has been relatively little attention given to the study of test smells 

and their impact on software artefacts and activities. Test smells, as with code 

smells, can arise as a result of poor design or implementation of a unit test. 

Researchers have used the term test smells to refer specifically to the group of code 

smells that affect only unit tests. The term was first defined by van Deursen et al. 

(2001) and was further explained by Meszaros (2006).  

The primary motivation of this particular experiment was to address the so far 

limited coverage given to test smells by providing an in-depth empirical 

investigation into the factors that may impact the presence of smells in a unit test, 

from a range of perspectives. Specifically, the experiment presented in this chapter 

investigates the relationship between test smell types (individually and 

collectively) and:  

1) the size of the unit test, 

2) the size and complexity of the associated production class,  

3) the co-occurrence of test and code smell types, and  

4)  the co-occurrence of test smells (i.e., how often the presence of a test smell 

type in a unit test implies the presence of another test smell type). 
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through nine research questions. This experiment is motivated by recent work in 

test and code smells which has suggested the need for more comprehensive 

studies to investigate the impact of smells on software systems (Zhang et al., 2011, 

Bavota et al., 2014).  

The experimental design is presented in the following section.  

7.2 Experimental Design 

The goal of this experiment is to investigate the relationships between test smells 

and the size, complexity and presence of code smells in classes. Note that these 

relationships are assessed at class-level (i.e., relationships between a unit test and 

its associated production class). The context of the work is unit tests and their 

associated production classes in OSS. The quality focus is to reduce the effort 

required in understanding and maintaining unit tests during software 

maintenance. The viewpoint of this work is from both researchers and 

practitioners who are seeking to understand the design and source code factors 

that may result in test smells in a unit test. 

7.2.1 Research Questions and Hypotheses 

The experiment presented in this chapter investigates a number of research 

questions that are related to test smells and/or class testability. The main aim of 

this chapter is to improve overall understanding of the relationships between test 

smells and software characteristics on the one hand, and between test smells and 

code smells on the other. In this experiment the relationships between 9 different 

test smells and 10 other code smells are therefore explored. Tables 23 and 24 

provide full descriptions of the test and code smells respectively that are 

considered in this experiment. These smells were selected because they are well-

defined in the literature, they have been considered in similar previous studies (so 

their descriptions are clear), and there were tools available (a mix of academic and 

commercial tools) to detect these smells. The possible impact of these test and code 
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smells, and suggested refactoring techniques to eliminate their impact, are 

explained in detail in van Deursen et al. (2001) and Fowler et al. (1999)  

respectively.    

 List of test smells and the detection tools used Table 23.

Test Smell Description Tool 

Assertion-free A test case without assertion PMD 

Assertion Roulette Test method having more than one assertion PMD 

Sensitive Equality The toString method is used in assert statements (Bavota et al., 2014) 

Mystery Guest A test case that uses external resources. (Bavota et al., 2014) 

Indirect Test A test allocates resources also used by others  (Bavota et al., 2014) 

General Fixture 
A test fixture is too general and the test methods access only 

part of it 

(Bavota et al., 2014) 

Duplicated Code 
Sets of test commands that contain the same invocation and 

data access sequence.  

CodePro 

Eager Test 
A unit test  has at least one method that uses more than one 

method of the tested class 

(Bavota et al., 2014) 

Lazy Test 
Several test methods check a method of the tested class using 

the same fixture 

(Bavota et al., 2014) 

 

Figure 25. Overview of research questions and the link between them 
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 List of code smells and the detection tools used Table 24.

Code Smell Description Tool  

Feature Envy 
A method making too many invocations to methods of another 

class 
JDeodorant 

Large Class 
A class with at least one large method (in terms of LOC) 

compared to the other methods within the class  
CodePro 

Type Checking A complicated conditional statement within a class  JDeodorant 

Brain Class Too complex class that takes too much responsibilities  JDeodorant 

Duplicated Code 
Fragments of source code that appear in more than one place in 

the program 
CodePro 

Schizophrenic 

Class 
A class with a large and non-cohesive interface InCode 

Data Class 
A class with an interface that exposes data members, instead of 

providing any substantial functionality 
InCode 

Data Clumps 
Large groups of parameters that appear together in the signature 

of many operations 
InCode 

Tradition Breaker 
A class that breaks the interface inherited from a base class or an 

interface 
InCode 

Message Chain 
An operation that accesses a sequence of data exposer members 

from other classes to hop between multiple objects 
InCode 

Table 25 lists all of the research questions and hypotheses investigated in this 

chapter, and Figure 25 provides a high-level overview of the relationships 

between the research questions. The first point of investigation is whether the size 

of a unit test has an impact on the number of smell types (both test smells [RQ7.1] 

and code smells [RQ7.2]). The first question specifically considers whether the 

number of test smell types increases with the size of the unit test (RQ7.1). The 

recent work of Bavota et al. (2014) studied the relationships between the number 

of test smells in a system and several system size measures including LOC and 

NOC, number of unit tests and the size of the development team in a project. In 
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contrast, the focus in this thesis is on relationships at the class-level rather than the 

system level (i.e., relationships between smells in individual unit tests and their 

associated production classes). This should enable greater precision, as it enables 

us to investigate the relationship between artefact size and test smells at a smaller, 

more fine-grained scale (via the relationship between unit tests and production 

classes). As explained in Section 3.3.2, the size of a unit test was measured here 

using the two testability metrics TLOC and NTC. For RQ7.1, the following 

hypothesis H7.1 is tested: there is a significant positive relationship between the size of a 

unit test and the number of test smell types in that unit test.  

We then explore the relationship between the number of code smell types in a 

production class and the size of the corresponding unit test. Recently Sabane et al. 

(2013) found that classes that contain code smells require a higher number of test 

cases compared to classes without smells. This experiment addresses a similar 

research question: is the number of code smell types in the production class 

related to the size of the corresponding unit test (measured using NTC and TLOC) 

(RQ7.2). However, while Sabane et al. (2013) used the MaDUM technique, which 

estimates the number of test cases required to test each production class, this work 

uses the actual number of test cases in the unit test.  It is contended that using the 

actual number of test cases is likely to better reflect the true development practice 

in OSS. We test the following hypothesis for RQ7.2- H7.2: there is a significant positive 

relationship between the number of code smell types present in a production class and the 

size of the unit test. 

Another aim of this work is to investigate whether static properties of a 

production class (i.e., size and complexity) have an impact on the number of test 

smells present in the corresponding unit test. This research question is motivated 

by the previous findings which explain how software size is  related to many other 

software metrics (i.e., it is a confounding factor) (El Emam et al., 2001, Zhou et al., 

2014). The following research question is investigated: is the number of test smell 
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types in a unit test related to the size of the corresponding production class? 

(RQ7.3). We investigate the following hypothesis for this research question H7.3: 

there is a significant positive relationship between the number of test smell types present in 

a unit test and the size of the corresponding production class.  

 Summary of the research questions and hypotheses Table 25.

Research Question Hypothesis 

RQ7.1 Does the number of test smell types 

increase with the size of the unit test? 

H7.1 There is a significant positive relationship 

between the size of a unit test and the number of 

test smell types in that unit test. 

RQ7.2 Is the number of code smell types in the 

production class related to the size of the 

corresponding unit test? 

H7.2 There is a significant positive relationship 

between the size of the unit test and the number 

of code smell types in the associated production 

class. 

RQ7.3 Is the number of test smell types in a unit 

test related to the size of the 

corresponding production class? 

H7.3 There is a significant positive relationship 

between the number of test smell types present 

in a unit test and the size of the corresponding 

production class. 

RQ7.4 Is the number of test smell types in a unit 

test related to the complexity of the 

corresponding production class? 

H7.4 There is a significant positive relationship 

between the number of test smell types present 

in a unit test and the complexity of the 

corresponding production class.  

RQ7.5 Does the number of test smell types in 

the unit test increase with the number of 

code smell types in the corresponding 

production class?  

H7.5 There is a significant positive relationship 

between the number of test smell types in a unit 

test and the number of code smell types in the 

corresponding production class. 

RQ7.6 Does the size of the unit test vary among 

unit tests exhibiting different kinds of test 

smell types? 

H7.6 There is a significant difference in the size of 

unit tests that contain different kinds of test 

smell types. 

RQ7.7 Does the size of the unit test vary among 

classes exhibiting different kinds of code 

smell types? 

H7.7 There is a significant difference in the size of 

unit tests that contain different kinds of code 

smells in the associated production class. 

RQ7.8 Do individual test smell types in a unit 

test co-occur with particular code smells 

in the corresponding production class? 

H7.8 There is a significant relationship between the 

co-occurrence of individual test smell types and 

individual code smell types 

RQ7.9 Do individual test smell types co-occur 

with each other in the same unit test? 

H7.9 There is a significant relationship between the 

co-occurrence of individual test smell types. 

As explained previously in Section 2.4.1, prior research (such as Bruntink and van 

Deursen (2006)) has shown how the complexity of a class can impact its testability. 
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We also explained in Chapter 6 how dynamic complexity measures of a class are 

correlated with its testability. Given that such relationships exist between class 

complexity and class testability, it is equally important to see if such relationships 

impact the presence of test smells in the unit tests. To address this, we investigate 

the following research question: is the number of test smell types in a unit test 

related to the complexity of the corresponding production class? (RQ7.4). Class 

complexity is measured here based on the average cyclomatic complexity per 

class. For RQ7.4, the following hypotheses are tested – H7.4: there is a significant 

positive relationship between the number of test smell types present in a unit test and the 

complexity of the corresponding production class. 

This experiment next considers whether the total number of test smell types in a 

unit test is correlated with the total number of code smell types in its 

corresponding production class. In particular, the work investigates the following 

question: does the number of test smell types in the unit test increase with the 

number of code smell types in the corresponding production class? (RQ7.5). For this 

research question, the following hypothesis is tested H7.5: there is a significant 

positive relationship between the number of test smell types in a unit test and the total 

number of code smell types in the corresponding production class. 

The study then looks deeper into the relationship between smells (both test and 

code) and unit test size by inspecting this relationship in regard to all individual 

smells. The conjecture is that some smells are more associated with the size of the 

unit test than others, given the nature of some of the smells as they appear to be 

influenced by size. In particular, we investigate how the size varies among unit 

tests that contain different kinds of test smells, by addressing the following 

question: does the size of the unit test vary among unit tests exhibiting different 

kinds of test smell types? (RQ7.6). We then look at the equivalent relationship 

between code smells and the size of the unit test by addressing the following 

question: Does the size of the unit test vary among classes exhibiting different 
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kinds of code smell types? (RQ7.7). For RQ7.6 and RQ7.7, we investigate the following 

hypotheses respectively- H7.6: there is a significant difference in the size of unit tests 

that contain different kinds of test smell types, and H7.7: there is a significant difference in 

the size of unit tests that contain different kinds of code smell types in the associated 

production class. 

The final aspect of this experiment examines the co-occurrence (or coexistence) of 

test and code smell types. The intent here is to check if any of the test smell types 

co-occur with particular code smell types. The experiment considers all individual 

test smell types and their correlation with individual code smell types: do 

individual test smell types in a unit test co-occur with particular code smell types 

in the corresponding production class? (RQ7.8), expressed in the following 

hypothesis, H7.8: there is a significant relationship between the co-occurrence of individual 

test smell types and individual code smell types.  

Similarly, this experiment investigates the co-occurrence (coexistence) of test smell 

types among themselves. The following research question is examined: do 

individual test smell types co-occur with each other in the same unit test? (RQ7.9) 

which is expressed in the following hypothesis, H7.9: there is a significant relationship 

between the co-occurrence of individual test smell types. For both questions, we 

investigate a relationship between two binary variables. 

7.2.2 Data Collection  

In total, eight different OSS are selected for this experiment: JFreeChart, FindBugs, 

JMeter, JabRef, Apache Commons Lang, Dependency Finder, MOEA and 

Barcode4J. The selection process of these systems is explained in Section 3.2.1 and 

their general characteristics are shown in Tables 3, 4 and 5. These systems form 

around 635 KLOC and contain in total 4854 production classes and 1280 unit tests. 

Across the eight systems examined a total of 1100 unit tests are analysed in this 

experiment. (Note that we excluded all non-valid unit tests (180 unit tests in total) 

e.g., a unit test that does not directly test one single production class.) Boxplots of 
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the numbers of test and code smell types respectively in all eight systems are 

shown in Figures 26 and 27.  

 

Figure 26. Boxplots of the number of test smell types per unit test in all systems 

 

Figure 27. Boxplots of the number of code smell types per class in all systems 

H7.1- H7.5 are tested using the non-parametric Spearman's rho (ρ) rank correlation 

coefficient test (as per the detailed description of all the statistical tests used in this 

thesis provided in Section 3.2.2). H7.6 and H7.7 are examined using the Mann-

Whitney U test. We also measure the effect size (ez) for this non-parametric data (see 
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Section 3.2.2). For RQ7.8 and RQ7.9, the relationships between two binary variables 

are investigated, therefore H7.8 and H7.9 are tested using the Phi (φ) Correlation 

Coefficient test. 

All smells (both test and code) are captured using the tools shown in Tables 23 and 

22. Only the Feature Envy code smell was detected using two tools. For this smell, 

the results from both JDeodorant and InCode were aggregated.  We flagged a class 

as having Feature Envy if it is detected by either tool.  We initially did this because 

we were not sure of the rules JDeodorant uses to identify Feature Envy. However, 

we found that over 90% of the reported Feature Envy instances were detected by 

both tools.  

To improve the accuracy of the smells detected, a verification process was carried 

out through a manual inspection process. This was followed by cross-validation of 

some of the results with those obtained for the same systems considered in the 

prior work of Bavota et al. (2014) using the authors’ publically available data38 (for 

the 6 smells detected by the tool as shown in Table 23, i.e., Sensitive Equality, 

Mystery Guest, Indirect Test, General Fixture, Eager Test and Lazy Test). The cross-

validation was conducted manually on the following systems39: FindBugs, JabRef, 

Dependency Finder and Barcode4J. In total, 224 unit tests were cross-validated, 

which corresponds to approximately 21% of the total number of the studied unit 

tests. Table 26 shows details of the total number smells in the cross-validated unit 

tests. These unit tests contain 143 instances of smells in total (and note that this 

only includes test smells detected by the tool). The cross-validation highlighted 

                                                 
38 The results were obtained from the same tool. However, the authors conducted a manual inspection 

on all detected smells before performing any analysis on the obtained results. 

39 Note that the authors did not analyze all unit tests within the examined systems. For example, this 

work examined 220 unit tests for Dependency Finder, whereas Bavota et al. (2014) provided results 

for only 120 unit tests. The reason for reporting smells from only a selected number of unit tests was 

not explained in the original work of Bavota et al. (2014). 
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approximately 12% false positive smells. All false positive results were rechecked 

and revalidated manually, before they were removed 

 Cross-validation results Table 26.

System 
#Analysed 
unit tests 

#Cross-validated 
unit tests 

Total number of 
false positive 

FindBugs 38 26 4 

JabRef 56 49 6 

Dependency 

Finder 
220 118 10 

Barcode4J 31 31 6 

The relative proportions of each individual test and code smell in all eight systems 

are shown in Figures 28 and 29 respectively, and the corresponding numbers of 

test and code smells are presented in Tables 27 and 28. Figure 30 shows the 

proportion of unit tests and production classes that contain at least one smell 

across all eight systems. The following section presents the results of the 

experiment conducted in this chapter. 

 

Figure 28. Distribution of test smell types in all eight examined systems 
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Figure 29. Distribution of code smell types in all eight examined systems 

 

Figure 30. Percentage of unit tests and production classes that contain smells 
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of the eight systems (see Figure 28). Its occurrence in JFreeChart was an even 

higher exception, as Assertion Roulette accounts for almost 71% of the test smells 

captured in that system. The Duplicated Code test smell was the second most 

commonly distributed smell in all eight systems. On the other hand, Indirect Test 

and Lazy Test appear to be the smells that are least likely to occur. Lazy Test and 

Indirect Test both form less than 5% of the total number of smells in all studied 

systems. For code smells, Duplicated Code and Brain Class appear to be the most 

commonly occurring smells in all eight systems (Figure 29), while Message Chain 

and Tradition Breaker are the least widely distributed code smells.  

 Number of unit tests that contain different test smells Table 27.

Test 

Smell 
JFreeChart FindBugs JMeter 

Commons 

Lang 
JabRef 

Dependency 

Finder 
MOEA 

Barco-

de4J 

Assertion-

free 
9 2 19 31 5 15 8 4 

Assertion 

Roulette 
347 21 63 85 51 172 140 25 

Sensitive 

Equality 
6 3 14 58 5 11 2 16 

Mystery 

Test 
0 8 7 5 10 29 23 0 

Indirect 

Test 
0 2 7 2 1 22 3 2 

General 

Fixture 
28 11 23 16 9 112 27 0 

Duplicated 

Code 
59 5 35 36 17 85 66 7 

Eager Test 33 3 11 14 8 30 19 10 

Lazy Test 9 2 4 5 2 0 4 1 

Total 491 57 183 252 108 476 292 65 

In the analyses reported in the remainder of this section we interpreted there to be 

a significant relationship between two variables if there is statistically significant 

evidence of such a relationship in at least five of the eight examined systems (and 

where details of the definition of statistical significance were explained in Chapter 



  

  

   136 

 

3, Section 3.2.2). The discussion and the consideration of the implications of the 

findings follow later in Section 7.4.  

The presentation of the results related to the RQs are divided into three parts: the 

first part shows the results related to RQ7.1 through RQ7.5, which investigate a 

number of bivariate correlations between smell types and software artefacts 

characteristics of size and complexity. The second part presents all results related 

to RQ7.6 and RQ7.7, which look at the relationship between individual smells and 

unit test size. The third part shows the results related to RQ7.8 and RQ7.9, which 

investigate the co-occurrence of test and code smells. 

 Number of production classes that contain different code smells Table 28.

Code 

Smell 
JFreeChart FindBugs JMeter 

Commons 

Lang 
JabRef 

Dependency 

Finder 
MOEA 

Barco-

de4J 

Feature 

Envy 
76 3 15 2 1 20 18 2 

Large Class 54 6 13 33 4 29 20 6 

Type 

Checking 
5 6 4 2 0 6 9 0 

Brain Class 63 23 8 33 9 36 29 7 

Duplicated 

Code 
122 17 23 40 16 33 48 15 

Schizophre-

nic Class 
3 1 0 1 0 6 3 0 

Data Class 10 0 1 3 0 4 4 0 

Data 

Clumps 
59 0 0 2 2 0 3 1 

Tradition 

Breaker 
0 1 1 0 0 1 0 0 

Message 

Chain 
0 0 1 0 0 0 0 0 

Total 392 57 66 116 32 135 134 31 

Relationships between smell types and software artefacts 

For RQ7.1, Table 29 reports the results of the correlation analyses between size and 

the number of test smell types in a unit test. Results of the correlation analyses 

between size and the number of code smell types in the corresponding production 
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classes are shown in Table 30 (RQ7.2). Note that all medium and strong correlation 

coefficient values in Tables 29 through 32 are reported in Bold40. 

  Spearman’s ρ correlation between test smell types and unit tests’ size Table 29.

metrics 

 Number of Test Smell Types 

Metrics JFreeChart FindBugs JMeter JabRef 
Commons 

Lang 

Dependency 

Finder 
MOEA 

Barco-

de4J 

TLOC 
ρ .33 .59 .74 .72 .65 .63 .54 .66 

p .00 .00 .00 .00 .00 .00 .00 .00 

NTC 
ρ .26 .48 .71 .73 .57 .49 .26 .65 

p .00 .00 .00 .00 .00 .00 .00 .00 

For the relationship between test smell types and size (RQ7.1, Table 29), it was 

found that TLOC in a unit test has a significant positive correlation with the 

number of test smell types present in a unit test in all eight systems studied. The 

relationship between TLOC and the number of test smell types present in a unit 

test was typically high (JFreeChart was the only exception here, where the 

strength of the relationship is medium). In addition, NTC was found to have a 

significant correlation with the number of test smell types in a unit test. However, 

the correlation between NTC and the number of test smell types is weaker than 

the correlation between TLOC and the number of test smell types in a unit test. 

Evidence indicated a high correlation between NTC and the number of test smell 

types in four systems (JMeter, JabRef, Commons Lang and Barcode4J), a medium 

correlation in FindBugs and Dependency Finder, and a low correlation in 

JFreeChart and MOEA. Therefore, H7.1 is accepted: there is a significant positive 

relationship between the size of a unit test and the number of test smell types in that unit 

test. The larger the unit test, the higher the number of test smell types in the unit 

tests.   

                                                 
40  Note that most of the non-bold entries in Tables 7-10 are still significant but their correlations are 

rather weak.    
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 Spearman’s ρ correlation between code smell types and unit tests’ size metrics Table 30.

 Number of Code Smell Types 

Metrics 
JFreeChart FindBugs JMeter JabRef 

Commons 

Lang 

Dependency 

Finder 
MOEA 

Barco-

de4J 

TLOC 
ρ .26 .13 .27 .45 .50 .37 .36 .53 

p .00 .22 .02 .00 .00 .00 .00 .00 

NTC 
ρ .18 .11 .28 .44 .40 .25 .24 .32 

p .00 .25 .02 .00 .00 .00 .00 .08 

In regard to RQ7.2, the degree of association between the number of code smell 

types in a production class and the size of its corresponding unit test was 

investigated. As shown in Table 30, it was found that there was a significant 

correlation between the number of code smell types in a production class and 

TLOC in its corresponding unit test. High correlations between the number of 

code smell types and TLOC were found in Apache Commons Lang and Barcode4J. 

Medium correlations were found in JabRef, Dependency Finder and MOEA, and a 

low correlation was found in JFreeChart and JMeter. Overall the correlation 

between the number of code smell types in a production class and TLOC was 

found to be generally stronger than the correlation between code smells and NTC. 

For the latter relationship, it was found that there were medium correlations in 

JabRef and Apache Commons Lang, whereas low correlations were noted in four 

systems (i.e., JFreeChart, JMeter, Dependency Finder and MOEA). No significant 

correlations for NTC were found in FindBugs and Barcode4J. Therefore, H7.2 is also 

accepted: there is a significant positive relationship between the size of the unit test and 

the number of code smell types in the associated production class. That is, the higher the 

number of code smell types in a production class, the larger the corresponding 

unit test. 

Table 31 reports all of the statistically significant correlations between the number 

of test smell types and the size and complexity of the corresponding production 

code (RQ7.3 and RQ7.4). Note that no significant correlations were found in 
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FindBugs, while JMeter showed a significant correlation only with LOC. The size 

of the production class was found to be positively correlated with the number of 

test smell types in its corresponding unit test (RQ7.3). LOC was also shown to have 

a high positive correlation with the number of test smell types in JFreeChart, 

JabRef, Commons Lang and Barcode4J, a medium correlation in Dependency 

Finder and MOEA, and a low correlation in JMeter. Number of Methods (NOM) 

per class was also shown to be correlated with the number of test smell types in 

the corresponding unit test in six systems (although this correlation was slightly 

weaker than the correlation between the number of test smell types and LOC). The 

strength of the correlation was high in JabRef, Commons Lang and Barcode4J, 

medium in JFreeChart and low in Dependency Finder and MOEA. We therefore 

accept H7.3: there is a significant positive relationship between the number of test smell 

types present in a unit test and the size of the corresponding production class. That is, the 

number of code smell types in a unit test increases when the size of the production 

class increases, or vice versa. 

  Spearman’s ρ correlation between test smell types and size and complexity of the Table 31.

corresponding production class 

  Number of Test Smell Types 

Metrics 
JFreeChart FindBugs JMeter JabRef 

Commons 

Lang 

Dependency 

Finder 
MOEA 

Barco-

de4J 

LOC 
ρ .51 -.11 .26 .58 .56 .35 .30 .54 

p .00 .26 .02 .00 .00 .00 .00 .00 

NOM 
ρ .44 .03 .18 .68 .50 .25 .28 .50 

p .00 .42 .12 .00 .00 .00 .00 .00 

CC 
ρ .24 -.25 .20 .22 .19 .38 .24 .02 

p .00 .07 .09 .05 .02 .00 .00 .94 

Turning to RQ7.4, class complexity (which is represented here by the CC metric) 

was found to be significantly correlated with the number of test smell types  in the 

corresponding unit test (Table 31, last row), in five of the eight systems examined. 
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However, although the correlations were found to be significant, the strength of 

the correlations were not high: a medium correlation between the number of test 

smell types and CC was found in Dependency Finder, whereas a low correlation 

was found in JFreeChart, JabRef, Commons Lang and MOEA (and we did not find 

any significant correlations in FindBugs, JMeter and Barcode4J). On balance H7.4 is 

therefore also accepted: there is a significant positive relationship between the number of 

test smell types present in a unit test and the complexity of the corresponding production 

class. More complex classes are generally more likely to have higher numbers of 

test smell types in their associated unit tests, and vice versa.  

 Spearman’s ρ correlation between test and code smell types Table 32.

Number of Test Smell Types 

  JFreeChart FindBugs JMeter JabRef 
Commons 

Lang 

Dependency 

Finder 
MOEA 

Barco-

de4J 

Number of 

Code Smell 

Types 

ρ .51 .17 .37 .46 .50 .22 .39 .53 

p .00 .15 .00 .00 .00 .00 .00 .00 

One of the most interesting findings that emerged from the analysis was the 

significant positive correlation between the number of test smell types in a unit 

test and the number of code smell types in the corresponding production class 

(RQ7.5). As shown in Table 32, there are significantly high correlations between the 

number of test and code smell types in three systems (i.e. JFreeChart, Commons 

Lang and Barcode4J), medium correlations in three further systems (i.e., JabRef, 

JMeter and MOEA) and a low correlation in Dependency Finder. Again, no 

significant correlation was found in FindBugs.  

We therefore accept the hypothesis for this question, H7.5: there is a significant 

positive relationship between the total number of test smell types in a unit test and the 

total number of code smell types in the corresponding production class. Whenever the 

number of code smell types in a production class increases, the number of test 

smell types in the associated unit tests also increases, and vice versa. 
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   Mann-Whitney U test results with effect size for the relationship between Table 33.

test size metrics and test smell types 

Smells Metric JFreeChart FindBugs JMeter JabRef 
Commo-

ns Lang 

Dependenc-

y Finder 
MOEA 

Barco-

de4J 

Assertion-

free 

TLOC p .39 1.00 .15 1.00 .13 .66 .68 .68 

ez         

NTC p  1.00 .98 .06 .48 .14 .29 .21 1.00 

ez         

Assertion 

Roulette 

TLOC p  .42 1.00 .01* .38 .00* .01* .00* .52 

ez   0.4  0.3 0.2 0.2  

NTC p  .50 .92 .01* 1.00 .02* .31 .78 .35 

ez   0.4  0.3    

Sensitive 

Equality 

TLOC p  1.00 .675 .05* .02* .14 1.00 .68 .10 

ez   0.3 0.4     

NTC p  .76 1.00 .02* .02* .13 .86 .67 .12 

 ez   0.3 0.4     

Mystery 

Guest 

TLOC p  ---- .33 .62 .26 .04* .04* .00* ----- 

ez     0.2 0.2 0.3  

NTC p  ---- 1.00 .60 .46 .18 .00* .02* ----- 

ez      0.2 0.2  

Indirect 

Test 

TLOC p  ---- 1.00 .16 1.00 .69 .01* .10 1.00 

ez      0.2   

NTC p  ---- .63 .24 1.00 .89 .25 .53 .64 

ez         

General 

Fixture 

TLOC p  .91 .02* .00* .08 .04* .00* .00* ----- 

ez ----- 0.5 0.5  .2 0.3 .4  

NTC p  .25 .01* .00* .32 ----- .02* .00* ----- 

ez  0.5 0.5   0.2 0.3  

Eager Test 

TLOC p  .00* .29 .60 .05* .00* .56 .62 .23 

ez 0.2   0.4 0.4    

NTC p  .01* 1.00 .48 .01* .00* .21 1.00 .96 

ez 0.2   0.5 0.3    

Lazy Test 

TLOC p  1.00 .90 .84 .82 .17 ---- .58 1.00 

ez         

NTC p  1.00 .88 .42 .83 .19 ---- 1.00 .91 

ez         

Duplicat-

ed Code 

TLOC p  .00* .01* .00* .00* .00* .00* .00* .01* 

ez 0.4 0.5 0.6 0.5 0.4 0.6 0.3 0.6 

NTC p  .00* .04* .00* .00* .00* .00* .72 .00* 

ez 0.3 0.5 0.5 0.5 0.3 0.5  0.7 
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Relationships between individual smell types and unit tests size 

The next component of the experiment investigates which particular smells are 

more closely associated with unit test size (RQ7.6 and RQ7.7). Tables 33 and 34 

report the values of the Mann-Whitney U tests and effect size for the relationships 

between the test’s size metrics and test and code smell types, respectively. All 

significant values are marked with an asterisk (*) and all medium and high effect 

sizes are shown in Bold. Results that are significant for five or more of the eight 

systems are highlighted.  

As shown in Table 33, tests’ Duplicated Code smell type was found to have a 

significant correlation with TLOC in all of the systems studied, and with NTC in 

seven of the eight systems. Among those, five systems are shown to have a high 

effect size with TLOC and NTC, in FindBugs, JMeter, JabRef, Dependency Finder 

and Barcode4J, and medium effect size in JFreeChart, Commons Lang and 

MOEA41. General Fixture is another smell type that was found to be closely 

associated with size. General Fixture and TLOC are significantly correlated in five 

systems (with high effect size in FindBugs and JMeter, medium effect size in 

Dependency Finder and MOEA, and low effect size in Commons Lang). The 

relationship between General Fixture and NTC was evident only in four of the 

eight systems. On the balance of evidence, H7.6 is accepted for two smell types: 

General Fixture and Duplicated Code; that is, there is a significant difference in the size of 

unit tests that contain the General Fixture or Duplicated Code smell types and unit tests 

that do not contain these smell types.  

It should be noted here that there was no expectation of finding any statistically 

significant results for the Message Chain and Tradition Breaker code smells because 

of the very limited occurrence of these smells (see Figure 29 and Table 28). Message 

Chain appeared only once in JMeter, while Tradition Breaker appeared only once in 

                                                 
41 Note that Duplicated Code was not significantly correlated with NTC in MOEA.  
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three systems i.e., FindBugs, JMeter and Dependency Finder. Therefore, no 

correlation analysis was performed on these individual smells, and they are 

excluded from any further analysis. 

 Mann-Whitney U test results with effect size for the relationship between test Table 34.
size metrics and code smell types 

Smells Metric  JFreeChart FindBugs JMeter JabRef 
Commons 

Lang 

Dependen-

cy Finder 
MOEA 

Barco-

de4J 

Feature 

Envy 

TLOC p  .00* 1.00 .35 .12 .60 .05* .12 .75 

ez 0.2     0.2   

NTC p  .56 1.00 .35 .32 .35 .68 .86 .68 

ez         

Large Class 

TLOC p  .19 1.00 .54 .16 .00* .48 .06 .39 

ez     0.4    

NTC p  .55 1.00 .70 .16 .00* .58 .27 .49 

ez     0.4    

Type 

Checking  

TLOC p  .30 1.00 .64 ---- 1.00 .08 .02* ---- 

ez       0.2  

NTC p  1.00 1.00 .91 ---- .67 .75 .31 ---- 

 ez         

Brain Class 

TLOC p  .02* .42 .05* .08 .02* .00* .00* .01* 

ez 0.1  0.3  0.3 0.3 0.3 0.6 

NTC p  .95 1.00 .05* .12 .14 .07 .00* .13 

ez   0.3    0.3  

Duplicated 

Code 

TLOC p  .00* .80 1.00 .01* .00* .03* .28 .14 

ez 0.3   0.4 0.4 0.2   

NTC p  .00* 1.00 1.00 .01* .01* .13 1.00 .38 

ez 0.2   0.4 0.3    

Schizophre

nic Class 

TLOC p  .27 .63 ---- ---- 1.00 .99 .39 ---- 

ez         

NTC p  .51 1.00 ---- ---- 1.00 .75 .78 ---- 

ez         

Data Class 

TLOC p  .02* ---- 1.00 ---- 1.00 .87 .53 ---- 

ez 0.2        

NTC p  .00* ---- 1.00 ---- 1.00 .40 .48 ---- 

ez 0.2        

Data 

Clumps  

TLOC p  .00* ---- ---- .18 0.91 ---- .61 .44 

ez 0.2        

NTC p  .00* ---- ---- .12 1.00 ---- .91 .68 

ez 0.3        
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Table 34 reports the results of the Mann-Whitney U tests and effect size for the 

correlations between size metrics and code smell types (RQ7.7). These results 

indicate that the Brain Class smell type was more closely associated with unit test 

size metrics than other code smell types. The relationship between Brain Class and 

TLOC was evident in Barcode4J (with high effect size), JMeter, Commons Lang, 

Dependency Finder and MOEA (medium effect size) and in JFreeChart (low effect 

size). In contrast, Brain Class is significantly correlated with NTC in only two of the 

eight systems (with medium effect size in Dependency Finder and MOEA). 

Duplicated Code was found to be significantly associated with TLOC in four 

systems: JFreeChart, JabRef and Commons Lang (with medium effect size), and 

Dependency Finder (low effect size). Given these results, H7.7 is accepted only for 

Brain Class smell type: There is a significant difference in the size of unit tests that 

contain Brain Class code smell type in the associated production class and those that do 

not contain this smell. 

Smells co-occurrence 

We now turn our attention to examining the co-occurrence of code and test smell 

types (RQ7.8). Table 35 presents all significant correlations between code and test 

smell types across all eight studied systems. All of the reported correlations here 

are positive in direction. As explained earlier in this section, we employed a 

threshold of 5 or more systems to indicate the presence of a significant correlation 

between any two investigated variables. However, we also report significant 

correlation values that fall below this threshold (i.e., that occur at least in three of 

the eight systems) mainly to provide a general view of other potentially important 

correlations that appear in all systems (and this approach also applies to Table 36). 

Full results of the correlation analysis between test and code smell types for all 

eight systems are provided in Appendix E. 
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  Results of the phi (φ) correlation coefficient analysis between test and code smells  Table 35.

(Shading denotes finding significant co-occurrence in 4 or more systems. Red bold is used to 

highlight High (H) strength correlations, Blue italic to highlight Medium (M) and Green to 

highlight Low (L) correlations) 

Test 

Smells/ 

Code 

Smells 

Assertion-free 
General 

Fixture 
Eager Test Lazy Test 

Duplicated 

Code 

Feature 

Envy 

(M) JabRef  

φ= 0.43, p = 0.00 

(L) JFreeChart  

φ=0.22 , p =0.00 

(L) Commons Lang 

φ= 0.22, p = 0.01 

  

(M) JFreeChart 

φ=0.35, p= 0.00 

(M) JabRef  

φ= 0.33, p= 0.01 

(M) MOEA 

(φ=0.37, p= 0.00  

(M) Barcode4J  

φ= 0.38, p= 0.03 

(H) Barcode4J 

φ=0.70, p= 0.00  

(M) JMeter  

φ=0.33, p= 0.01 

(L) JFreeChart 

φ=0.14, p= 0.01     

 

Large 

Class 
  

(M) JMeter 

φ= 0.31, p= 0.01 

(M) Commons Lang 

φ= 0.31, p= 0.00 

(M) MOEA 

(φ= 0.35, p= 0.00 

(L) JFreeChart 

φ=0.27 , p= 0.00 

(L) JabRef  

φ=0 .28, p=0.04 

  

Brain 

Class 

(L) JFreeChart  

φ=0.21, p= 0.00 

(L) Commons Lang 

φ= 0.20, p= 0.03 

(L) MOEA  

φ= 0.28, p= 0.00                   

(M) JFreeChart 

φ=0.41, p= 0.00 

(M) JMeter 

φ=0.33, p= 0.00    

(L) MOEA  

φ=0.21, p= 0.00                                                                             

(M) JFreeChart  

φ= 0.34, p= 0.00 

 (M) JabRef  

φ= 0.38, p= 0.01 

(M) Commons Lang 

φ= 0.42, p= 0.00 

(M) Barcode4J  

φ= 0.45, p= 0.01 

(L) JMeter  

φ= 0.22, p= 0.05 

(L) MOEA  

φ= 0.20, p= 0.00                   

(M) JMeter  

φ=0.30, p=0.01 

(M) MOEA  

φ=0.35, p=0.00 

(L) JFreeChart 

φ=0.16, p=0.00     

(M) FindBugs 

φ=0.31, p= 0.05 

(L) JFreeChart 

φ=0.17, p= 0.00 

 (L) Commons 

Lang  

φ=0.22, p= 0.02 

(L) 

Dependency 

Finder   

φ=0.20, p= 0.00       

Duplicated 

Code 
  

(L) Commons 

Lang  

φ=0.198 , p= 0.03 

(L) JFreeChart  

φ= 0.24 , p= 0.00 

(L) MOEA  

φ= 0.22, p= 0.00 

 

(H) JabRef 

φ=0.70, p= 0.00 

(H) Commons 

Lang   

φ=0.51, p= 0.00 

(M) JFreeChart  

φ=0.27, p= 0.00 

(L) 

Dependency 

Finder   

φ=0.14, p= 0.04 

 



  

  

   146 

 

As shown in Table 35, the Eager Test smell type was found to be significantly 

correlated with Brain Class (in six systems) and with Large Class (in five systems). 

Eager Test was found to be significantly correlated with Brain Class in JFreeChart, 

JabRef, Commons Lang and Barcode4J (medium correlations) and JMeter and 

MOEA (a low correlation). A significant correlation between Eager Test and Large 

Class is evident in JMeter, Commons Lang and MOEA (medium), and JFreeChart 

and JabRef (both low). H7.8, therefore, is also accepted – there is a significant 

relationship between the co-occurrence of individual test smell types and individual code 

smell types – for the following pairs of test and code smell types: Eager Test and 

Brain Class, and Eager Test and Large Class.  

There are three other correlations that occur in only four systems but that are 

worth noting (Table 35). Particularly, test smell Duplicated Code is significantly 

correlated with code smell Duplicated Code. There is a high correlation between 

Duplicated Code in production and test code in JabRef and Commons Lang, 

medium in JFreeChart and low in Dependency Finder. In addition, a significant 

medium correlation between the Eager Test and Feature Envy smell types was 

found in JFreeChart, JabRef, MOEA and Barcode4J. Similarly, Brain Class and test 

Duplicated Code smell types are shown to be correlated in the JFreeChart, 

FindBugs, Common Lang and Dependency Finder systems. 

 Results of the phi (φ) correlation coefficient analysis between test smell types  Table 36.

(Blue italic to highlight Medium (M) and Green to highlight low (L) correlations) 

Test Smells Assertion Roulette General Fixture Eager Test 

Duplicated 

Code 

(M): FindBugs  

φ= 0.35, p= 0.03 

(L): Commons Lang  

φ= 0.20 , p= 0.02  

(L): Dependency Finder  

φ= 0.15, p= 0.03 

(L): MOEA  

φ= 0.17, p= 0.02 

(L): JFreeChart  

φ= 0.18, p= 0.00 

(L): JMeter  

φ= 0.25, p= 0.03 

(L): Commons Lang 

φ= 0.18, p= 0.05 

(L): JFreeChart  

φ= 0.17, p= 0.00 

(L): MOEA  

φ= 0.17, p= 0.02 

(L): Commons Lang  

φ= 0.28, p= 0.00 
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In considering RQ7.9, Table 36 presents the results of the correlation analysis 

among test smells. As in Table 35, only significant correlations between test smell 

types that are evident in at least three systems are reported. Detailed results of the 

correlations between test smell themselves are available in Appendix F. As shown 

in Table 36, it is found that there are three different test smell types that co-occur 

with the Duplicated Code test smell in the same unit test. There is a significant 

relationship, although not strong, between Assertion Roulette and test Duplicated 

Code. This relationship was found in four systems. These two smell types had 

some tendency to co-occur in a unit test in FindBugs (medium correlation), 

Commons Lang, Dependency Finder and MOEA (low correlation). Duplicated Code 

also co-occurs (in three systems) with General Fixture (in JFreeChart, JMeter and 

Commons Lang) and Eager Test (in JFreeChart, MOEA and Commons Lang). 

However, these correlations are all shown to be low.  

Based on the results presented above, H7.9 is rejected: we found no evidence that 

there is a significant relationship between the co-occurrence of individual test smell types, 

as we did not find evidence of any correlation among smells consistently across 

five or more systems. 

However, it is also worth noting – though as a separate observation that should 

not influence the acceptance or rejection of the examined hypothesis – that there 

are other potentially interesting correlations among test smell types that occur 

only in one or two systems. For example, a high negative correlation between 

Assertion-free and Assertion Roulette was found in Barcode4J. Such a finding seems 

reasonable as one would expect that there would be a negative correlation 

between the two smells given that Assertion Roulette and Assertion-free are opposite 

to each other (i.e., Assertion Roulette appears where there are multiple assertion 

statements in a test case, whereas Assertion-free occurs when there are no assertion 

statements in a test case).   

The following section provides a discussion on the abovementioned results.  
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7.4 Discussion 

In the following we discuss our results. We divide the discussion into three parts: 

the first part provides a discussion on the bivariate correlations between smell 

types and artefact size and complexity (RQ7.1-RQ7.5), followed by an analysis of the 

effect of size. The second part presents a discussion on the relationships between 

individual smell types and unit test size (RQ7.6 and RQ7.7). The final part provides a 

discussion on the co-occurrence of test and code smells (RQ7.8 and RQ7.9). 

Relationships between smell types and software artefacts  

The findings of this experiment show that an increase in the size of both a 

production class and a unit test will likely be mirrored by an increase in the 

number of test smell types in that unit test: the size of both production classes and 

unit tests was found to be significantly associated with the number of test smell 

types. This result is consistent with findings from prior research that showed that 

the size of a class generally constitutes a useful indicator of problems or issues in 

code (Yamashita and Counsell, 2013). In their system-level analysis Bavota et al. 

(2014) also found that the number of test smell types in a system is related to the 

size of that system, and other prior research found evidence of a significant 

relationship between the size of production classes and their associated unit tests 

(Bruntink and van Deursen, 2006). To summarise these particular findings, a large 

production class will typically require a large unit test, and a large unit test is 

more likely to contain test smells.  

It was also observed that the number of test smell types in a unit test increases 

when the complexity of the associated production class increases: more complex 

classes are likely to have higher numbers of test smell types in their associated unit 

tests. Relationships between complexity and unit test size have been found 

elsewhere. For instance, complexity-related metrics, such as cohesion, and 

Response for a Class (RFC), have been found to be significantly correlated with the 

size of unit tests (Bruntink and van Deursen, 2006, Badri et al., 2010, Zhou et al., 
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2012). Dynamic coupling is also associated with unit test size, as was 

demonstrated in Chapter 5. We therefore find the correlation between class 

complexity and the number of test smell types in the associated unit test to be 

plausible. Developers may attempt to test complex modules by writing large unit 

tests, which therefore increase the chances of introducing smells in the unit test (as 

shown in RQ7.1).  

It is important at this juncture to reiterate that this research did not investigate the 

causation (i.e., direction) of these relationships42. It is therefore not possible to say 

if any of the variables considered directly influences the others. However, 

causation of a relationship could be identified if testing strategy information were 

obtained from a project. For example, if a project was developed following a 

traditional test-last approach, then, since production classes are developed first, it 

is not possible for the production classes to be influenced by the test code. It may 

be possible in some situations to infer that test code was influenced by production 

code and its characteristics. However, it is also possible for both production and 

test code to reflect other factors, such as the complexity of the problem being 

solved. Similarly, in a test-first method (such as Test Driven Development), it is 

impossible for production code to influence test code, since test code is developed 

first. This limitation applies to all other similar relationships discussed here 

(especially for RQ7.3, RQ7.4 and RQ7.5), and is an aspect of analysis that should be 

addressed in future research. 

That said, it is also important to note that a recent empirical study explained that 

the majority of OSS projects and developers follow a test-last approach, i.e., test 

code is developed after the production code (Beller et al., 2015). The authors 

empirically investigated developers’ testing practices by studying 416 developers 

from 460 projects. Their study found that TDD is not widely practiced – in only 

12% of the projects that claimed to follow TDD did the developers actually follow 

                                                 
42 See Sections 3.5.1 and 7.5 for more details. 
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TDD practices (Beller et al., 2015). Moreover, even when developers claim that 

they practice TDD, it was found that they do not follow its practices strictly (i.e., 

tests are still being written after production classes are developed). In light of 

these findings we could cautiously assert that the direction of the relationships 

identified in this chapter are likely to follow a [production class  unit test] 

direction. 

The effect of size 

In this section, we statistically examined the possible confounding effect of size on 

the investigated correlations between test and code smell types in RQ7.1 through 

RQ7.5. We measured the indirect effect of size (the confounding variable in this 

case) on all causal relationships between variables using the Bootstrapping 

mediation method. Mediation and confounding effects have been proven to be 

statistically equivalent (MacKinnon et al., 2000), and therefore methods of 

mediation effect may be used to investigate possible confounding effects (Preacher 

and Hayes, 2008). Bootstrapping is a non-parametric approach to effect-size 

estimation and hypothesis testing that makes no assumptions about the 

distribution of the data or the sampling distribution of the statistic (Preacher and 

Hayes, 2004). This method has been shown to be more powerful than other similar 

approaches, such as the Sobel test, and therefore has been recommended to be 

used over other mediation methods (MacKinnon et al., 2004, Hayes, 2009). 

Bootstrapping and other mediation analysis methods are explained in Preacher 

and Hayes (2008) and Hayes and Preacher (2014). In this method, we first 

‘bootstrap’ the data by taking a large number of samples of size n (where n is the 

original sample size) from the data, sampling with replacement, and computing 

the indirect effect between variables x and y through the presence of the mediator 

variable m in each sample. As explained by Preacher and Hayes (2004, 2008), let’s 

say we have 1000 bootstrap samples, the point estimate of variables x and y is 

simply the mean of the two variables computed over the 1000 samples, and the 
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estimated standard error is the standard deviation of the 1000 xy estimates. To 

derive a 95% confidence interval, the elements of the vector of 1000 estimates of xy 

are sorted from low to high. The Lower Limit (LL) (also known as the lower 

boundary) of the confidence interval is defined as the 25th score in this sorted 

distribution, and the Upper Limit (UL) (also known as the upper boundary) is 

defined as the 976th score in the distribution. If zero (0) falls between the resulting 

confidence interval values of LL and UL then it is concluded (with 95% 

confidence) that there is no significant mediation (or confounding) effect: that is, 

the indirect effect is non-significant.  

As explained above, the goal is to examine the confounding effect of size, and 

therefore we use our two key size metrics (LOC and TLOC) as mediators. The 

procedure was applied to the data obtained from all 8 OSS. As before, we use a 

threshold of 5 or more systems to indicate the presence of a confounder (mediator) 

between any two investigated variables. For RQ7.1, RQ7.2, RQ7.4 and RQ7.5 we 

examined the indirect effect of LOC; for RQ7.3, we considered TLOC as a potential 

mediator. Detailed results of this procedure are shown in Appendix G. This 

procedure was carried out using the MEDIATE43 SPSS macro. We used a 

confidence interval of 95% and employed 5000 bootstrap resamples, as has been 

recommended in the literature (Preacher and Hayes, 2008).  

The results of the mediation analysis confirm that LOC and TLOC do not appear 

to have a significant indirect effect on the relationship between the number of test 

smell types and unit test’s size (RQ7.1) or class size (RQ7.3) in seven of the examined 

systems. A similar outcome applies to the relationship between the number of 

code smell types and unit test size (RQ7.2), as there is no evidence that class size 

has an indirect effect on this relationship in five of the eight systems examined. 

                                                 
43 http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html  

http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html
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 Similarly, the indirect effect of LOC between the number of test smell types and 

class complexity (RQ7.4) is not evident in five of the eight systems. The same result 

applies to the indirect effect of LOC between the number of test smell types and 

code smell types (RQ7.5) – as there is no evidence of a significant indirect effect in 

seven of the eight systems.  

Based on the findings of our bootstrap mediation analysis, we can state (with 

confidence of 95%) that size does not have a significant confounding effect on the 

relationships investigated in this chapter. 

Relationships between individual smell types and unit tests size 

By looking more deeply into the relationships between size and the incidence of 

individual smell types, there are specific smell types that are shown to be more 

strongly associated with size than others. Among all of the test smells studied, 

General Fixture and Duplicated Code are more closely related to the size of the unit 

test than other smell types. As the size of the unit test increases (i.e., in terms of 

both TLOC and NTC), the possibility of developing General Fixture and Duplicated 

Code test smell types also increases (or vice versa). The result regarding General 

Fixture is also in line with the findings of Greiler et al. (2013b), which explained 

how other test  fixture related smells are often correlated with the number of test 

cases.  

Turning our attention to code smells, Brain Class has been shown to be more 

strongly associated with the size of the unit test compared to the other code smell 

types examined. One could therefore expect that a class with a Brain Class smell 

and/or Duplicated Code will have a larger unit test. Brain Class represents an “excess 

of responsibility” of a class, whereas Duplicated Code represents “unnecessary 

code” that should be removed. This would indicate that a class with a relatively 

higher number of responsibilities is likely to have a larger unit test. Previous work 

by Sabane et al. (2013) indicated that classes with smells related to an “excess of 
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responsibility”, such as Blob Class, require significantly higher numbers of test 

cases than other classes.  

Smell co-occurrence 

A further novel finding of this work is that relating to the co-occurrence of test and 

code smells. Based on the preceding analysis it appears that some test and code 

smell types are more likely to co-occur. For instance, Eager Test is the smell type 

most significantly associated with other code smell types, and particularly Brain 

Class and Large Class code smell types. To provide greater context for this 

discussion the smells classification and taxonomy developed by Mäntylä et al. 

(2003) is used.  

The relationship between Eager Test and Brain Class was evident in six of the eight 

systems examined. As explained above, Brain Class, which belongs to the 

“complexity” group of code smells (Mäntylä et al., 2003), represents an “excess of 

responsibility” class. To test a complex class, such as a Brain Class, a unit test might 

attempt to test multiple methods of the same class under test, leading to possible 

interdependencies between methods within the same class. In doing so, a test 

might require the involvement (e.g., invoke) of several other methods that are 

related or connected to the target method under test, which can lead to the 

introduction of the Eager Test smell (where a test has a method that uses more than 

one method of the tested class). 

Much the same interpretation can be also drawn for the relationship between 

Eager Test and Large Class. A Large Class smell is an indicator that a class has at 

least one large method. Such methods can be also linked (connected) with other 

methods within the same class. One possible scenario is that, when writing a test 

case to test a particular method that is large in size (given the possible 

interdependency between the large method and other methods in the same class), 

a developer/tester might be required to test multiple methods in the same class at 

once. It is also possible that methods within a class are sometimes required to 
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access parameters or operators that belong to those large methods within the same 

class. When attempting to test such methods, a test is required to make use (i.e., 

invoke or retrieve data from) other methods of the same class under test. 

The relationship between test and production code duplication (i.e., Duplicated 

Code) is another potentially interesting finding, although it was not consistent 

among all systems considered (as it appeared in four of the eight systems)44. This 

relationship suggests that duplication in code can also be a sign of possible code 

duplication in the test code, and vice versa.  

The high diffusion of Assertion Roulette leads us to expect that this smell type is 

more associated with the size of the unit test than other test smells (i.e., unit tests 

with Assertion Roulette are larger compared to unit tests without this smell). The 

argument here is that a large unit test has more test cases (given that there is a 

positive relationship between the number of test cases and the size of unit tests). 

The increase in the number of test cases (i.e., NTC) means that there are more 

Assertions in the unit test. We therefore expected that the more Assertions in a 

unit test, the higher the probability of introducing Assertion Roulette. However, the 

findings of this study show that this is not case for at least half of the studied 

systems. On the other hand, one would expect that Assertion Roulette would be 

correlated with some of the code smell types that are related to size (such as Large 

Class) or other widely distributed code smells, as Assertion Roulette is shown to be 

the most common test smell in OSS projects. Again, this is was not the case here as 

Assertion Roulette was not found to co-occur with any other code smells.    

In studying the co-occurrence of test smell types themselves, there were no 

obvious correlations among different individual test smell types. There was no 

statistical evidence that any two test smell types co-occurred together in more than 

                                                 
44 As shown in Chapter 7, we use a threshold of five systems or more to confirm significant associations 

between any two smells. Any correlations that occurred in fewer than five systems would not be 

considered as a significant correlation between the variables. 
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four systems. The only relationship perhaps worth noting is that between Assertion 

Roulette and test Duplicated Code, although this was found in just four of the eight 

systems. This overall result indicating a general lack of test smell co-occurrence is 

in contrast to the previous analyses of Bavota et al. (2014), which found that most 

test smells co-occur with Assertion Roulette. These authors also found that Lazy Test 

and Eager Test smells co-occur on several occasions. However, the method these 

authors used to examine co-occurrence considers the direction of the relationship 

(i.e., the co-occurrence of A and B may be different from the co-occurrence of B 

and A). This led to a number of correlations that are not symmetrical. For example, 

Assertion Roulette was shown to co-occur with Lazy Test in 83% of the unit tests, but 

if we swap these variables (i.e., the co-occurrence of Lazy Test and Assertion 

Roulette) the percentage drops to only 3%. In order to avoid such non-symmetrical 

outcomes we used an alternative method of analysis (i.e., Phi Correlation Coefficient 

Test) that assesses co-occurrence based on the strength of the association (i.e., 

significance level and the degree of association) between all individual pairs of test 

smell types.  

Threats to the validity to this experiment are presented next. 

7.5 Threats to Validity 

There are a number of threats to the validity of our work, as acknowledged in the 

following. Note that the nature of some of these threats is explained more fully in 

Section 3.5.  

Possible Confounding Effect of Size 

As explained in Section 3.5.1., some of the correlations identified between 

variables might be influenced by confounding factors (e.g., A causes X causes B). 

These confounding factors might be the reason why some of the discovered 

correlations appear. A previous study by El Emam et al. (2001) found that class 

size can have a confounding effect on several object oriented metrics (such as some 
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of the CK metrics suite). Specifically, they found that previously noted 

associations between OO metrics and fault-proneness did not exist when size is 

taken into account. They therefore suggest that empirical studies should control 

for class size when designing fault-prediction models. Such a conclusion was also 

shared by Zhou et al. for both fault-proneness (2014) and change-proneness (2009). 

Nonetheless, these conclusions are still limited to class fault- and change-

proneness and the set of OO metrics used, and therefore they cannot be 

generalised to other factors. On the other hand, Evanco (2003) argued that 

introducing class size as an additional independent variable can result in models 

that lack internal consistency. No studies have been found to investigate the 

confounding effect of size in the context of unit tests and software testability.  

Nevertheless, we carefully addressed this issue in more detail in Section 7.4. We 

applied a statistical procedure to investigate the possible indirect effect of size in 

regard to the discovered relationships in RQ7.1 through RQ7.5. Our analysis 

indicates that there is no statistical evidence that size is a confounding variable.  

In considering the occurrence of each test and code smell it is important to 

highlight that these smells are measured in terms of their presence (or not) in a unit 

test or a production class. For example, a unit test can either have Assertion Roulette 

or not (one or zero), irrespective the number of times the smell was detected in the 

unit test. Similarly, a production class can either have (one) Brain Class smell or 

not. This approach applies to our consideration of all test or code smells. None of 

the test smell detection rules use size as a direct indicator of the presence of the 

smells (as per the test smell descriptions in Table 23). For code smells, the only 

smell that might be directly influenced by size is Large Class, as this smell is 

identified based on the size of methods within a class45. However, this experiment 

did not investigate the correlations between class size and the presence of Large 

Class, as this was not the focus of any of the research questions. For all code smells 

                                                 
45 It is measured in terms of LOC of methods within a class.  
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(including Large Class), the experiment studied the correlation between the 

presence of the smells in a production class and the size of the associated unit 

tests. However, Large Class was not found to be correlated with any of the unit 

tests metrics in any of the studied systems (Table 34). Therefore, and given that 

there is no relationship between Large Class and unit test size, we conclude that 

size is not a confounding factor for this smell.  

We further explored the relationship between all individual smells and unit test 

size (see RQ7.6 and RQ7.7) and found that size (and mainly TLOC) has direct effect 

only on General Fixture and Duplicated Code test smells (Table 33) and Brain Class 

code smell (Table 34). Other test and code smells do not appear to be directly 

influenced by size.  

Efficacy of Smell Detection Tools 

In identifying the code and test smells, the experiment depended heavily on the 

available smell detection tools. There is a risk that some smells were not detected 

by the tools used or were detected erroneously. To ensure a minimum level of 

accuracy tools that have been designed and examined in similar previous 

empirical studies were used, and for the detection of some code smells, we used 

an industrial quality assessment tool. For the test smell detection (and for most of 

the smells), an academic tool that has been successfully used in previous research 

was used. To maximize the accuracy of the results we verified the detected smells 

manually through a manual inspection process conducted by the author, and we 

cross-validated some of our results with those obtained for the same systems 

considered in prior research (Bavota et al., 2014) using those authors’ publicly 

available data. Details of this cross-validation process are provided in Section 

7.2.2.  
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7.6 Summary 

This chapter has reported the investigation of several relationships between and 

among test and code smells in eight OSS that contain 1100 unit tests. The 

experiment looked into the possible association between the presence of smells (in 

unit tests and in production classes) and different software characteristics (i.e., size 

and complexity). It also investigated the relationship between code smells in 

production classes and test smells in their associated unit tests. The co-occurrence 

of code and test smells was also studied. In general, the results indicated a 

significant association between several software characteristics and test smells. We 

also found a significant association between the presence of code smells and class 

testability. In addition, some specific test smells appear to co-occur.  

Chapters 5, 6 and 7 presented the results of the three experiments conducted in 

this thesis. The following chapter provides a collective discussion of the outcomes 

of the review study reported in Chapter 4 and of the three experiments presented 

in Chapters 5-7. It then reports the conclusions we draw from the thesis, followed 

by a discussion on the possible limitations of this work. We also provide a list of 

possible future research directions that can be followed in the light of the 

outcomes of this work.  
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 Conclusions and Chapter 8

Future Work 

8.1. Introduction 

This thesis reports a multi-part empirical investigation of software testability and 

testing quality in open source OO projects. As stated in Chapter 1, the main goal of 

the thesis is to provide researchers and practitioners with a comprehensive 

understanding of design and source code factors that can affect the testability of a 

class. The experiments presented in this thesis have therefore been focused on unit 

testing, and have investigated testability not at the system level but at the class 

level (referred to here as class testability). Drawing on previous research in the 

area, class testability was measured in this work in terms of unit test size (via 

metrics for test lines of code (TLOC) and the number of test cases (NTC) in the 

unit test). 

In particular, this thesis has investigated three aspects of software testability: unit 

test distribution and coverage, the relationship between dynamic complexity 

attributes of production classes and their testability, and the relationship between 

design flaws in both unit tests and their production classes and their class 

testability, through the use of the test and code smell concepts. Each of these 

aspects has been investigated individually in three separate experiments, 

presented in Chapters 5, 6 and 7, respectively. 

This chapter summarises the novel elements and contributions of the thesis 

(Section 8.2) and presents the conclusions drawn from the results of all three 

experiments (Section 8.3). This is followed by a description of the limitations of the 
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research conducted (Section 8.4) and a statement of potential future research 

directions (Section 8.5).  

8.2. Summary of Novel Elements and Contributions 

The first novel undertaking comprised a systematic mapping study on the nature 

and use of dynamic software metrics in software quality (Chapter 4). This study 

concluded that the use of dynamic metrics to measure software complexity and 

maintainability had been widely discussed in the literature; however the same 

level of attention had not been directed to the use of dynamic metrics to measure 

other quality attributes such as testability and reusability. An in-depth 

consideration of the mapping results found that complexity-related dynamic 

metrics, such as those said to measure coupling and cohesion, were the most 

widely studied, with coupling being the most often studied single metric type. 

Large numbers of these studies had used dynamic coupling metrics to support 

software comprehension and/or reengineering. The findings of this mapping 

study motivated the use of dynamic coupling metrics in relation to test coverage 

and class testability in the development and experiments that followed in 

Chapters 5 through 7.  

A novel visualisation approach to augment specific data obtained from both static 

and dynamic analysis was then proposed and evaluated (Chapter 5). The long-

term goal of such work is to support developers in their understanding of unit test 

distribution and the relationships between tests and production code. We 

visualised dependencies between classes using data collected based on dynamic 

coupling information from five OSS. The work used dependency graphs (similar 

to those used in the analysis of complex networks) to identify and depict 

dependencies between different classes in the system, and then mapped static unit 

test information into these dependency graphs. Besides the visual representation 
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of the graphs, two graph Centrality metrics were used to further explore the 

distribution of unit tests within the OSS investigated.  

In the experiment presented in Chapter 6 we sought to identify any relationships 

that might exist between two dynamic attributes of a class and its testability. The 

two attributes that were examined were Dynamic Coupling and the newly defined 

Key Classes. Dynamic metrics were used to measure these attributes due to their 

advantages over their static counterparts.  

Finally, in Chapter 7, we studied the relationships between and among test smells, 

code smells and several software characteristics (such as size and complexity). The 

experiment resulted in a novel, in-depth investigation of factors that may impact 

the presence of smells in a unit test at class level, from a range of perspectives. 

Specifically, we investigated the relationship between different test and code smell 

types (individually and collectively) and the following aspects of the software 

code: 1) size of the unit test, 2) size and complexity of the associated production 

class, 3) the co-occurrence of test and code smells and 4) the co-occurrence of test 

smells.  

8.3. Conclusions 

Several conclusions are drawn from the analyses conducted and reported in 

Chapters 5 through 7 of this thesis. 

A. Unit test distribution based on dynamic analysis  

This thesis has introduced a novel visualisation approach that combines dynamic 

information obtained from production code with static test information to explore 

the distribution of unit tests in OSS. Based on the five OSS studied, it is observed 

that unit test and dynamic coupling information ‘do not match’ in that there is no 

significant relationship between dynamic coupling and centrality metrics and unit 

test coverage. In other words, unit tests do not appear to be distributed in line 

with the systems’ dynamic coupling. Many of the central and tightly coupled 
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classes do not come with any associated (i.e., direct) unit tests, whereas other 

loosely coupled classes, which are not central, appear to received direct unit 

testing effort.  

Visualisation of the combined static unit test and dynamic coupling data provides 

a detailed insight into how unit tests are actually distributed in relation to the 

coupling level of each class in the system. The suggested visualisation and its 

associated Centrality metrics may help developers and managers to focus and 

optimise their test effort through the initial targeting of central system classes. 

Furthermore, data gathered from dynamic coupling measurement provides a 

comprehensive view of the dependencies of the system in relation to test 

information – a view that can be obtained only during software execution. Such 

data can be used to complement other test optimisation and prioritisation 

techniques to enhance future testing decisions. We believe that such visualisation 

techniques could be particularly helpful when developers need to maintain and 

reengineer existing testing suites.  

B. Class testability and dynamic complexity  

The resulting evidence indicates that there is a significant association between 

dynamic coupling and class testability. Dynamic coupling metrics, and especially 

the Export Coupling (EC) metric, have a significant association with Test LOC. A 

less significant association was found between dynamic Import Coupling (IC) and 

the Number of Test Cases. These results suggest that the higher the coupling 

between classes the larger the unit test required to test the class. Furthermore, Key 

Classes are shown to be significantly associated with our test suite metrics in at 

least three of the four systems examined. As in relation to coupling, the higher the 

number of executions of a class the larger the unit test required to test the class.  

The findings of this experiment contribute to the general understanding of the 

nature of the relationships between characteristics of production and test code. 

The use of dynamic measures provides a level of insight that is not available using 
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static metrics alone. These relationships should be of help in informing test 

maintenance and reengineering tasks.  

C. Test and code smells 

We conclude that the number of test smell types is associated with the size of the 

unit test within which they occur. We found that unit test size is associated with 

the presence of code and test smell types. Class testability metrics are correlated 

with the number of test smell types in unit tests and also with the number of code 

smell types in the associated production class. Also, the size and complexity of a 

production class are correlated with the number of test smell types in its 

associated unit test. 

That said, the distribution of individual smell types in code is not even – we found 

that some smell types are more closely associated with the size of the unit test than 

other smell types. In particular, the occurrence of the General Fixture and 

Duplicated Code smell types is more strongly associated with the size of the unit 

test: unit tests with General Fixture or Duplicated Code are larger than unit tests 

without those smell types. Similarly, production classes with the Brain Class smell 

require larger unit tests than classes without this smell.  

In addition to identifying several relationships between size and smells, we found 

that there are some test and code smell types that co-occur in production classes 

and their associated unit tests: the Eager Test smell mostly co-occurs with Brain 

Class and Large Class code smell types.  

To summarise, the main conclusions drawn from this thesis are as follows:  

 Using a combination of visualisation, dynamic analysis, static analysis and 

graph-based metrics it is feasible to identify central classes and to 

diagrammatically depict testing coverage information. Experimental results 

show that, even in projects with high test coverage, some classes appear to 



  

  

   164 

 

be left without direct unit testing, even though they play a central role 

during a typical execution profile.  

 Frequently executed and tightly coupled classes are correlated with the 

testability of the class – such classes require larger unit tests and more test 

cases. This information could inform estimates of the effort required to test 

classes when developing new unit tests or when maintaining and 

refactoring existing tests.  

 Test and code smells, in general, can have a negative impact on class 

testability. Increasing levels of size and complexity in code can have a 

negative impact on the presence of test smells. Classes that contain smells 

generally require larger unit tests, and are also likely to be associated with 

test smells in their associated unit tests. In addition, some particular code 

smells can be seen as ‘signs’ for the presence of test smells.  

8.4. Limitations 

In this thesis we conducted a series of empirical studies to address a number of 

questions related to software testability and testing quality. 

One of the limitations of this work is that the thesis uses data obtained only from a 

limited set of OSS. This might limit the general applicability of the results, as 

industrial projects might have different characteristics compared to OSS. For 

example, the testing approach and methods used in industrial projects might be 

more rigorous and more controlled when compared with OSS. To mitigate this 

risk we sought to analyse as many systems as feasible within the scope of the 

study and to include projects that were highly mature in spite of their OSS origins. 

The studies also used a limited range of test information obtained from the OSS 

projects. Information about the testing strategy, development method, developers’ 

roles in their projects and developers’ experience with unit testing has not been 

taken into consideration in this work. This is mainly because such information is 
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not available in the documentation or source code of the projects’ repositories. 

This also means that we had to necessarily limit our analyses to being explanatory, 

based on the existence and strength of association, rather than being predictive, 

based on causality. We have been able to rely to some extent, however, on other 

research that has investigated OSS testing strategies to inform the conclusions 

drawn. 

The stated goal of the new visualisation approach developed in this thesis is to 

support developers in their understanding of unit test distribution. Although the 

approach was functionally evaluated over five different OSS, it has not been 

empirically assessed for utility with software professionals. As such we are not yet 

in a position to say whether it can deliver improved developer comprehension of 

unit test distribution. Such an assessment would be possible through a controlled 

experiment with practicing software engineers. 

8.5. Future Work 

Several future research endeavours could be pursued in the area of software 

testability based on the findings presented in this thesis. 

Given the inherently limited scope of the experimental work conducted in this 

research it is important that those experiments be replicated using a wider range 

of systems (including industrial, closed-source systems), to enable further 

evaluation of the findings and their applicability. 

It is important that the visualisation approach be tested by practicing software 

developers to enable us to evaluate the usefulness of the proposed approach in 

terms of improving program comprehension. This research could be usefully 

undertaken through a controlled user study with the assistance of software 

developers and maintainers. Future work should also investigate the cause of the 

uneven distribution of unit tests, as found in our empirical analysis. 
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Another research direction would be to investigate whether Dynamic Coupling and 

Key Class information can be used to predict the size and structure of unit tests. 

Predicting class testability should improve the early estimation and assessment of 

the effort needed in testing activities. In principle this could be achieved through 

the development of a regression model that uses dynamic metrics data (such as 

Execution Frequency and dynamic coupling metrics) to predict the effort needed 

to test a class (in terms of unit test design). This work could also be extended to an 

investigation of the association between other source code factors and testability 

using runtime information. It would also be potentially beneficial to incorporate 

information about class testability with other testing information such as test 

coverage and test strategy. 

More generally it would be interesting to study in depth the causality of the 

relationships identified in this work. In terms of informing practice it would be 

useful to investigate which specific factors might impact the distribution of test 

smells in unit tests. This could be done by including information regarding the 

testing strategy used in a project and other indirect testing information into the 

mapping, to provide a more comprehensive view of testing activities and their 

outcomes. Consideration of a broader set of code and test smells should inform 

further understanding of the extent to which the results found here apply beyond 

the smells and systems examined. A further natural extension of the explanatory 

analyses reported regarding the incidence of smells would be to assess whether 

the relationships can inform the development of robust smell prediction models. A 

binary (binomial) logistic regression model could be developed to predict the 

presence of certain test smells (as dependent variables) based on the presence of 

certain code smells in the production code (i.e., using code smells as predictors/ 

independent variables).   

In the process of conducting our work we also found many instances where 

developers wrote unit tests that did not include any assertions. Writing a unit test 
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with no assertion can still give you 100% code coverage46 but this does not reflect 

the ‘ground truth’ in terms of testing quality. A further specific extension of the 

work reported here would be to investigate the nature of Assertions in unit tests 

and to examine why Assertions are sometimes misused by developers in both 

open and closed source software.  

                                                 
46 http://martinfowler.com/bliki/AssertionFreeTesting.html  

http://martinfowler.com/bliki/AssertionFreeTesting.html
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Appendix C: Centrality Metrics Values 

Appendix Table I: Centrality metrics values for FindBugs 

DC: Degree Centrality, BC: Betweeness Centrality 

Class DC BC 
Unit 
test 

Class DC BC 
Unit 
test 

AbstractBugReporter 11 1697 No detect.LazyInit 29 732 No 

analysis.AnnotatedObject 1 0 No detect.LoadOfKnownNullValue 10 205 No 

analysis.AnnotationValue 8 31 No 
detect.LostLoggerDueToWeakR
eference 3 2 No 

analysis.ClassData 4 54 No detect.MethodReturnCheck 10 182 No 

analysis.ClassInfo 16 389 No 
detect.MethodReturnValueStr
eamFactory 5 18 No 

analysis.ClassNameAndSuperclassInfo 1 0 No detect.Methods 1 0 No 

analysis.EnumValue 1 0 No 
detect.MultithreadedInstanceA
ccess 1 0 No 

analysis.FieldInfo 10 92 No detect.MutableStaticFields 10 83 No 

analysis.MethodInfo 40 4531 No detect.Naming 12 112 No 

AnalysisCacheToRepositoryAdapter 4 10 No 
detect.NoteAnnotationRetenti
on 4 105 No 

AnalysisLocal 5 75 No 
detect.NoteCheckReturnValue
Annotations 2 0 No 

Analyze 9 790 No 
detect.NoteDirectlyRelevantTy
peQualifiers 6 676 No 

AppVersion 2 2 No detect.NoteJCIPAnnotation 2 0 No 

asm.ClassNodeAnalysisEngine 1 0 No 
detect.NoteNonnullReturnValu
es 1 0 No 

asm.ClassNodeDetector 3 163 No 
detect.NoteSuppressedWarnin
gs 3 5 No 

asm.ClassReaderAnalysisEngine 2 7 No 
detect.NoteUnconditionalPara
mDerefs 1 0 No 

asm.EngineRegistrar 1 0 No detect.NumberConstructor 7 18 No 

asm.FBClassReader 2 0 No 
detect.OverridingEqualsNotSy
mmetrical 9 341 No 

ba.AbstractBlockOrder 1 0 No detect.PreferZeroLengthArrays 3 5 No 

ba.AbstractClassMember 1 0 No 
detect.QuestionableBooleanAs
signment 2 3 No 

ba.AbstractDataflow 1 0 No 

detect.ReadOfInstanceFieldIn
MethodInvokedByConstructorI
nSuperclass  

14 833 No 

ba.AbstractDataflowAnalysis 3 20 No 
detect.ReadReturnShouldBeCh
ecked 4 14 No 

ba.AbstractDominatorsAnalysis 3 638 No detect.RedundantInterfaces 3 7 No 

ba.AbstractFrameModelingVisitor 1 0 No detect.ReflectiveClasses 4 4 No 

ba.AbstractMethod 4 11 No detect.RepeatedConditionals 5 15 No 

ba.AnalysisContext 105 18297 No 
detect.RuntimeExceptionCaptu
re 18 196 No 

ba.AnnotationDatabase 8 111 No detect.SerializableIdiom 18 575 No 

ba.AnnotationRetentionDatabase 2 2 No detect.StartInConstructor 5 19 No 

ba.AssertionMethods 4 1 No detect.StaticCalendarDetector 14 771 No 

ba.BasicAbstractDataflowAnalysis 4 640 No 
detect.StaticFieldLoadStreamF
actory 2 0 No 

ba.BasicBlock 28 1534 No detect.Stream 13 443 No 

ba.BetterCFGBuilder2 11 1603 No detect.StreamEquivalenceClass 3 0 No 

ba.BlockOrder 1 0 No detect.StreamEscape 2 0 No 
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Class DC BC 
Unit 
test 

Class DC BC 
Unit 
test 

ba.BytecodeScanner 3 8 No detect.StreamFactory 1 0 No 

ba.CFG 51 6137 No 
detect.StreamFrameModelingV
isitor 5 63 No 

ba.CFGBuilder 1 0 No detect.StreamResourceTracker 6 648 No 

ba.CFGBuilderFactory 1 0 No detect.StringConcatenation 4 33 No 

ba.ch.Subtypes2 3 15 No detect.SuperfluousInstanceOf 3 92 No 

ba.CheckReturnAnnotationDatabase 3 25 No detect.SwitchFallthrough 10 155 No 

ba.ClassContext 86 17231 No 
detect.SynchronizationOnShar
edBuiltinConstant 7 20 No 

ba.ClassMember 1 0 No 
detect.SynchronizeAndNullChe
ckField 1 0 No 

ba.ClassNotFoundExceptionParser 5 14 No 
detect.UncallableMethodOfAn
onymousClass 10 95 No 

ba.ClassSummary 4 2 No detect.UnreadFields 30 299 No 

ba.Dataflow 15 2685 No detect.UnreadFieldsData 6 3 No 

ba.DataflowAnalysis 1 0 No detect.URLProblems 2 1 No 

ba.DataflowValueChooser 1 0 No detect.VarArgsProblems 2 3 No 

ba.Debug 1 0 No detect.VolatileUsage 7 44 No 

ba.DefaultNullnessAnnotations 4 19 No detect.WaitInLoop 2 3 No 

ba.DepthFirstSearch 4 639 No detect.WrongMapIterator 7 40 No 

ba.DominatorsAnalysis 2 5 No detect.XMLFactoryBypass 2 4 No 

ba.Edge 20 1297 No Detector 1 0 No 

ba.EdgeChooser 1 0 No Detector2 2 22 No 

ba.EqualsKindSummary 2 0 No DetectorFactory 15 230 No 

ba.ExceptionHandlerMap 2 0 No DetectorFactoryChooser 1 0 No 

ba.FieldSummary 20 814 No DetectorFactoryCollection 25 
377

0 Yes 

ba.Frame 6 1440 No DetectorToDetector2Adapter 4 641 No 

ba.FrameDataflowAnalysis 4 61 No engine.asm.EngineRegistrar 1 0 No 

ba.Hierarchy 42 4998 No engine.bcel.EngineRegistrar 1 0 No 

ba.Hierarchy2 27 1321 No 
engine.ClassDataAnalysisEngin
e 6 339 No 

ba.IncompatibleTypes 14 105 No engine.ClassInfoAnalysisEngine 5 202 No 

ba.InnerClassAccess 4 31 No 
engine.ClassNameAndSupercla
ssInfoAnalysisEngine 1 0 No 

ba.InnerClassAccessMap 5 20 No engine.ClassParser 3 0 No 

ba.INullnessAnnotationDatabase 9 39 No engine.ClassParserInterface 2 8 No 

ba.JavaClassAndMethod 10 251 No engine.ClassParserUsingASM 3 0 No 

ba.JavaClassAndMethodChooser 2 0 No engine.EngineRegistrar 2 404 No 

ba.JCIPAnnotationDatabase 2 3 No engine.SelfMethodCalls 5 477 No 

ba.LiveLocalStoreAnalysis 3 1 No 
EqualsOperandShouldHaveClas
sCompatibleWithThis 10 122 No 

ba.LiveLocalStoreDataflow 2 638 No ErrorCountingBugReporter 2 15 No 

ba.Location 48 5088 No FieldAnnotation 21 
112

8 No 

ba.LockAnalysis 6 55 No filter.AndMatcher 2 6 No 

ba.LockChecker 10 757 No filter.BugMatcher 10 
149

0 No 

ba.LockDataflow 6 648 No filter.CompoundMatcher 3 100 No 

ba.LockSet 11 112 No filter.Filter 6 244 No 

ba.MethodBytecodeSet 1 0 No filter.Matcher 6 192 No 

ba.MethodUnprofitableException 4 20 No filter.StringSetMatch 1 0 No 

ba.MissingClassException 1 0 No FilterBugReporter 3 194 No 

ba.NullnessAnnotationDatabase 3 1 No FindBugs 17 350 No 

ba.ObjectTypeFactory 13 494 No FindBugs2 44 141 No 
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Class DC BC 
Unit 
test 

Class DC BC 
Unit 
test 

ba.OpcodeStackScanner 3 6 No FindBugsAnalysisFeatures 7 117 No 

ba.Path 6 772 No FindBugsDisplayFeatures 3 61 No 

ba.PathVisitor 1 0 No FindBugsMessageFormat 7 63 No 

ba.PostDominatorsAnalysis 2 5 No FindBugsProgress 1 0 No 

ba.PruneInfeasibleExceptionEdges 6 88 No Footprint 1 0 No 

ba.PruneUnconditionalExceptionThro
werEdges 13 211 No 

formatStringChecker.Formatte
r 1 0 No 

ba.PutfieldScanner 1 0 No generic.GenericObjectType 8 28 Yes 

ba.RepositoryLookupFailureCallback 9 176 No 
generic.GenericSignatureParse
r 4 3 Yes 

ba.ResourceTracker 2 1 No generic.GenericUtilities 8 46 Yes 

ba.ResourceValue 4 10 No 
graph.AbstractDepthFirstSearc
h 3 956 No 

ba.ResourceValueAnalysis 10 1594 No graph.AbstractEdge 2 0 No 

ba.ResourceValueFrame 6 84 No graph.AbstractGraph 2 0 No 

ba.ResourceValueFrameModelingVisit
or 3 1 No graph.AbstractVertex 2 0 No 

ba.ReverseDepthFirstSearch 2 638 No graph.DepthFirstSearch 2 317 No 

ba.SignatureConverter 9 96 No graph.Graph 2 1 No 

ba.SignatureParser 15 300 Yes graph.GraphEdge 3 254 No 

ba.SourceFile 1 0 No graph.GraphVertex 1 0 No 

ba.SourceFinder 5 107 No 
graph.ReverseDepthFirstSearc
h 2 318 No 

ba.SourceInfoMap 4 27 No gui.AnnotatedString 3 140 No 

ba.Target 1 0 No gui2.AboutDialog 2 0 No 

ba.TargetEnumeratingVisitor 1 0 No gui2.AnalyzingDialog 6 783 No 

ba.TestCaseDetector 6 4 No gui2.BugAspects 6 143 No 

ba.UnresolvedXField 4 9 No gui2.BugLeafNode 10 406 No 

ba.UnresolvedXMethod 4 9 No gui2.BugLoader 11 577 No 

ba.URLClassPath 1 0 No gui2.BugRenderer 2 0 No 

ba.XClas 1 0 No gui2.BugSaver 2 9 No 

ba.XClass 41 1591 No gui2.BugSet 15 
103

3 No 

ba.Xclass 2 1 No gui2.BugTreeModel 12 785 No 

ba.XFactory 67 7563 No gui2.CheckBoxList 1 0 No 

ba.Xfactory 4 43 No gui2.CloudCommentsPane 10 130 No 

ba.XField 28 847 No 
gui2.CloudCommentsPaneSwin
g 1 0 No 

ba.XMethod 57 3663 No gui2.CommentsArea 5 643 No 

ba.Xmethod 3 4 No gui2.Debug 5 33 No 

ba.XMethodParameter 2 1 No gui2.Driver 20 
454

7 No 

bcel.AnalysisFactory 1 0 No gui2.FBDialog 1 0 No 

bcel.AssertionMethodsFactory 1 0 No gui2.FBFileChooser 4 120 No 

bcel.BCELUtil 11 184 No gui2.FBFrame 1 0 No 

bcel.bcelUtil 1 0 No gui2.FilterActivity 4 640 No 

bcel.CFGDetector 4 6 No gui2.FilterFactory 4 25 Yes 

bcel.CFGFactory 15 2121 No gui2.FilterFromBugPicker 3 8 No 

bcel.ClassContextClassAnalysisEngine 2 0 No gui2.FilterMatcher 3 638 No 

bcel.ConstantDataflowFactory 1 0 No gui2.FindBugsFileFilter 2 0 No 

bcel.ConstantPoolGenFactory 1 0 No gui2.FindBugsLayoutManager 3 1 No 

bcel.DepthFirstSearchFactory 1 0 No 
gui2.FindBugsLayoutManagerF
actory 1 0 No 

bcel.DominatorsAnalysisFactory 1 0 No gui2.GUI2CommandLine 1 0 No 

bcel.EngineRegistrar 2 2 No gui2.GUISaveState 15 168 No 
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bcel.IsNullValueDataflowFactory 3 6 No gui2.GuiUtil 1 0 No 

bcel.JavaClassAnalysisEngine 4 92 No gui2.MainFrame 39 888 No 

bcel.LiveLocalStoreDataflowFactory 1 0 No 
gui2.MainFrameComponentFa
ctory 15 125 No 

bcel.LoadedFieldSetFactory 4 127 No gui2.MainFrameHelper 5 11 No 

bcel.LockCheckerFactory 1 0 No 
gui2.MainFrameLoadSaveHelp
er 7 483 No 

bcel.LockDataflowFactory 1 0 No gui2.MainFrameMenu 16 372 No 

bcel.MethodFactory 3 13 No gui2.MainFrameTree 12 197 No 

bcel.MethodGenFactory 4 14 No gui2.NewFilterFromBug 4 719 No 

bcel.NonExceptionPostdominatorsAnal
ysisFactory 1 0 No gui2.NewProjectWizard 9 277 No 

bcel.ObligationDataflowFactory 7 697 No gui2.PluginUpdateDialog 3 18 No 

bcel.OpcodeStackDetector 2 0 No gui2.PreferencesFrame 13 774 No 

bcel.PreorderDetector 1 0 No gui2.ProjectSettings 2 0 No 

bcel.ReturnPathTypeDataflowFactory 1 0 No gui2.RecentMenu 5 67 No 

bcel.ReverseDepthFirstSearchFactory 1 0 No gui2.SaveType 4 300 Yes 

bcel.TypeDataflowFactory 3 2 No gui2.Sortables 14 290 No 

bcel.UnconditionalValueDerefDataflow
Factory 3 19 No gui2.SortableStringComparator 2 0 No 

bcel.UnpackedBytecodeCallback 2 638 No gui2.SorterDialog 4 7 No 

bcel.UnpackedCode 1 0 No gui2.SorterTableColumnModel 6 7 No 

bcel.UsagesRequiringNonNullValuesFa
ctory 2 4 No gui2.SourceCodeDisplay 10 271 No 

bcel.ValueNumberDataflowFactory 3 6 No gui2.SplashFrame 1 0 No 

bcp.Binding 3 0 No gui2.SplitLayout 4 1 No 

bcp.BindingSet 3 0 No gui2.StackedFilterMatcher 1 0 No 

bcp.ByteCodePattern 3 7 No gui2.ViewFilter 9 497 No 

bcp.ByteCodePatternMatch 2 0 No gui2.WideComboBox 1 0 No 

bcp.FieldAccess 4 14 No I18N 13 106 No 

bcp.FieldVariable 2 9 No IClassScreener 1 0 No 

bcp.IfNull 3 12 No IFindBugsEngine 2 2 No 

bcp.Load 3 16 No IGuiCallback 1 0 No 

bcp.LocalVariable 1 0 No 
impl.AbstractScannableCodeBa
se 2 638 No 

bcp.OneVariableInstruction 1 0 No 
impl.AbstractScannableCodeBa
seEntry 1 0 No 

bcp.PatternElement 9 1810 No impl.AnalysisCache 10 348 No 

bcp.PatternElementMatch 3 2 No impl.ClassFactory 2 638 No 

bcp.PatternMatcher 8 462 No impl.ClassPathBuilder 17 554 No 

bcp.Store 3 16 No impl.ClassPathImpl 1 0 No 

bcp.Variable 1 0 No 
impl.FilesystemCodeBaseLocat
o 1 0 No 

bcp.Wild 1 0 No 
impl.FilesystemCodeBaseLocat
or 1 0 No 

BugAccumulator 52 3247 No impl.ZipCodeBaseFactory 4 128 No 

BugAnnotation 6 24 No impl.ZipFileCodeBaseEntry 1 0 No 

BugAnnotationUtil 7 45 No 
indbugs.DetectorFactoryCollec
tion 1 0 No 

BugAnnotationWithSourceLines 4 13 No IntAnnotation 5 17 Yes 

BugCategory 3 5 No 
interproc.MethodPropertyData
base 3 0 No 

BugCode 2 0 No interproc.ParameterProperty 5 2 Yes 
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BugCollection 14 1026 No interproc.PropertyDatabase 2 9 No 

BugCollectionBugReporter 4 646 No io.IO 4 112 Yes 

BugInstance 131 33803 No JavaVersion 3 18 No 

BugPattern 7 69 No 
jsr305.AbstractMethodAnnotat
ionAccumulator 1 0 No 

BugProperty 3 1 Yes jsr305.Analysis 5 75 No 

BugRanke 1 0 No 
jsr305.DirectlyRelevantTypeQu
alifiersDatabase 1 0 No 

BugRanker 17 1990 No 
jsr305.FindBugsDefaultAnnotat
ions 1 0 No 

BugReporter 62 6727 No 
jsr305.JSR305NullnessAnnotati
ons 1 0 No 

BugReporterObserver 1 0 No 
jsr305.ParameterAnnotationAc
cumulator 1 0 No 

ByteCodePatternDetector 3 1275 No 
jsr305.ParameterAnnotationLo
okupResult 1 0 No 

BytecodeScanningDetector 4 23 No 
jsr305.ReturnTypeAnnotationA
ccumulator 1 0 No 

CallGraph 4 1 No 
jsr305.ReturnTypeAnnotationL
ookupResult 2 0 No 

CallGraphEdge 2 0 No 
jsr305.TypeQualifierAnnotatio
n 7 707 No 

CallGraphNode 3 0 No 
jsr305.TypeQualifierAnnotatio
nLookupResult 1 0 No 

CallSite 3 1 No 
jsr305.TypeQualifierApplicatio
ns 29 382 No 

ch.ClassVertex 3 11 No jsr305.TypeQualifierResolver 8 34 No 

ch.InheritanceEdge 1 0 No jsr305.TypeQualifierValue 17 594 No 

ch.InheritanceGraph 2 0 No L10N 16 276 No 

ch.InheritanceGraphVisitor 1 0 No LaunchAppropriateUI 1 0 No 

ch.OverriddenMethodsVisitor 3 1 No LocalVariableAnnotation 23 144 No 

ch.Subtypes2 46 4154 No log.Profiler 15 139 No 

charsets.UTF8 5 775 No log.YourKitController 1 0 No 

CheckBcel 1 0 No Lookup 7 91 No 

ClassAnnotation 14 375 No MethodAnnotation 28 120 No 

classfile.ClassDescriptor 55 5983 No npe.DerefFinder 21 838 No 

classfile.DescriptorFactory 37 3392 No npe.IsNullConditionDecision 3 10 No 

classfile.FieldDescriptor 6 23 No npe.IsNullValue 16 238 Yes 

classfile.FieldOrMethodDescriptor 4 1 No npe.IsNullValueAnalysis 18 827 No 

classfile.Global 57 5487 No 
npe.IsNullValueAnalysisFeature
s 1 0 No 

classfile.IAnalysisCache 70 11231 No npe.IsNullValueDataflow 11 126 No 

classfile.IAnalysisEngine 1 0 No npe.IsNullValueFrame 14 177 No 

classfile.IClassAnalysisEngine 4 1023 No 
npe.IsNullValueFrameModelin
gVisitor 17 546 No 

classfile.IClassFactory 2 24 No 
npe.LocationWhereValueBeco
mesNull 3 4 No 

classfile.IClassObserver 1 0 No 
npe.NullDerefAndRedundantC
omparisonCollector 1 0 No 

classfile.IClassPath 3 45 No 
npe.NullDerefAndRedundantC
omparisonFinder 27 317 No 

classfile.IClassPathBuilder 1 0 No 
npe.NullValueUnconditionalDe
ref 3 0 No 

classfile.IClassPathBuilderProgress 1 0 No 
npe.ParameterNullnessPropert
yDatabase 5 12 No 
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classfile.ICodeBase 3 662 No 
npe.PointerUsageRequiringNo
nNullValue 2 0 No 

classfile.ICodeBaseEntry 2 4 No npe.RedundantBranch 1 0 No 

classfile.ICodeBaseIterator 1 0 No npe.ReturnPathType 2 25 Yes 

classfile.ICodeBaseLocator 1 0 No npe.ReturnPathTypeAnalysis 3 20 No 

classfile.IDatabaseFactory 1 0 No npe.ReturnPathTypeDataflow 2 638 No 

classfile.IErrorLogger 3 10 No 
npe.ReturnValueNullnessPrope
rtyDatabase 2 0 No 

classfile.IMethodAnalysisEngine 2 260 No 
npe.TypeQualifierNullnessAnn
otationDatabase 16 469 No 

classfile.impl.ClassFactory 1 0 No 
npe.UsagesRequiringNonNullV
alues 8 58 No 

classfile.IScannableCodeBase 1 0 No obl.InstructionActionCache 14 127 No 

classfile.MethodDescriptor 18 1778 No obl.MatchMethodEntry 2 1 No 

classfile.MissingClassException 5 43 No obl.Obligation 4 13 No 

classfile.ReflectionDatabaseFactory 1 0 No obl.ObligationAnalysis 19 313 No 

classfile.ResourceNotFoundException 3 0 No obl.ObligationDataflow 1 0 No 

cloud.Cloud 8 92 No obl.ObligationFactory 15 912 No 

cloud.CloudFactory 7 158 No obl.ObligationPolicyDatabase 8 665 No 

cloud.CloudPlugin 2 2 No 
obl.ObligationPolicyDatabaseA
ction 4 645 No 

cloud.CloudPluginBuilder 2 8 No 
obl.ObligationPolicyDatabaseA
ctionType 1 0 No 

cloud.CloudPlugincloud.CloudPlugi 1 0 No 
obl.ObligationPolicyDatabaseE
ntry 1 0 No 

cloud.DoNothingCloud 5 330 No obl.ObligationSet 5 40 No 

ComponentPlugin 2 0 No obl.State 4 2 No 

config.AnalysisFeatureSetting 2 0 No obl.StateSet 5 8 No 

config.ProjectFilterSettings 1 0 Yes OpcodeStack 55 825 Yes 

config.UserPreferences 6 652 Yes PackageMemberAnnotation 8 219 No 

constant.Constant 4 294 No PackageStats 4 0 No 

constant.ConstantAnalysis 4 166 No plan.AnalysisPass 3 8 No 

constant.ConstantDataflow 3 638 No plan.ConstraintEdge 1 0 No 

constant.ConstantFrame 4 294 No plan.ConstraintGraph 1 0 No 

constant.ConstantFrameModelingVisit
or 3 0 No plan.DetectorFactorySelector 1 0 No 

DeepSubtypeAnalysis 10 907 No plan.DetectorNode 1 0 No 

DelegatingBugReporter 1 0 No 
plan.DetectorOrderingConstrai
nt 2 22 No 

deref.UnconditionalValueDerefAnalysi
s 33 2852 No plan.ExecutionPlan 12 728 No 

deref.UnconditionalValueDerefDataflo
w 4 20 No 

plan.ReportingDetectorFactory
Selector 1 0 No 

deref.UnconditionalValueDerefSet 8 64 No 
plan.SingleDetectorFactorySele
ctor 1 0 No 

detect.AppendingToAnObjectOutputSt
ream 1 0 No Plugin 15 155 No 

detect.AtomicityProblem 2 0 No PluginLoader 18 311 No 

detect.BadlyOverriddenAdapter 1 0 No ProgramPoint 6 17 No 

detect.BadResultSetAccess 2 0 No Project 23 297 No 

detect.BadSyntaxForRegularExpression 1 0 No ProjectPackagePrefixes 3 21 No 

detect.BadUseOfReturnValue 2 0 No ProjectStats 14 159 No 

detect.BooleanReturnNull 5 50 No PropertyBundle 1 0 No 
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detect.BuildNonNullAnnotationDataba
se 1 0 No props.WarningProperty 1 0 No 

detect.BuildNonnullReturnDatabase 11 464 No props.WarningPropertySet 7 658 No 

detect.BuildObligationPolicyDatabase 12 508 No ResourceCollection 3 16 No 

detect.BuildUnconditionalParamDeref
Database 20 1532 No ResourceTrackingDetecto 11 963 No 

detect.CalledMethods 4 3 No SAXBugCollectionHandler 12 105 Yes 

detect.CheckImmutableAnnotation 3 66 No SelfCalls 7 308 No 

detect.CheckRelaxingNullnessAnnotati
on 4 6 No SortedBugCollection 16 215 No 

detect.CheckTypeQualifiers 4 16 No SourceLineAnnotation 58 648 No 

detect.CloneIdiom 10 94 No 
sourceViewer.HighlightInforma
tion 2 23 No 

detect.ComparatorIdiom 6 75 No sourceViewer.JavaScanner 1 0 No 

detect.ConfusedInheritance 3 7 No 
sourceViewer.JavaSourceDocu
ment 6 130 No 

detect.ConfusionBetweenInheritedAnd
OuterMethod 4 2 No 

sourceViewer.NavigableTextPa
ne 2 1 No 

detect.CrossSiteScripting 2 1 No 
sourceviewer.NumberedEditor
Kit 1 0 No 

detect.DefaultEncodingDetector 5 7 No 
sourceViewer.NumberedParag
raphView 2 33 No 

detect.DoInsideDoPrivileged 4 10 No StringAnnotation 5 107 No 

detect.DontCatchIllegalMonitorStateEx
ception 2 0 No SuppressionMatcher 2 0 No 

detect.DontIgnoreResultOfPutIfAbsent 12 448 No SwitchHandler 7 186 No 

detect.DroppedException 8 78 No SystemPropertie 1 0 No 

detect.DumbMethodInvocations 8 1562 No SystemProperties 118 508 No 

detect.DumbMethods 22 1588 No TextUIBugReporter 1 0 No 

detect.DuplicateBranches 7 230 No type.BottomType 2 4 No 

detect.ExplicitSerialization 9 81 No type.DoubleExtraType 1 0 No 

detect.FieldItemSummary 10 21 No type.ExceptionObjectType 3 1 No 

detect.FinalizerNullsFields 1 0 No type.ExceptionSet 7 175 No 

detect.FindBadCast2 26 1574 No type.ExceptionSetFactory 3 1 No 

detect.FindBadForLoop 1 0 No type.FieldStoreTypeDatabase 1 0 No 

detect.FindBugsSummaryStats 4 28 No type.LongExtraType 1 0 No 

detect.FindDeadLocalStores 20 1381 No type.NullType 6 5 No 

detect.FindDoubleCheck 3 6 No type.StandardTypeMerger 10 413 No 

detect.FindFieldSelfAssignment 1 0 No type.TopType 5 11 No 

detect.FindFinalizeInvocations 3 73 No type.TypeAnalysis 26 285 No 

detect.FindFloatEquality 5 13 No type.TypeDataflow 21 339 No 

detect.FindHEmismatch 13 478 No type.TypeFrame 21 195 No 

detect.FindInconsistentSync2 31 4327 No 
type.TypeFrameModelingVisito
r 28 221 Yes 

detect.FindJSR166LockMonitorenter 11 249 No type.TypeMerger 2 1 No 

detect.FindLocalSelfAssignment2 5 16 No TypeAnnotation 11 221 No 

detect.FindMaskedFields 12 300 No ui2.FilterListener 1 0 No 

detect.FindMismatchedWaitOrNotify 10 219 No updates.PluginUpdateListener 1 0 No 

detect.FindNakedNotify 2 3 No updates.UpdateCheckCallback 1 0 No 

detect.FindNonShortCircuit 3 1 No updates.UpdateChecker 10 152 Yes 

detect.FindNullDeref 49 7590 No util.Bag 1 0 No 

detect.FindNullDerefsInvolvingNonSho
rtCircuitEvaluation 11 238 No util.ClassName 36 323 Yes 
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detect.FindOpenStream 17 3125 No util.ClassPathUtil 2 20 No 

detect.FindPuzzlers 15 212 No util.DualKeyHashMap 6 81 No 

detect.FindRefComparison 27 1869 No util.EditDistance 2 0 No 

detect.FindReturnRef 7 20 No util.JavaWebStart 2 14 No 

detect.FindRunInvocations 3 8 No util.LaunchBrowser 1 0 No 

detect.FindSelfComparison 10 313 No util.MapCache 4 88 No 

detect.FindSelfComparison2 13 388 No util.MultiMap 4 31 No 

detect.FindSleepWithLockHeld 8 284 No util.SplitCamelCaseIdentifier 2 1 Yes 

detect.FindSpinLoop 2 13 No util.StringMatcher 1 0 No 

detect.FindSqlInjection 12 1783 Yes util.Strings 4 9 Yes 

detect.FindTwoLockWait 7 154 No util.SubtypeTypeMatcher 4 85 No 

detect.FindUncalledPrivateMethods 4 10 No util.TopologicalSort 6 46 No 

detect.FindUnconditionalWait 2 3 No util.TypeMatcher 1 0 No 

detect.FindUninitializedGet 11 151 No util.Util 26 396 No 

detect.FindUnrelatedTypesInGenericC
ontainer 33 2446 No Version 4 79 No 

detect.FindUnreleasedLock 6 808 No visitclass.AnnotationVisitor 2 7 No 

detect.FindUnsatisfiedObligation 5 49 No visitclass.DismantleBytecode 15 209 Yes 

detect.FindUnsyncGet 3 4 No visitclass.LVTHelper 2 8 No 

detect.FindUselessControlFlow 2 0 No visitclass.PreorderVisito 1 0 No 

detect.FindUseOfNonSerializableValue 11 344 No visitclass.PreorderVisitor 23 104 Yes 

detect.FormatStringChecker 5 648 No visitclass.Util 5 10 No 

detect.FunctionsThatMightBeMistaken
ForProcedure 10 436 No vna.AvailableLoad 4 0 No 

detect.HugeSharedStringConstants 1 0 No vna.LoadedFieldSet 2 2 No 

detect.IDivResultCastToDouble 5 27 No vna.MergeTree 6 137 No 

detect.IncompatMask 2 3 Yes vna.ValueNumber 29 143 No 

detect.InconsistentAnnotations 9 711 No vna.ValueNumberAnalysis 18 613 No 

detect.InefficientToArray 5 18 No 
vna.ValueNumberAnalysisFeat
ures 1 0 No 

detect.InfiniteLoop 1 0 No vna.ValueNumberCache 2 35 No 

detect.InfiniteRecursiveLoop 6 34 No vna.ValueNumberDataflow 23 283 No 

detect.InheritanceUnsafeGetResource 4 24 No vna.ValueNumberFactory 7 8 No 

detect.InitializationChain 1 0 No vna.ValueNumberFrame 36 211 No 

detect.InitializeNonnullFieldsInConstru
ctor 4 5 No 

vna.ValueNumberFrameModeli
ngVisitor 10 665 No 

detect.InstanceFieldLoadStreamFactor
y 4 11 No vna.ValueNumberSourceInfo 14 311 No 

detect.InstantiateStaticClass 6 19 No xml.OutputStreamXMLOutput 3 27 No 

detect.IntCast2LongAsInstant 4 9 No xml.XMLAttributeList 14 791 No 

detect.InvalidJUnitTest 5 6 No xml.XMLOutput 15 879 No 

detect.IOStreamFactory 5 18 No xml.XMLOutputUtil 3 0 No 

detect.IteratorIdioms 6 58 No xml.XMLUtil 2 6 No 

Appendix Table II: Centrality metrics values for JabRef 

Class DC BC 
Unit 
Test 

Class DC BC 
Unit 
Test 

autocompleter.AbstractAutoComplete
r 4 25 Yes 

jabref.autocompleter.NameFiel
dAutoCompleter 1 0 No 

autocompleter.AutoCompleterFactory 1 0 No jabref.BaseAction 1 0 No 

autocompleter.CrossrefAutoCompleter 1 0 No jabref.BasePanel 57 368 No 
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autocompleter.DefaultAutoCompleter 1 0 No jabref.BibtexDatabase 25 168 Yes 

autocompleter.EntireFieldAutoComple
ter 1 0 No jabref.BibtexEntry 52 

577
3 Yes 

autocompleter.NameFieldAutoComple
ter 2 11 No jabref.BibtexEntryType 22 143 No 

collab.Change 2 75 No jabref.BibtexFields 13 915 No 

collab.ChangeDisplayDialog 1 0 No jabref.BrowseAction 1 0 No 

collab.ChangeScanner 11 491 No jabref.CallBack 6 10 No 

collab.EntryChange 3 35 No 
jabref.CrossRefEntryComparato
r 1 0 No 

collab.FileUpdateMonitor 4 1 No jabref.DatabaseChangeEvent 3 281 No 

collab.FileUpdatePanel 2 6 No jabref.DatabaseChangeListener 1 0 No 

collab.MetaDataChange 2 0 No jabref.DuplicateCheck 3 8 Yes 

core.generated._JabRefPlugin 1 0 No jabref.EntryComparator 3 104 No 

core.JabRefPlugin 1 0 No jabref.EntryEditor 19 182 No 

date.DatePickerButton 1 0 No jabref.EntryEditorPrefsTab 2 0 No 

EntryEditorTabList 1 0 No jabref.EntryEditorTab 10 422 No 

export.AutoSaveManager 8 33 No jabref.EntryEditorTabList 1 0 No 

export.CustomExportDialog 4 3 No jabref.EntrySorter 3 283 No 

export.CustomExportList 4 1 No jabref.EntryTypeDialog 4 12 No 

export.ExportCustomizationDialog 5 17 No jabref.ExternalTab 6 127 No 

export.ExportFileFilter 1 0 No jabref.FieldComparator 5 431 No 

export.ExportFormats 16 1215 No jabref.FieldEditor 4 559 No 

export.FieldFormatter 1 0 No jabref.FieldEditorFocusListene 1 0 No 

export.FileActions 12 386 No jabref.FieldNameLabel 1 0 No 

export.IExportFormat 2 280 No jabref.FieldTextArea 3 289 No 

export.LatexFieldFormatter 5 25 No jabref.FieldTextField 4 6 No 

export.ModsExportFormat 3 10 No jabref.FieldTextMenu 1 0 No 

export.MSBibExportFormat 1 0 No jabref.FileHistory 4 0 No 

export.MySQLExport 2 39 No jabref.FileTab 3 0 No 

export.OOCalcDatabase 7 694 No jabref.FindUnlinkedFilesDialog 4 31 No 

export.OpenDocumentRepresentation 7 694 No jabref.FontSelectorDialog 1 0 No 

export.OpenDocumentSpreadsheetCre
ator 1 0 No jabref.GeneralRenderer 4 5 No 

export.OpenOfficeDocumentCreator 1 0 No jabref.GeneralTab 3 0 No 

export.PluginBasedExportFormat 2 0 No jabref.GlobalFocusListener 1 0 No 

export.PostgreSQLExport 2 39 No jabref.Globals 110 118 No 

export.SaveAllAction 4 0 No jabref.gui.FileListEditor 1 0 No 

export.SaveDatabaseAction 16 326 No jabref.GUIGlobals 37 
116

1 No 

export.SaveSession 8 520 No jabref.IdComparator 1 0 No 

export.VerifyingWriter 3 1 No jabref.ImportSettingsTab 2 0 No 

exporter.DBExporter 10 691 No jabref.IncrementalSearcher 2 11 No 

exporter.MySQLExporter 1 0 No jabref.JabRef 14 203 No 

exporter.PostgreSQLExporter 1 0 No jabref.JabRefFrame 51 311 No 

external.AutoSetExternalFileForEntries 10 142 No jabref.JabRefPreferences 98 967 No 

external.DownloadExternalFile 2 0 No 
jabref.JTextAreaWithHighlighti
ng 2 0 No 

external.ExternalFileMenuItem 3 3 No jabref.MarkEntriesAction 9 52 No 

external.ExternalFilePanel 4 47 No jabref.MergeDialog 4 280 No 

external.ExternalFileType 9 260 No 
jabref.MergeDialog_ok_actionA
dapter 1 0 No 

external.ExternalFileTypeEditor 2 2 No jabref.MetaData 20 566 No 
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external.FileLinksUpgradeWarning 2 24 No jabref.MnemonicAwareAction 1 0 No 

external.PushToApplication 3 1 No jabref.NameFormatterTab 4 2 No 

external.PushToApplicationAction 7 207 No jabref.OpenFileFilter 1 0 No 

external.PushToApplicationButton 8 94 No jabref.PrefsDialog3 4 280 No 

external.PushToEmacs 2 0 No jabref.PrefsTab 1 0 No 

external.PushToLatexEditor 2 0 No jabref.PreviewPanel 7 77 No 

external.PushToLyx 4 1 No jabref.PreviewPrefsTab 4 8 No 

external.PushToTeXstudio 3 0 No jabref.RightClickMenu 17 667 No 

external.PushToVim 2 0 No jabref.SearchManager2 15 114 No 

external.PushToWinEdt 3 0 No jabref.SearchRule 1 0 No 

external.SynchronizeFileField 1 0 No jabref.SearchRuleSet 2 280 No 

external.WriteXMPAction 9 227 No jabref.SearchTextListener 1 0 Yes 

external.WriteXMPEntryEditorAction 2 0 No jabref.SidePane 2 0 No 

format.AuthorAbbreviator 2 280 No jabref.SidePaneComponent 2 1 No 

format.AuthorFirstFirst 1 0 Yes jabref.SidePaneManager 7 109 No 

format.AuthorLastFirst 1 0 No jabref.SplashScreen 1 0 No 

format.AuthorLastFirstAbbrCommas 1 0 Yes jabref.TabLabelPattern 4 35 No 

format.AuthorLastFirstAbbreviator 1 0 Yes jabref.TableColumnsTab 3 0 No 

format.Authors 3 239 No jabref.TablePrefsTab 3 24 No 

format.CreateDocBookAuthors 2 280 No jabref.TransferableBibtexEntry 1 0 No 

format.CreateDocBookEditors 1 0 No jabref.Util 52 550 Yes 

format.DOICheck 1 0 Yes jabref.Worker 6 10 No 

format.DOIStrip 1 0 No jabref.XmpPrefsTab 2 0 No 

format.FileLink 4 11 No journals.AbbreviateAction 4 8 No 

format.GetOpenOfficeType 2 1 No journals.JournalAbbreviations 8 110 No 

format.IfPlural 1 0 No journals.ManageJournalsAction 3 3 No 

format.RemoveBrackets 2 1 No journals.ManageJournalsPanel 7 20 No 

format.RemoveLatexCommands 1 0 No journals.UnabbreviateAction 4 8 No 

format.RemoveWhitespace 2 1 No label.HandleDuplicateWarnings 3 40 No 

format.ResolvePDF 2 0 Yes label.LabelMaker 2 0 No 

format.RisAuthors 1 0 No labelPattern.LabelPattern 5 9 No 

format.RisKeywords 1 0 No labelPattern.LabelPatternPanel 4 21 No 

format.WrapContent 1 0 No labelPattern.LabelPatternUtil 10 685 Yes 

format.WrapFileLinks 4 927 No 
labelPattern.ResolveDuplicateL
abelDialog 5 14 No 

format.XMLChars 1 0 No 
labelPattern.SearchFixDuplicate
Labels 7 114 No 

groups.AbstractGroup 4 4 No 
layout.AbstractParamLayoutFor
matter 5 840 No 

groups.AllEntriesGroup 1 0 No layout.format.Replace 1 0 No 

groups.GroupSelector 8 96 No layout.Layout 5 17 Yes 

groups.GroupsPrefsTab 2 0 No layout.LayoutEntry 13 112 Yes 

groups.GroupsTree 4 11 No layout.LayoutFormatter 1 0 No 

groups.GroupTreeCellRenderer 6 99 No layout.LayoutHelper 12 779 No 

groups.GroupTreeNode 7 20 No layout.ParamLayoutFormatter 1 0 No 

gui.AutoCompleteListener 4 35 No layout.WSITools 2 49 No 

gui.CleanUpAction 4 0 No mods.MODSDatabase 3 28 No 

gui.ColorSetupPanel 3 0 No mods.MODSEntry 5 235 No 

gui.DatabasePropertiesDialog 4 4 No mods.PageNumbers 2 1 No 

gui.DragDropPopupPane 2 0 No mods.PersonName 4 72 No 

gui.FileDialogs 6 561 No msbib.MSBibDatabase 3 28 No 

gui.FileListEditor 8 156 No msbib.MSBibEntry 5 235 No 

gui.FileListEntry 6 15 No oo.OpenOfficePanel 8 106 No 

gui.FileListEntryEditor 8 78 No plugin.ManagePluginsDialog 4 45 No 

gui.FileListTableModel 10 210 No plugin.PluginCore 8 378 No 

gui.GlazedEntrySorter 1 0 No plugin.PluginInstaller 7 98 No 
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gui.IsMarkedComparator 1 0 No plugin.PluginInstallerAction 2 0 No 

gui.MainTable 12 154 No ritopt.BooleanOption 1 0 No 

gui.MainTableFormat 13 1316 No ritopt.Option 1 0 No 

gui.MainTableSelectionListener 12 200 No ritopt.OptionModule 2 280 No 

gui.PreventDraggingJTableHeader 1 0 No ritopt.Options 2 558 No 

gui.SortTabsAction 1 0 No ritopt.StringOption 1 0 No 

help.HelpAction 5 10 No search.BasicSearch 2 280 Yes 

help.HelpContent 2 0 No search.SearchExpression 2 29 No 

help.HelpDialog 5 44 No search.SearchExpressionLexer 1 0 No 

importer.DbImportAction 8 1180 No search.SearchExpressionParser 3 7 No 

importer.DBImporter 1 0 No search.SearchMatcher 1 0 No 

importer.MySQLImporter 3 15 No sf.jabref.EntryEditor 1 0 No 

imports.ACMPortalFetcher 1 0 No specialfields.Priority 3 1 No 

imports.ADSFetcher 1 0 No specialfields.Quality 5 12 No 

imports.AppendDatabaseAction 12 479 No specialfields.Rank 7 46 No 

imports.BibtexParser 8 211 Yes specialfields.RankCompact 3 0 No 

imports.CheckForNewEntryTypesActio
n 1 0 No specialfields.Relevance 5 12 No 

imports.CustomImportList 3 85 No specialfields.SpecialField 3 2 No 

imports.EntryFetcher 1 0 No specialfields.SpecialFieldAction 5 23 No 

imports.EntryFromFileCreator 2 0 No 
specialfields.SpecialFieldDataba
seChangeListener 3 279 No 

imports.EntryFromFileCreatorManager 4 76 Yes 
specialfields.SpecialFieldMenuA
ction 3 0 No 

imports.EntryFromPDFCreator 1 0 Yes specialfields.SpecialFieldsUtils 7 211 No 

imports.FieldContentParser 1 0 No 
specialfields.SpecialFieldUpdat
eListener 1 0 No 

imports.GeneralFetcher 4 280 Yes specialfields.SpecialFieldValue 8 53 No 

imports.IEEEXploreFetcher 1 0 No sql.DBConnectDialog 4 11 No 

imports.ImportFormat 1 0 No 
sql.DBExporterAndImporterFac
tory 6 641 No 

imports.ImportFormatReader 5 284 No sql.DBImporterExporter 2 4 No 

imports.ImportFormats 1 0 No sql.DBStrings 6 295 No 

imports.INSPIREFetcher 1 0 No sql.SQLUtil 6 106 No 

imports.OAI2Fetcher 1 0 Yes undo.CountingUndoManager 9 14 No 

imports.OpenDatabaseAction 16 473 No undo.NamedCompound 1 0 No 

imports.ParserResult 7 291 No undo.UndoableFieldChange 1 0 No 

imports.PdfXmpImporter 1 0 No undo.UndoableInsertEntry 3 0 No 

imports.PostOpenAction 1 0 No util.CaseChangeMenu 2 280 No 

imports.SPIRESFetcher 1 0 No util.CaseChanger 1 0 Yes 

jabref.AbstractWorker 3 3 No util.ErrorConsole 2 0 No 

jabref.AdvancedTab 4 8 No util.TBuildInfo 1 0 No 

jabref.AppearancePrefsTab 3 0 No util.TXMLReader 1 0 No 

jabref.AuthorList 16 2921 Yes util.Util 1 0 Yes 

Appendix Table III: Centrality metrics values for Dependency Finder 

Class DC BC 
Unit 
test 

Class DC BC 
Unit 
test 

dependency.Node 60 1816 Yes impl.FieldRef_info 3 19 No 

dependency.Printer 53 2033 No impl.Integer_info 3 180 No 

dependency.VisitorBase 52 1283 No impl.Method_info 3 10 Yes 

dependency.RegularExpressionSelectio
nCriteria 50 2500 Yes impl.Signature_attribute 3 9 Yes 

dependency.TextPrinter 48 924 Yes impl.String_info 3 11 No 

classreader.Visitor 45 4105 No classreader.Annotation 2 7 No 

dependency.FeatureNode 40 478 Yes classreader.AttributeType 2 0 No 
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Class DC BC 
Unit 
Test 

Class DC BC 
Unit 
Test 

dependency.Visitor 38 386 No classreader.Class_info 2 7 No 

impl.ConstantPool 35 1658 No classreader.ClassfileScanner 2 0 Yes 

dependency.ClassNode 34 1243 Yes classreader.ConstantPoolEntry 2 0 No 

classreader.VisitorBase 31 2911 Yes classreader.ExceptionHandler 2 7 No 

dependency.TraversalStrategy 30 127 No 
classreader.LoadListenerVisitor
Adapter 2 1 Yes 

dependency.MetricsGatherer 29 778 Yes 
classreader.LocalVariableTable
_attribute 2 0 No 

gui.StatusLine 29 918 Yes 
classreader.TransientClassfileLo
ader 2 180 Yes 

dependency.NodeFactory 27 214 Yes 
commandline.CommandLineSw
itch 2 0 No 

dependency.CodeDependencyCollecto
r 25 180 Yes 

commandline.ParameterStrate
gy 2 0 No 

dependency.GraphSummarizer 25 137 Yes commandline.Printer 2 180 No 

dependency.SelectionCriteria 25 75 No 
commandline.SingleValueSwitc
h 2 2 Yes 

classreader.ClassfileLoaderEventSourc
e 24 355 Yes commandline.ToggleSwitch 2 2 Yes 

dependency.GraphCopier 22 57 Yes 
dependency.ClosureLayerSelect
or 2 5 No 

gui.DependencyFinder 22 2673 No dependency.TransitiveClosure 2 11 Yes 

classreader.ZipClassfileLoader 21 32 Yes gui.ClosureQueryAction 2 0 No 

dependency.PackageNode 20 23 Yes gui.DependencyQueryAction 2 0 No 

classreader.DirectoryClassfileLoader 19 26 Yes gui.MetricsQueryAction 2 0 No 

dependency.ClosureStartSelector 17 41 Yes gui.MetricsTableModel 2 180 No 

impl.Feature_info 17 46 No 
gui.NewDependencyGraphActi
on 2 0 No 

classreader.Monitor 15 86 Yes 
impl.AnnotationDefault_attribu
te 2 72 Yes 

impl.Class_info 15 146 Yes impl.ArrayElementValue 2 72 Yes 

impl.Classfile 15 236 Yes 
impl.BooleanConstantElementV
alue 2 0 Yes 

impl.Code_attribute 15 121 yes impl.ElementValueType 2 180 No 

classreader.JarClassfileLoader 14 5 Yes impl.InnerClasses_attribute 2 0 Yes 

impl.Instruction 14 209 Yes 
impl.IntegerConstantElementV
alue 2 0 Yes 

impl.UTF8_info 14 142 No 
impl.LocalVariableTable_attribu
te 2 0 Yes 

gui.StatusLineUpdater 13 110 No 
impl.LocalVariableTypeTable_at
tribute 2 0 Yes 

classreader.ClassfileLoader 12 24 Yes 
impl.StringConstantElementVal
ue 2 4 Yes 

classreader.ClassfileLoaderDecorator 12 3 No 
classreader.AnnotationDefault_
attribute 1 0 No 

dependency.SelectiveTraversalStrateg
y 12 0 Yes classreader.ArrayElementValue 1 0 No 

dependency.XMLPrinter 12 241 Yes classreader.ClassElementValue 1 0 No 

impl.LocalVariable 12 167 Yes classreader.ClassfileFactory 1 0 No 

impl.NameAndType_info 11 56 No classreader.Code_attribute 1 0 No 

impl.MethodRef_info 10 124 No classreader.ElementValue 1 0 No 

classreader.DirectoryExplorer 9 2 Yes classreader.ElementValuePair 1 0 No 

dependency.ClosureSelector 9 23 No classreader.ElementValueType 1 0 No 

dependency.ClosureStopSelector 9 31 Yes classreader.EnumElementValue 1 0 No 

dependency.DecoratorTraversalStrate
gy 9 0 No 

classreader.Exceptions_attribut
e 1 0 No 

dependencyfinder.VerboseListenerBas
e 9 97 No classreader.FieldRef_info 1 0 No 

impl.ExceptionHandler 9 36 No classreader.InnerClass 1 0 No 
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Class DC BC 
Unit 
Test 

Class DC BC 
Unit 
Test 

impl.Exceptions_attribute 9 54 Yes 
classreader.InnerClasses_attrib
ute 1 0 No 

impl.LineNumber 9 50 No 
classreader.InterfaceMethodRe
f_info 1 0 No 

impl.SourceFile_attribute 9 54 Yes classreader.LineNumber 1 0 No 

text.Hex 9 3 Yes 
classreader.LineNumberTable_
attribute 1 0 No 

classreader.LoadEvent 8 302 No classreader.LoadListene 1 0 No 

impl.AttributeFactory 8 187 Yes classreader.LocalVariable 1 0 No 

impl.AttributeType 8 91 No classreader.LocalVariableType 1 0 No 

impl.FeatureRef_info 8 0 No 
classreader.LocalVariableTypeT
able_attribute 1 0 Yes 

classreader.ClassNameHelper 7 403 Yes classreader.MethodRef_info 1 0 No 

dependency.MetricsReport 7 5 No 
classreader.ModifiedOnlyDispa
tcher 1 0 Yes 

impl.LocalVariableType 7 90 No classreader.NameAndType_info 1 0 No 

classreader.DescriptorHelper 6 25 Yes classreader.Parameter 1 0 No 

commandline.CommandLine 6 1734 Yes 
classreader.RuntimeAnnotation
s_attribute 1 0 No 

dependency.TransitiveClosureEngine 6 15 Yes 
classreader.RuntimeParameter
Annotations_attribute 1 0 No 

gui.DependencyExtractAction 6 104 No 
commandline.NullParameterStr
ategy 1 0 Yes 

gui.RefreshDependencyGraphAction 6 94 No 
dependency.DecoratorTraversa
lStrateg 1 0 No 

gui.VerboseListener 6 7 No 
dependencyfinder.gui.StatusLin
eUpdater 1 0 No 

impl.ConstantValue_attribute 6 95 Yes dependencyfinder.Version 1 0 No 

impl.InnerClass 6 53 No gui.AboutAction 1 0 No 

classreader.Classfile 5 76 No gui.AdvancedQueryPanelAction 1 0 No 

classreader.Method_info 5 9 No gui.DependencyExtractActio 1 0 No 

classreader.DescriptorIterator 4 24 No gui.DependencyFinde 1 0 No 

classreader.LoadListenerBase 4 26 No 
gui.RefreshDependencyGraphA
ctio 1 0 No 

commandline.CommandLineUsage 4 534 Yes gui.SimpleQueryPanelAction 1 0 No 

commandline.Visitor 4 356 No gui.StatusLineUpdate 1 0 No 

gui.AllQueriesAction 4 4 No impl.Code_attribut 1 0 No 

impl.Annotation 4 4 Yes impl.ConstantElementValue 1 0 No 

impl.ClassElementValue 4 80 Yes impl.Custom_attribute 1 0 Yes 

impl.ElementValueFactory 4 361 Yes impl.Deprecated_attribute 1 0 Yes 

impl.ElementValuePair 4 446 Yes impl.EnclosingMethod_attribut 1 0 No 

impl.EnumElementValue 4 80 Yes impl.Field_info 1 0 No 

classreader.Attribute_info 3 2 No impl.Float_info 1 0 No 

classreader.ClassfileLoaderAction 3 0 No impl.InterfaceMethodRef_info 1 0 Yes 

classreader.ClassfileLoaderDispatcher 3 180 No impl.LineNumberTable_attribute 1 0 Yes 

classreader.Field_info 3 9 No impl.Long_info 1 0 No 

classreader.GroupData 3 2 No 
impl.LongConstantElementValu
e 1 0 Yes 

classreader.Instruction 3 15 Yes impl.Parameter 1 0 Yes 

classreader.UTF8_info 3 3 No 
impl.RuntimeInvisibleAnnotatio
ns_attribute 1 0 Yes 

commandline.VisitorBase 3 1 No 
impl.RuntimeVisibleAnnotation
s_attribut 1 0 No 

dependency.CodeDependencyCollecto 3 1308 No 
impl.RuntimeVisibleParameter
Annotations_attribute 1 0 Yes 

gui.SaveFileAction 3 0 No impl.Signature_attribut 1 0 No 

impl.CodeIterator 3 0 No impl.Synthetic_attribute 1 0 Yes 

impl.EnclosingMethod_attribute 3 0 Yes text.PrinterBuffer 1 0 Yes 

    text.RegularExpressionParser 1 0 yes 
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Appendix Table IV: Centrality metrics values for MOEA 

Class DC BC 
Unit 
Test 

Class DC BC 
Unit 
Test 

AbstractAlgorithm 4 9 No NormalizedIndicator 1 0 No 

AbstractEvolutionaryAlgorithm 2 12 Yes Normalizer 5 158 Yes 

Accumulator 22 847 Yes NSGAII 6 40 Yes 

ActionFactory 16 65 No ObjectiveComparator 2 0 Yes 

AdaptiveMultimethodVariationCollect
or 1 0 Yes OperatorFactory 6 101 Yes 

AdaptiveTimeContinuation 2 1 Yes PaintHelper 5 3 No 

AdaptiveTimeContinuationCollector 3 132 Yes ParetoObjectiveComparator 15 64 Yes 

AdditiveEpsilonIndicator 6 17 Yes PeriodicAction 1 0 Yes 

AggregateConstraintComparator 23 107 Yes PM 9 24 Yes 

Algorithm 6 159 Yes Population 24 251 Yes 

AlgorithmFactory 1 0 No PopulationIO 6 151 Yes 

AlgorithmProvider 1 0 No PopulationSizeCollector 5 173 Yes 

Analyzer 2 0 Yes PRNG 13 157 Yes 

ApproximationSetCollector 5 52 Yes Problem 15 224 No 

ApproximationSetPlot 9 25 No ProblemBuilder 2 16 Yes 

ApproximationSetViewer 6 17 No ProblemFactory 4 175 No 

AttachPoint 9 200 No ProblemProvider 1 0 No 

CEC2009 21 70 Yes Problems 11 862 No 

CF10 3 5 No PropertiesProblems 1 0 Yes 

CF2 3 5 No RandomInitialization 7 33 Yes 

CF3 3 5 No RandomSearch 2 12 No 

CF4 3 5 No RankComparator 1 0 Yes 

CF5 3 5 No RealVariable 11 23 Yes 

CF6 3 5 No ResultKey 6 8 No 

CF7 5 11 No ResultPlot 9 46 No 

CF8 3 5 No RotatedProblem 8 173 Yes 

CF9 3 5 No RotatedProblems 3 20 Yes 

ChainedComparator 11 24 Yes RotationMatrixBuilder 2 5 Yes 

Collector 3 4 Yes SBX 9 26 No 

CompoundVariation 4 9 Yes Selection 2 0 No 

Contribution 2 146 Yes Settings 4 160 Yes 

Controller 35 1234 No ShapeFunctions 2 74 No 

ControllerEvent 21 244 No Shapes 3 360 No 

ControllerListener 8 21 No Solution 86 572 Yes 

CrowdingComparator 2 0 Yes SortedListModel 5 5 No 

DiagnosticTool 25 544 No Spacing 3 0 Yes 

DifferentialEvolution 7 30 Yes StandardAlgorithms 6 97 No 

DifferentialEvolutionSelection 5 4 Yes StandardProblems 1 0 Yes 

DominanceComparator 13 26 No StatisticalResultsViewer 2 1 No 

DTLZ 4 11 No TournamentSelection 6 8 Yes 

DTLZ1 2 0 Yes TransFunctions 2 73 No 

DTLZ2 3 0 Yes Transitions 2 214 No 

DTLZ3 3 0 Yes TypedProperties 3 4 Yes 

DTLZ4 2 0 Yes UF1 3 5 No 

DTLZ7 2 0 Yes UF10 3 5 No 

ElapsedTimeCollector 3 21 Yes UF11 4 6 Yes 

EncodingUtils 48 1084 Yes UF12 5 27 Yes 

EpsilonBoxDominanceArchive 16 309 Yes UF2 3 5 No 

EpsilonBoxDominanceComparato 1 0 Yes UF3 3 5 No 

EpsilonBoxDominanceComparator 10 12 Yes UF4 3 5 No 

EpsilonBoxEvolutionaryAlgorithm 1 0 No UF5 3 5 No 

EpsilonBoxObjectiveComparator 21  Yes UF6 3 5 No 

EpsilonHelper 4 13 Yes UF7 4 8 No 

EpsilonMOEA 10 169 Yes UF8 3 5 No 
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Class DC BC 
Unit 
Test 

Class DC BC 
Unit 
Test 

EpsilonProgressCollector 4 150 Yes UF9 3 5 No 

EvolutionaryAlgorithm 2 14 No Variable 6 1 No 

FastNondominatedSorting 5 7 Yes Variation 6 11 No 

FrameworkFunctions 1 0 No Vector 1 0 Yes 

GDE3 7 11 Yes WFG 3 105 Yes 

GenerationalDistance 2 0 Yes WFG1 3 103 No 

Hypervolume 4 81 Yes WFG2 3 103 No 

Indicator 1 0 No WFG3 3 103 No 

IndicatorCollector 7 265 Yes WFG4 3 103 No 

IndicatorUtils 9 111 Yes WFG5 3 103 No 

Initialization 3 3 No WFG6 3 103 No 

InstrumentedAlgorithm 4 29 No WFG7 3 103 No 

Instrumenter 5 32 Yes WFG8 3 103 No 

InvertedGenerationalDistance 2 0 Yes WFG9 3 103 No 

LinePlot 17 142 No ZDT 1 0 Yes 

Localization 13 58 Yes ZDT1 2 0 No 

LZ 2 0 Yes ZDT2 2 0 No 

Misc 2 3 No ZDT3 2 0 No 

MOEAD 7 167 Yes ZDT4 2 0 No 

NondominatedPopulation 36 1404 Yes ZDT5 1 0 No 

NondominatedSortingPopulation 3 3 Yes ZDT6 2 0 No 
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Appendix D: Relationships between Dynamic Metrics and 

Class Testability Metrics 

 

 
Appendix Figure I. Scatter lot of the relationship between EC and TLOC in JabRef 

 

Appendix Figure II. Scatter plot of the relationship between EC and TLOC in MOEA 
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Appendix Figure III.  Scatter plot of the relationship between EC and NTC in JabRef 

 
Appendix Figure IV.  Scatter plot of the relationship between IC and TLOC in 

Dependency Finder 

 

Appendix Figure V. Scatter plot of the relationship between IC and NTC in 
Dependency Finder 
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Appendix Figure VI.  Scatter plot of the relationship between EF and TLOC in 

FindBugs 

 

Appendix Figure VII. Scatter plot of the relationship between EF and NTC in JabRef 

 

Appendix Figure VIII. Scatter plot of the relationship between EF and TLOC in 
Dependency Finder  
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Appendix E: Results of the Correlations between Test and 

Code Smells  

Appendix Table V: Phi correlation test results for JFreeChart 

Smells 
 

Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Feature Envy 

φ 0.22 0.06 0.04 ------- ------- 0.38 0.35 0.14 0.21 

p 0.00* 0.27 0.46 ------- ------- 0.00* 0.00* 0.03* 0.00* 

Large Class 

φ 0.03 0.04 -0.06 ------- ------- -0.09 0.27 0.18 0.11 

p 0.54 0.51 0.30 ------- ------- 0.08 0.00* 0.00* 0.04* 

Type 

Checking 

φ 0.13 0.02 0.17 ------- ------- -0.04 0.13 -0.02 0.14 

p 0.01* 0.68 0.00* ------- ------- 0.51 0.02* 0.72 0.01* 

Brain Class 

φ 0.21 0.09 -0.06 ------- ------- 0.41 0.34 0.16 0.17 

p 0.00* 0.10 0.25 ------- ------- 0.00* 0.00* 0.00* 0.00* 

Duplicated 

Code 

φ 0.05 -0.01 -0.09 ------- ------- -0.08 0.24 0.12 0.27 

p 0.39 0.87 0.10 ------- ------- 0.11 0.00* 0.02* 0.00* 

Schizophrenic 

Class 

φ 0.18 0.02 -0.01 ------- ------- -0.03 -0.03 0.18 0.04 

p 0.00* 0.75 0.82 ------- ------- 0.61 0.58 0.00* 0.43 

Data Class 

φ -0.03 -0.16 -0.02 ------- ------- -0.05 0.01 0.19 -0.08 

p 0.61 0.00* 0.68 ------- ------- 0.35 0.93 0.00* 0.16 

Data Clumps 

φ -0.07 0.08 -0.06 ------- ------- -0.13 0.33 0.17 0.05 

p 0.18 0.12 0.27 ------- ------- 0.02* 0.00* 0.00* 0.38 
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Appendix Table VI: Phi correlation test results for FindBugs 

Smells 
 Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Feature Envy 

φ -0.07 0.07 -0.09 0.33 ------- 0.03 ------- ------- 0.18 

p 0.67 0.68 0.60 0.04* ------- 0.86 ------- ------- 0.28 

Large Class 

φ 0.22 0.10 -0.13 -0.22 ------- 0.04 ------- ------- 0.26 

p 0.17 0.54 0.44 0.17 ------- 0.80 ------- ------- 0.11 

Type 

Checking 

φ 0.22 -0.05 0.14 0.13 ------- 0.20 ------- ------- 0.26 

p 0.17 0.78 0.39 0.42 ------- 0.22 ------- ------- 0.11 

Brain Class 

φ 0.19 0.14 0.24 0.02 ------- 0.04 ------- ------- 0.31 

p 0.24 0.39 0.15 0.90 ------- 0.80 ------- ------- 0.05* 

Duplicated 

Code 

φ 0.26 -0.15 0.13 -0.08 ------- 0.13 ------- ------- 0.28 

p 0.11 0.36 0.43 0.64 ------- 0.44 ------- ------- 0.09 

Schizophrenic 

Class 

φ -0.04 -0.18 -0.05 -0.09 ------- -0.11 ------- ------- -0.06 

p 0.81 0.26 0.77 0.60 ------- 0.52 ------- ------- 0.69 

Data Class 

φ ------- ------- ------- ------- ------- ------- ------- ------- ------- 

p ------- ------- ------- ------- ------- ------- ------- ------- ------- 

Data Clumps 

φ ------- ------- ------- ------- ------- ------- ------- ------- ------- 

p ------- ------- ------- ------- ------- ------- ------- ------- ------- 
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Appendix Table VII: Phi correlation test results for JMeter 

Smells 
 Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Feature Envy 

φ 0.11 0.01 -0.03 -0.01 0.25 0.23 0.37 0.08 0.04 

p 0.11 0.91 0.65 0.94 0.00* 0.00* 0.00* 0.27 0.61 

Large Class 

φ 0.10 -0.05 -0.03 0.14 0.23 0.16 0.35 0.07 0.15 

p 0.16 0.53 0.63 0.05* 0.00* 0.03* 0.00* 0.32 0.03* 

Type 

Checking 

φ 0.08 0.03 -0.02 0.22 -0.03 0.27 0.18 -0.03 0.05 

p 0.27 0.65 0.76 0.00* 0.70 0.00* 0.01* 0.66 0.48 

Brain Class 

φ 0.28 0.08 0.10 0.07 -0.05 0.21 0.20 0.35 0.01 

p 0.00* 0.29 0.16 0.31 0.47 0.00* 0.00* 0.00* 0.90 

Duplicated 

Code 

φ 0.00 0.15 -0.06 0.02 0.03 0.05 0.22 0.00 0.12 

p 0.97 0.03* 0.42 0.84 0.72 0.49 0.00* 0.98 0.08 

Schizophrenic 

Class 

φ -0.03 -0.01 -0.01 -0.05 -0.02 -0.05 0.24 -0.02 0.09 

p 0.72 0.87 0.86 0.53 0.83 0.49 0.00* 0.80 0.22 

Data Class 

φ -0.03 -0.23 -0.02 0.06 -0.02 -0.06 0.20 -0.02 0.13 

p 0.68 0.00* 0.84 0.40 0.80 0.42 0.01* 0.77 0.08 

Data Clumps 

φ -0.03 -0.10 -0.01 0.08 -0.02 -0.05 0.10 -0.02 0.00 

p 0.72 0.15 0.86 0.24 0.83 0.49 0.16 0.80 1.00 
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Appendix Table VIII: Phi correlation test results for JabRef 

Smells  Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Feature Envy 

φ 0.43 -0.49 -0.04 -0.06 -0.02 -0.06 0.33 -0.03 -0.09 

p 0.00* 0.00* 0.75 0.63 0.89 0.66 0.01* 0.85 0.50 

Large Class 

φ -0.09 0.08 -0.09 0.23 -0.04 0.07 0.28 -0.05 -0.09 

p 0.51 0.56 0.51 0.09 0.78 0.63 0.04* 0.69 0.39 

Type 

Checking 

φ ------- ------- ------- ------- ------- ------- ------- ------- ------- 

p ------- ------- ------- ------- ------- ------- ------- ------- ------- 

Brain Class 

φ 0.03 -0.07 0.20 0.17 -0.06 0.07 0.38 -0.09 0.24 

p 0.82 0.63 0.13 0.20 0.66 0.60 0.01* 0.52 0.08 

Duplicated 

Code 

φ -0.06 0.18 0.35 -0.09 212.00 0.04 0.08 -0.12 0.70 

p 0.64 0.18 0.01* 0.48 0.12 0.76 0.57 0.36 0.00* 

Schizophrenic 

Class 

φ ------- ------- ------- ------- ------- ------- ------- ------- ------- 

p ------- ------- ------- ------- ------- ------- ------- ------- ------- 

Data Class 

φ ------- ------- ------- ------- ------- ------- ------- ------- ------- 

p ------- ------- ------- ------- ------- ------- ------- ------- ------- 

Data Clumps 

φ -0.61 0.05 -0.06 0.16 -0.03 0.18 0.20 -0.04 0.08 

p 0.65 0.69 0.65 0.24 0.85 0.19 0.15 0.78 0.55 
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Appendix Table IX: Phi correlation test results for Commons Lang 

Smells  Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Feature Envy 

φ 0.22 0.09 0.14 -0.03 -0.02 -0.05 0.33 -0.03 0.06 

p 0.01* 0.33 0.13 0.77 0.86 0.58 0.00* 0.77 0.51 

Large Class 

φ -0.14 0.17 0.06 0.16 0.07 0.04 0.31 0.16 0.46 

p 0.13 0.06 0.52 0.09 0.45 0.65 0.00* 0.09 0.00* 

Type 

Checking 

φ 0.07 0.09 0.14 -0.03 -0.02 0.14 -0.05 -0.03 -0.08 

p 0.41 0.33 0.13 0.77 0.86 0.12 0.58 0.77 0.36 

Brain Class 

φ 0.20 0.25 0.17 -0.03 0.07 -0.01 0.42 0.06 0.22 

p 0.03 0.00* 0.06 0.73 0.45 0.88 0.00* 0.49 0.02 

Duplicated 

Code 

φ -0.16 0.13 -0.03 -0.05 0.05 0.09 0.20 0.12 0.51 

p 0.08 0.13 0.79 0.55 0.59 0.29 0.03* 0.18 0.00* 

Schizophrenic 

Class 

φ 0.16 0.06 0.10 -0.02 -0.01 0.23 -0.04 -0.02 -0.06 

p 0.08 0.50 0.28 0.84 0.90 0.01* 0.70 0.84 0.52 

Data Class 

φ 0.03 0.11 0.06 -0.03 -0.02 0.10 -0.06 -0.03 0.02 

p 0.74 0.24 0.49 0.72 0.82 0.29 0.50 0.72 0.87 

Data Clumps 

φ -0.07 -0.05 0.01 -0.03 -0.02 -0.05 -0.05 -0.03 0.06 

p 0.41 0.57 0.93 0.77 0.86 0.58 0.58 0.77 0.51 
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Appendix Table X: Phi correlation test results for Dependency Finder 

Smells  Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Feature Envy φ 0.04 0.09 0.00 -0.08 0.16 0.14 -0.08 ------- 0.17 

p 0.55 0.18 1.00 0.26 0.02* 0.04* 0.24 ------- 0.01* 

Large Class φ 0.00 0.14 -0.03 -0.03 0.14 -0.07 -0.08 ------- 0.15 

p 0.99 0.04 0.68 0.63 0.04 0.27 0.26 ------- 0.12 

Type 

Checking 

φ -0.05 0.09 -0.04 0.02 -0.06 0.11 -0.07 ------- 0.15 

p 0.50 0.19 0.57 0.80 0.41 0.11 0.32 ------- 0.02* 

Brain Class φ -0.02 0.14 0.01 -0.06 0.02 0.14 -0.07 ------- 0.20 

p 0.74 0.03* 0.87 0.35 0.81 0.04* 0.31 ------- 0.00* 

Duplicated 

Code 

φ -0.06 0.07 -0.04 -0.01 -0.06 0.08 0.02 ------- 0.14 

p 0.35 0.32 0.57 0.85 0.41 0.23 0.78 ------- 0.04* 

Schizophrenic 

Class 

φ -0.05 -0.11 0.09 -0.07 0.37 -0.12 -0.07 ------- 0.04 

p 0.50 0.09 0.18 0.33 0.58 0.09 0.32 ------- 0.56 

Data Class φ 0.23 0.07 0.13 0.25 0.07 0.07 0.24 ------- 0.10 

p 0.00* 0.29 0.06 0.00* 0.31 0.33 0.00* ------- 0.13 

Data Clumps φ ------- ------- ------- ------- ------- ------- ------- ------- ------- 

p ------- ------- ------- ------- ------- ------- ------- ------- ------- 
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Appendix Table XI: Phi correlation test results for MOEA 

Smells  Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Feature Envy φ 0.11 0.01 -0.03 -0.01 0.25 0.23 0.37 0.08 0.04 

p 0.11 0.91 0.65 0.94 0.00* 0.00* 0.00* 0.27 0.61 

Large Class φ 0.10 -0.05 -0.03 0.14 0.23 0.16 0.35 0.07 0.15 

p 0.16 0.53 0.63 0.05* 0.00* 0.03* 0.00* 0.32 0.03* 

Type 

Checking 

φ 0.08 0.03 -0.02 0.22 -0.03 0.27 0.18 -0.03 0.05 

p 0.27 0.65 0.76 0.00* 0.70 0.00* 0.01* 0.66 0.48 

Brain Class φ 0.28 0.08 0.10 0.07 -0.05 0.21 0.20 0.35 0.01 

p 0.00* 0.29 0.16 0.31 0.47 0.00* 0.00* 0.00* 0.90 

Duplicated 

Code 

φ 0.00 0.15 -0.06 0.02 0.03 0.05 0.22 0.00 0.12 

p 0.97 0.03* 0.42 0.84 0.72 0.49 0.00* 0.98 0.08 

Schizophrenic 

Class 

φ -0.03 -0.01 -0.01 -0.05 -0.02 -0.05 0.24 -0.02 0.09 

p 0.72 0.87 0.86 0.53 0.83 0.49 0.00* 0.80 0.22 

Data Class φ -0.03 -0.23 -0.02 0.06 -0.02 -0.06 0.20 -0.02 0.13 

p 0.68 0.00* 0.84 0.40 0.80 0.42 0.01* 0.77 0.08 

Data Clumps φ -0.03 -0.10 -0.01 0.08 -0.02 -0.05 0.10 -0.02 0.00 

p 0.72 0.15 0.86 0.24 0.83 0.49 0.16 0.80 1.00 
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Appendix Table XII: Phi correlation test results for Barcode4J  

Smells 
 Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Feature Envy 

φ -0.10 0.13 -0.01 ------- -0.07 ------- 0.38 0.70 -0.14 

p .57 0.47 0.96 ------- 0.70 ------- 0.03 0.00* 0.43 

Large Class 

φ 0.06 0.03 0.15 ------- -0.13 ------- 0.19 0.37 0.32 

p .76 0.85 0.41 ------- 0.47 ------- 0.30 0.04* 0.07 

Type 

Checking 

φ ------- ------- ------- ------- ------- ------- ------- ------- ------- 

p ------- ------- ------- ------- ------- ------- ------- ------- ------- 

Brain Class 

φ 0.02 0.27 0.06 ------- 0.17 ------- 0.45 0.34 0.26 

p 0.90 0.14 0.74 ------- 0.34 ------- 0.01* 0.06 0.15 

Duplicated 

Code 

φ -0.37 0.15 0.42 ------- 0.01 ------- 0.30 0.19 0.25 

p 0.04 0.41 0.02* ------- 0.96 ------- 0.10 0.29 0.17 

Schizophrenic 

Class 

φ ------- ------- ------- ------- ------- ------- ------- ------- ------- 

p ------- ------- ------- ------- ------- ------- ------- ------- ------- 

Data Class 

φ ------- ------- ------- ------- ------- ------- ------- ------- ------- 

p ------- ------- ------- ------- ------- ------- ------- ------- ------- 

Data Clumps 

φ -0.07 -0.37 -0.19 ------- -0.05 ------- -0.13 -0.03 -0.10 

p 0.70 0.04 0.29 ------- 0.79 ------- 0.48 0.85 0.58 
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Appendix F: Results of the Correlations between Test Smells  

Appendix Table XIII: Results of the φ correlation coefficient analysis between test 

smells in JFreeChart 

Smells 
 Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Assertion-

free 

φ  -0.69 -0.02 ------- ------- 0.35 0.07 0.09 0.17 

p  0.19 0.69 ------- ------- 0.00* 0.17 0.09 0.00* 

Assertion 

Roulette 

φ -0.69  0.02 ------- ------- 0.05 -0.05 -0.07 0.41 

p 0.19  0.65 ------- ------- 0.31 0.36 0.19 0.44 

Sensitive 

Equality 

φ -0.02 0.02  ------- ------- -0.04 0.43 -0.02 0.06 

p 0.69 0.65  ------- ------- 0.47 -0.02 0.69 0.26 

Mystery 

Test 

φ ------- ------- -------  ------- ------- ------- ------- ------- 

p ------- ------- -------  ------- ------- ------- ------- ------- 

Indirect 

Test 

φ ------- ------- ------- -------  ------- ------- ------- ------- 

p ------- ------- ------- -------  ------- ------- ------- ------- 

General 

Fixture 

φ 0.35 0.05 -0.04 ------- -------  0.06 -0.05 0.18 

p 0.00* 0.31 0.47 ------- -------  0.77 0.38 0.00* 

Eager Test 

φ 0.07 -0.05 -0.04 ------- ------- 0.06  -0.05 0.17 

p 0.17 0.36 0.43 ------- ------- 0.77  0.33 0.00* 

Lazy Test 

φ 0.09 -0.07 -0.02 ------- ------- -0.05 -0.05  -0.05 

p 0.09 0.19 0.69 ------- ------- 0.38 0.33  0.33 

Duplicated 

Code 

φ 0.17 0.41 0.06 ------- ------- 0.18 0.17 -0.05  

p 0.00* 0.44 0.26 ------- ------- 0.00* 0.00* 0.33  
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Appendix Table XIV: Results of the φ correlation coefficient analysis between test 

smells in FindBugs 

Smells 
 Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Assertion-

free 

φ  0.20 0.37 -0.12 0.20 0.12 0.37 0.47 0.26 

p  0.20 0.02 0.45 0.22 0.50 0.02* 0.00* 0.11 

Assertion 

Roulette 

φ 0.20  0.07 -0.19 -0.27 -0.36 0.07 -0.03 0.36 

p 0.20  0.68 0.24 0.09 0.03* 0.68 0.88 0.02* 

Sensitive 

Equality 

φ 0.37 0.07  0.09 0.12 0.03 0.27 0.37 -0.11 

p 0.02 0.68  0.59 0.45 0.86 0.09 0.02* 0.48 

Mystery 

Test 

φ -0.12 -0.19 0.09  0.35 0.10 -0.15 0.17 0.18 

p 0.45 0.24 0.59  0.03* 0.55 0.35 0.30 0.26 

Indirect 

Test 

φ 0.20 -0.27 0.12 0.35  0.11 -0.07 0.47 0.26 

p 0.22 0.09 0.45 0.03*  0.50 0.67 0.00* 0.11 

General 

Fixture 

φ 0.12 -0.36 0.03 0.10 0.11  0.24 0.11 0.27 

p 0.50 0.03* 0.86 0.55 0.50  0.13 0.50 0.10 

Eager Test 

φ 0.37 0.07 0.27 -0.15 -0.07 0.24  -0.07 0.17 

p 0.02* 0.68 0.09 0.35 0.67 0.13  0.67 0.28 

Lazy Test 

φ 0.47 -0.03 0.37 0.17 0.47 0.11 -0.07  -0.09 

p 0.00* 0.88 0.02* 0.30 0.00* 0.50 0.67  0.57 

Duplicated 

Code 

φ 0.26 0.36 -0.11 0.18 0.26 0.27 0.17 -0.09  

p 0.11 0.02* 0.48 0.26 0.11 0.10 0.28 0.57  
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Appendix Table XV: Results of the φ correlation coefficient analysis between test 

smells in JMeter 

Smells 
 Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Assertion-

free 

φ  -0.08 0.19 -0.08 0.13 0.21 -0.24 0.14 0.13 

p  0.49 0.10 0.48 0.07 0.07 0.04* 0.24 0.26 

Assertion 

Roulette 

φ -0.08  0.12 0.02 0.14 0.21 0.18 -0.06 0.12 

p 0.49  0.32 0.90 0.23 0.07 0.12 0.61 0.31 

Sensitive 

Equality 

φ 0.19 0.12  0.20 0.08 0.05 -0.01 0.04 0.10 

p 0.10 0.32  0.09 048 0.65 0.96 0.74 0.38 

Mystery 

Test 

φ -0.08 0.02 0.20  0.06 -0.11 -0.13 -0.08 0.07 

p 0.48 0.90 0.09  0.64 0.32 0.25 0.51 0.56 

Indirect 

Test 

φ 0.13 0.14 0.08 0.06  -0.02 -0.00 0.33 0.25 

p 0.07 0.23 048 0.64  0.90 0.98 0.00* 0.03* 

General 

Fixture 

φ 0.21 0.21 0.05 -0.11 -0.02  0.22 -0.03 0.25 

p 0.07 0.07 0.65 0.32 0.90  0.06 0.81 0.03* 

Eager Test 

φ -0.24 0.18 -0.01 -0.13 -0.00 0.22  -0.10 0.07 

p 0.04* 0.12 0.96 0.25 0.98 0.06  0.39 0.57 

Lazy Test 

φ 0.14 -0.06 0.04 -0.08 0.33 -0.03 -0.10  0.02 

p 0.24 0.61 0.74 0.51 0.00* 0.81 0.39  0.89 

Duplicated 

Code 

φ 0.13 0.12 0.10 0.07 0.25 0.25 0.07 0.02  

p 0.26 0.31 0.38 0.56 0.03* 0.03* 0.57 0.89  
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Appendix Table XVI: Results of the φ correlation coefficient analysis between test 

smells in JabRef 

Smells 
 Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Assertion-

free 

φ  -0.16 0.12 -0.15 -0.04 -0.14 0.41 -0.06 -0.08 

p  0.25 0.37 0.27 0.75 0.30 0.00* 0.65 0.58 

Assertion 

Roulette 

φ -0.16  0.09 -0.05 0.04 -0.07 -0.08 0.05 0.19 

p 0.25  0.51 0.71 0.78 0.63 0.54 0.69 0.17 

Sensitive 

Equality 

φ 0.12 0.09  0.02 -0.04 0.20 0.05 -0.06 0.34 

p 0.37 0.51  0.91 0.75 0.13 0.72 0.65 0.01* 

Mystery 

Test 

φ -0.15 -0.05 0.02  -0.06 0.43 0.34 0.16 -0.01 

p 0.27 0.71 0.91  0.63 0.00* 0.01* 0.24 0.95 

Indirect 

Test 

φ -0.04 0.04 -0.04 -0.06  -0.06 -0.06 -0.03 -0.09 

p 0.75 0.78 0.75 0.63  0.66 0.68 0.85 0.50 

General 

Fixture 

φ -0.14 -0.07 0.20 0.43 -0.06  -0.04 -0.09 -0.08 

p 0.30 0.63 0.13 0.00* 0.66  0.75 0.52 0.54 

Eager Test 

φ 0.41 -0.08 0.05 0.34 -0.06 -0.04  0.20 0.17 

p 0.00* 0.54 0.72 0.01* 0.68 0.75  0.15 0.21 

Lazy Test 

φ -0.06 0.05 -0.06 0.16 -0.03 -0.09 0.20  -0.13 

p 0.65 0.69 0.65 0.24 0.85 0.52 0.15  0.34 

Duplicated 

Code 

φ -0.08 0.19 0.34 -0.01 -0.09 -0.08 0.17 -0.13  

p 0.58 0.17 0.01* 0.95 0.50 0.54 0.21 0.34  
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Appendix Table XVII: Results of the φ correlation coefficient analysis between test 

smells in Apache Commons Lang 

Smells 
 Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Assertion-

free 

φ  0.11 -0.09 -0.02 0.07 0.17 0.09 -0.02 0.00 

p  0.22 0.30 0.79 0.41 0.06 0.33 0.79 1.00 

Assertion 

Roulette 

φ 0.11  0.18 0.14 -0.05 0.00 0.11 -0.03 -0.07 

p 0.22  0.04 0.122 0.57 0.99 0.24 0.76 0.47 

Sensitive 

Equality 

φ -0.09 0.18  -0.07 -0.12 0.03 0.03 -0.03 -0.07 

p 0.30 0.04  0.47 0.18 0.78 0.78 0.76 0.47 

Mystery 

Test 

φ -0.02 0.14 0.05  -0.03 -0.08 0.04 -0.04 0.05 

p 0.79 0.122 0.55  0.77 0.38 0.63 0.64 0.58 

Indirect 

Test 

φ 0.07 -0.05 -0.12 -0.03  0.14 0.14 -0.03 0.20 

p 0.41 0.57 0.18 0.77  0.12 0.12 0.77 0.03* 

General 

Fixture 

φ 0.17 0.00 0.03 -0.08 0.14  0.07 -0.08 0.18 

p 0.06 0.99 0.78 0.38 0.12  0.46 0.38 0.05* 

Eager Test 

φ 0.09 0.11 0.03 0.04 0.14 0.07  0.29 0.28 

p 0.33 0.24 0.78 0.63 0.12 0.46  0.00* 0.00* 

Lazy Test 

φ -0.02 -0.13 -0.03 -0.04 -0.03 -0.08 0.29  0.05 

p 0.79 0.16 0.76 0.64 0.77 0.38 0.00*  0.58 

Duplicated 

Code 

φ 0.00 0.20 -0.07 0.05 0.20 0.18 0.28 0.05  

p 1.00 0.02* 0.47 0.58 0.03* 0.05* 0.00* 0.58  
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Appendix Table XVIII: Results of the φ correlation coefficient analysis between test 

smells in Dependency Finder 

Smells 
 Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Assertion-

free 

φ  -0.21 0.02 0.06 -0.03 0.01 0.16 ------- -0.03 

p  0.00* 0.76 0.42 0.66 0.85 0.02* ------- 0.66 

Assertion 

Roulette 

φ -0.21  -0.03 -0.05 0.18 0.18 0.15 ------- 0.15 

p 0.00*  0.65 0.42 0.01* 0.01* 0.03* ------- 0.03 

Sensitive 

Equality 

φ 0.02 -0.03  -0.03 -0.08 0.02 0.09 ------- 0.03 

p 0.76 0.65  0.68 0.26 0.81 0.18 ------- 0.63 

Mystery 

Test 

φ 0.06 -0.05 -0.03  -0.09 -0.13 0.00 ------- 0.13 

p 0.42 0.42 0.68  0.21 0.06 0.98 ------- 0.05 

Indirect 

Test 

φ -0.03 0.18 -0.08 -0.09  -0.01 0.00 ------- 0.11 

p 0.66 0.01* 0.26 0.21  0.93 1.00 ------- 0.11 

General 

Fixture 

φ 0.01 0.12 0.02 -0.13 -0.01  -0.03 ------- 0.09 

p 0.85 0.08 0.81 0.06 0.93  0.62 ------- 0.19 

Eager Test 

φ 0.16 0.15 0.09 0.00 0.00 -0.03  ------- -0.04 

p 0.02* 0.03* 0.18 0.98 1.00 0.62  ------- 0.52 

Lazy Test 

φ ------- ------- ------- ------- ------- ------- -------  ------- 

p ------- ------- ------- ------- ------- ------- -------  ------- 

Duplicated 

Code 

φ -0.03 0.15 0.03 0.13 0.11 0.09 -0.04 -------  

p 0.66 0.03 0.63 0.05 0.11 0.19 0.52 -------  
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Appendix Table XIX: Results of the φ correlation coefficient analysis between test 

smells in MOEA 

Smells 
 Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Assertion-

free 

φ  -0.04 -0.02 0.09 -0.03 -0.03 0.02 0.15 -0.09 

p  0.59 0.77 0.23 0.72 0.72 0.78 0.03* 0.20 

Assertion 

Roulette 

φ -0.04  0.07 0.02 -0.01 -0.01 -0.06 0.01 0.17 

p 0.59  0.36 0.75 0.87 0.87 0.42 0.86 0.02* 

Sensitive 

Equality 

φ -0.02 0.07  -0.04 -0.01 0.11 -0.03 -0.02 -0.07 

p 0.77 0.36  0.61 0.86 0.13 0.64 0.84 0.31 

Mystery 

Test 

φ 0.09 0.02 -0.04  0.21 0.22 0.04 -0.02 0.09 

p 0.23 0.75 0.61  0.00* 0.00* 0.55 0.80 0.22 

Indirect 

Test 

φ -0.03 -0.01 -0.01 0.21  0.19 -0.04 -0.02 0.09 

p 0.72 0.87 0.86 0.00*  0.01* 0.57 0.80 0.22 

General 

Fixture 

φ -0.01 0.19 0.11 0.22 0.19  0.07 0.15 0.12 

p 0.92 0.01* 0.13 0.00* 0.01*  0.33 0.03* 0.08 

Eager Test 

φ 0.02 -0.06 -0.03 0.04 -0.04 0.07  -0.05 0.17 

p 0.78 0.42 0.64 0.55 0.57 0.33  0.51 0.02* 

Lazy Test 

φ 0.15 0.01 -0.02 -0.05 -0.02 0.15 -0.05  -0.03 

p 0.03* 0.86 0.84 0.46 0.80 0.03* 0.51  0.72 

Duplicated 

Code 

φ -0.09 0.17 -0.07 0.14 0.09 0.12 0.17 -0.03  

p 0.20 0.02* 0.31 0.04* 0.22 0.08 0.02* 0.72  
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Appendix Table XX: Results of the φ correlation coefficient analysis between test 

smells in Barcode4J 

Smells 
 Assertion-

free 

Assertion 

Roulette 

Sensitive 

Equality 

Mystery 

Test 

Indirect 

Test 

General 

Fixture 

Eager 

Test 

Lazy 

Test 

Duplicated 

Code 

Assertion-

free 

φ  -0.54 0.18 ------- -0.10 ------- -0.06 -0.07 -0.21 

p  0.00* 0.32 ------- 0.57 ------- 0.74 0.70 0.25 

Assertion 

Roulette 

φ -0.54  0.18 ------- 0.13 ------- 0.34 0.09 0.27 

p 0.00*  0.32 ------- 0.47 ------- 0.06 0.62 0.14 

Sensitive 

Equality 

φ 0.18 0.18  ------- -0.01 ------- 0.25 0.18 0.21 

p 0.32 0.32  ------- 0.96 ------- 0.16 0.33 0.23 

Mystery 

Test 

φ ------- ------- -------  ------- ------- ------- ------- ------- 

p ------- ------- -------  ------- ------- ------- ------- ------- 

Indirect 

Test 

φ -0.10 0.13 -0.01 -------  ------- 0.10 -0.05 0.17 

p 0.57 0.47 0.96 -------  ------- 0.58 0.79 0.34 

General 

Fixture 

φ ------- ------- ------- ------- -------  ------- ------- ------- 

p ------- ------- ------- ------- -------  ------- ------- ------- 

Eager Test 

φ -0.06 0.34 0.25 ------- 0.10 -------  0.27 0.12 

p 0.74 0.06 0.16 ------- 0.58 -------  0.14 0.50 

Lazy Test 

φ -0.07 0.09 0.18 ------- -0.05 ------- 0.27  -0.10 

p 0.70 0.62 0.33 ------- 0.79 ------- 0.14  0.58 

Duplicated 

Code 

φ -0.21 0.27 0.21 ------- 0.17 ------- 0.12 -0.10  

p 0.25 0.14 0.23 ------- 0.34 ------- 0.50 0.58  
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Appendix G: Size effect analysis using Bootstrapping  

Appendix Table XXI: Results of the confounding effect of LOC on the relationship 

between the number of test smell types and TLOC 

DV: Number of test smell types, IV: TLOC,  M: LOC 

System Effect SE(Boot) LLCI ULCI 
Significant indirect effect 

(possibility of mediation) 

JFreeChart 0.001 0.000 0.001 0.002 Yes 

FindBugs 0.000 0.001 -0.003 0.001 No 

JMeter 0.000 0.000 -0.001 0.001 No 

Commons Lang 0.000 0.000 0.000 0.000 No 

JabRef 0.000 0.001 -0.003 0.002 No 

Dependency 

Finder 
0.000 0.000 0.000 0.000 No 

MOEA 0.001 0.001 0.000 0.002 No 

Barcode4J 0.000 0.004 -0.012 0.005 No 

DV= Dependent Variable     IV: Independent Variable 

Appendix Table XXII: Results of the confounding effect of LOC on the relationship 

between TLOC and the number of code smell types 

DV: TLOC  IV: Number of code smell types, M: LOC 

System Effect SE(Boot) LLCI ULCI 
Significant indirect effect 

(possibility of mediation) 

JFreeChart 22.334 10.545 2.144 43.846 Yes 

FindBugs -6.156 8.693 -17.795 16.267 No 

JMeter 22.162 26.264 -14.289 88.513 No 

Commons Lang 99.104 57.205 9.070 237.513 Yes 

JabRef 32.069 58.349 -70.273 161.197 No 

Dependency 

Finder 
29.986 19.866 -0.360 75.814 No 

MOEA 14.532 6.747 2.781 29.688 Yes 

Barcode4J 20.001 12.170 -14.658 43.749 No 
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Appendix Table XXIII: Results of the confounding effect of TLOC on the relationship 

between the number of test smell types and LOC  

DV: Number of test smell types, IV: LOC,  M: TLOC 

System Effect SE(Boot) LLCI ULCI 
Significant indirect effect 

(possibility of mediation) 

JFreeChart 0.000 0.000 -0.001 0.000 No 

FindBugs 0.000 0.002 -0.002 0.004 No 

JMeter 0.002 0.002 0.000 0.007 No 

Commons Lang 0.000 0.001 -0.001 0.002 No 

JabRef 0.003 0.003 -0.003 0.009 No 

Dependency 

Finder 
0.000 0.000 0.000 0.001 No 

MOEA 0.001 0.001 0.000 0.004 No 

Barcode4J 0.008 0.005 0.001 0.019 Yes  

 

Appendix Table XXIV: Results of the confounding effect of LOC on the relationship 

between the number of test smell types and CC  

DV: Number of test smell types, IV: CC,  M: LOC 

System Effect SE(Boot) LLCI ULCI 
Significant indirect effect 

(possibility of mediation) 

JFreeChart 0.033 0.026 0.006 0.093 Yes  

FindBugs -0.023 0.061 -0.176 0.091 No 

JMeter 0.010 0.028 -0.025 0.107 No 

Commons Lang 0.063 0.030 0.023 0.151 Yes 

JabRef 0.006 0.013 -0.005 0.036 No 

Dependency 

Finder 
0.014 0.011 -0.002 0.043 No 

MOEA 0.046 0.023 0.014 0.093 Yes  

Barcode4J 0.057 0.082 -0.161 0.335 No 
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Appendix Table XXV: Results of the confounding effect of LOC on the relationship 

between the number of test smell types and the number of code smell types 

DV: Number of test smell types, IV: Number of code smell,  M: LOC 

System Effect SE(Boot) LLCI ULCI 
Significant indirect effect 

(possibility of mediation) 

JFreeChart 0.117 0.034 0.056 0.188 Yes  

FindBugs -0.243 0.120 -0.458 0.032 No 

JMeter 0.025 0.114 -0.191 0.250 No 

Commons Lang -0.182 0.089 -0.351 0.003 No 

JabRef 0.215 0.298 -0.321 0.821 No 

Dependency 

Finder 
0.039 0.053 -0.067 0.136 No 

MOEA 0.026 0.067 -0.091 0.174 No 

Barcode4J 0.018 0.346 -0.575 0.765 No 

 

 


