

A Study on Software Testability
and the Quality of Testing In

Object-Oriented Systems

By

Amjed Abdalhamed Abbas Tahir

A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE

UNIVERSITY OF OTAGO

I

This thesis is dedicated to

the loving memory of my father, Abdalhmed, who taught me to

always believe in myself.

Gone but not forgotten!

my mother, Amnah, for her constant love and support.

 II

Abstract

Software testing is known to be important to the delivery of high-quality systems, but it is

also challenging, expensive and time-consuming. This has motivated academic and

industrial researchers to seek ways to improve the testability of software. Software

testability is the ease with which a software artefact can be effectively tested.

The first step towards building testable software components is to understand the factors –

of software processes, products and people – that are related to and can influence software

testability. In particular, the goal of this thesis is to provide researchers and practitioners

with a comprehensive understanding of design and source code factors that can affect the

testability of a class in object oriented systems. This thesis considers three different views

on software testability that address three related aspects: 1) the distribution of unit tests in

relation to the dynamic coupling and centrality of software production classes, 2) the

relationship between dynamic (i.e., runtime) software properties and class testability, and

3) the relationship between code smells, test smells and the factors related to smells

distribution. The thesis utilises a combination of source code analysis techniques (both

static and dynamic), software metrics, software visualisation techniques and graph-based

metrics (from complex networks theory) to address its goals and objectives.

A systematic mapping study was first conducted to thoroughly investigate the body of

research on dynamic software metrics and to identify issues associated with their selection,

design and implementation. This mapping study identified, evaluated and classified 62

research works based on a pre-tested protocol and a set of classification criteria. Based on

the findings of this study, a number of dynamic metrics were selected and used in the

experiments that were then conducted.

The thesis demonstrates that by using a combination of visualisation, dynamic analysis,

static analysis and graph-based metrics it is feasible to identify central classes and to

diagrammatically depict testing coverage information. Experimental results show that,

even in projects with high test coverage, some classes appear to be left without any direct

unit testing, even though they play a central role during a typical execution profile. It is

 III

contended that the proposed visualisation techniques could be particularly helpful when

developers need to maintain and reengineer existing test suites.

Another important finding of this thesis is that frequently executed and tightly coupled

classes are correlated with the testability of the class – such classes require larger unit tests

and more test cases. This information could inform estimates of the effort required to test

classes when developing new unit tests or when maintaining and refactoring existing tests.

An additional key finding of this thesis is that test and code smells, in general, can have a

negative impact on class testability. Increasing levels of size and complexity in code are

associated with the increased presence of test smells. In addition, production classes that

contain smells generally require larger unit tests, and are also likely to be associated with

test smells in their associated unit tests. There are some particular smells that are more

significantly associated with class testability than other smells. Furthermore, some

particular code smells can be seen as a sign for the presence of test smells, as some test and

code smells are found to co-occur in the test and production code. These results suggest

that code smells, and specifically certain types of smells, as well as measures of size and

complexity, can be used to provide a more comprehensive indication of smells likely to

emerge in test code produced subsequently (or vice versa in a test-first context). Such

findings should contribute positively to the work of testers and maintainers when writing

unit tests and when refactoring and maintaining existing tests.

 IV

Acknowledgements

I would like to express my gratitude to a number of people who supported me throughout

my PhD journey. Firstly, I would like to express my sincere gratitude to my primary

supervisor Prof Stephen MacDonell for his guidance and support throughout the course of

my PhD (and other related) research. Steve has been a constant source of motivation

during every stage of my research. I would like also to thank my secondary supervisor Prof

Michael Winikoff for his advice, guidance and for reading drafts and providing feedback

during later stages of this thesis.

I am extremely grateful to my mother, Amnah, and all my siblings (Adil, Adnan, Adlah,

Abbas, and Ammar) and their young families for their encouragement and unlimited

support (especially spiritually) throughout my PhD journey and my life in general. I could

not have done it without your support, so thank you all! I would like to especially thank

Abbas for his inspiration and for the many technical discussions which have improved the

outcomes of this thesis.

I thank my fellow colleagues and lab-mates at the University of Otago (and previously at

AUT): Sherlock Licorish, Michael Bosu and Aftab Mughal. They have certainly helped

me in making this PhD experience an enjoyable one. I also thank all fellow PhD students

at the Department of Information Science for the lively discussions we had whenever we

get together. In particular, I would like to thank M. Alghamdi, A. Alshaer, M. Farhangian

and H. Lin.

I would like also to thank my fellow colleagues and members of the Software Engineering

Research Laboratory at Auckland University of Technology, whom I shared space with

during my time at AUT: Frederik Schmidt, Bilal Raza, Nadia Kasto, Minjuan Tong, Waqar

Husin, Da Zhang and Dr Jacqui Whalley. I would like to especially thank Jim Buchan for

his feedback and collaboration during various stages of this PhD journey.

I am grateful for the financial support I received from University of Otago (Otago’s

Business School Dean Scholarship) and previously from AUT (SERL special PhD

Scholarship).

 V

Last but not least, I would like to thank all my friends (around the world!) for their moral

help and support, and for their understanding during my PhD journey. I am lucky to have

such friends! Thank you all…

Amjed Tahir

July 2015

 VI

Table of Contents

Abstract ... II

Acknowledgements ... IV

List of Tables .. IX

List of Figures ... XI

Acronyms ... XIII

 Introduction ... 1 Chapter 1

1.1. Background and Motivation ... 1

1.2. Research Goal and Objectives ... 2

1.3. Main Outcomes ... 4

1.4. List of Publications ... 5

1.5. Structure of the Thesis .. 6

 Literature Review .. 8 Chapter 2

2.1 Introduction ... 8

2.2 Software Testability .. 10

2.2.1 Testability Definitions ... 11

2.2.2 Testability Factors .. 13

2.3 Software Measurement and Metrics .. 14

2.3.1 Static Metrics .. 15

2.3.2 Dynamic Metrics .. 16

2.4 Program Comprehension .. 22

2.4.1 Test Comprehension.. 23

2.4.2 Test and Code Smells .. 25

 Research Methodology ... 32 Chapter 3

3.1 Introduction ... 32

3.2 Experimental Design .. 34

3.2.1 Open Source Systems .. 35

3.2.2 Statistical Analysis Procedures .. 39

3.3 Metrics Selection ... 42

3.3.1 Source Code Metrics .. 43

3.3.2 Class Testability Metrics ... 44

3.3.3 Code and Test Smells .. 47

3.4 Data Collection Methods and Procedures ... 47

3.5 Threats to Experimental Validity ... 50

3.5.1 Internal Validity ... 50

3.5.2 External Validity .. 52

3.5.3 Conclusion Validity ... 53

3.6 Summary .. 54

 A Systematic Mapping Study on Dynamic Metrics 55 Chapter 4

4.1 Introduction ... 55

 VII

4.2 Review Methodology ... 57

4.2.1. Research Questions .. 58

4.2.2. Search Strategy ... 59

4.3 Search Process ... 63

4.3.1 Study Selection Criteria .. 64

4.3.2 Inclusion and Exclusion Criteria ... 64

4.3.3 Selection Pilot Study .. 65

4.3.4 Paper Classification Schemes ... 67

4.4 Results .. 68

4.4.1 Coupling .. 73

4.4.2 Cohesion .. 73

4.4.3 Complexity ... 74

4.4.4 Other Metrics .. 75

4.4.5 Metrics Suites ... 76

4.4.6 Tools ... 77

4.5 Discussion .. 78

4.6 Threats to Validity .. 80

4.7 Summary .. 81

 Exploring the Distribution of Unit Test Suites 82 Chapter 5

5.1 Introduction ... 82

5.2 Experimental Design .. 83

5.2.1 Objectives .. 83

5.2.2 Contribution ... 84

5.2.3 Metrics Definition .. 84

5.3 Data Collection and Execution Scenarios .. 86

5.4 Results .. 88

5.5 Discussion .. 99

5.6 Threats to Validity .. 102

5.7 Summary .. 103

 Investigating Class Testability through Dynamic Analysis 105 Chapter 6

6.1 Introduction ... 105

6.2 Testability Concepts ... 106

6.2.1 Dynamic Coupling .. 106

6.2.2 Key Classes ... 108

6.3 Experimental Design .. 109

6.3.1 Research Questions and Hypotheses .. 109

6.3.2 Data Collection and Execution Scenarios ... 110

6.4 Results .. 112

6.5 Discussion .. 118

6.6 Threats to Validity .. 120

6.7 Summary .. 121

 On the Quality of Unit Tests - The Impact of Test Smells 123 Chapter 7

7.1 Introduction ... 123

 VIII

7.2 Experimental Design .. 124

7.2.1 Research Questions and Hypotheses .. 124

7.2.2 Data Collection ... 130

7.3 Results .. 134

7.4 Discussion .. 148

7.5 Threats to Validity .. 155

7.6 Summary .. 158

 Conclusions and Future Work .. 159 Chapter 8

8.1. Introduction ... 159

8.2. Summary of Novel Elements and Contributions ... 160

8.3. Conclusions .. 161

8.4. Limitations ... 164

8.5. Future Work... 165

References ... 168

Appendices ... 178

Appendix A: List of Articles Found in the Pilot Study ... 178

Appendix B: Articles Characterisation Based on Dynamic Metrics Types 181

Appendix C: Centrality Metrics Values .. 188

Appendix D: Relationships between Dynamic Metrics and Class Testability .. 203

Appendix E: Results of the Correlations between Test and Code Smells 206

Appendix F: Results of the Correlations between Test Smells 214

Appendix G: Confouding effect analysis using Bootstrapping 222

 IX

List of Tables

 Comparison of static and dynamic metrics ... 18 Table 1.

 Dynamic analysis techniques .. 21 Table 2.

 List of selected OSS.. 37 Table 3.

 Characteristics of the selected OSS ... 38 Table 4.

 Age and the number of contributors in all selected systems 39 Table 5.

 A 2×2 contingency table .. 41 Table 6.

 Summary of the general statistical analysis procedures used in this thesis 42 Table 7.

 Spearman’s ρ correlations between LOC and TLOC .. 45 Table 8.

 Coverage infromation from a selected set of classes ... 46 Table 9.

 List of Tools Used in the Thesis .. 49 Table 10.

 Manual search results .. 61 Table 11.

 Distribution of articles per source type ... 68 Table 12.

 Top publication venues .. 70 Table 13.

Summary of current dynamic metrics tools .. 77 Table 14.

Test coverage data ... 88 Table 15.

Dependency graph node symbols ... 89 Table 16.

Centrality metrics for JDepend .. 90 Table 17.

Levels of centrality in all examined systems.. 92 Table 18.

Centrality metrics Mann-Whitney U test results with effect size 98 Table 19.

Spearman’s ρ correlations between dynamic coupling and class testability 114 Table 20.

 Spearman’s ρ correlations between EF and testability metrics 115 Table 21.

 Spearman’s ρ results for the correlation between coupling and EF metrics 120 Table 22.

 List of test smells and the detection tools used .. 125 Table 23.

 List of code smells and the detection tools used .. 126 Table 24.

 Summary of the research questions and hypotheses 128 Table 25.

 Cross-validation results .. 133 Table 26.

 Number of unit tests that contain different test smells 135 Table 27.

 Number of production classes that contain different code smells 136 Table 28.

 X

 Spearman’s ρ correlation between test smell types and unit tests’ size 137 Table 29.

 Spearman’s ρ correlation between code smell types and unit tests’ size 138 Table 30.

 Spearman’s ρ correlation between test smell types and size and complexity of Table 31.

the corresponding production class .. 139

 Spearman’s ρ correlation between test and code smell types 140 Table 32.

 Mann-Whitney U test results with effect size for the relationship between test Table 33.

size metrics and test smell types ... 141

 Mann-Whitney U test results with effect size for the relationship between test Table 34.

size metrics and code smell types ... 143

 Results of the phi correlation analysis between test and code smells 145 Table 35.

 Results of the phi correlation analysis between test smells 146 Table 36.

 XI

List of Figures

Figure 1. An overview of the testability factors addressed in this thesis. 4

Figure 2. An overview of the research conducted in the thesis .. 7

Figure 3. The empirical software engineering model used in this thesis 33

Figure 4. Review protocol .. 58

Figure 5. Search string .. 60

Figure 6. Overview of the mapping review process... 66

Figure 7. Articles distribution per year .. 69

Figure 8. Map of research focus over research and contribution types 71

Figure 9. Articles distribution by research type ... 72

Figure 10. Articles distribution by contribution type ... 72

Figure 11. Articles distribution by research focus .. 72

Figure 12. Articles distribution by programming focus .. 72

Figure 13. JDepend full dependency graph .. 91

Figure 14. Dependency Finder dependency graph .. 94

Figure 15. JabRef dependency graph ... 95

Figure 16. MOEA dependency graph .. 96

Figure 17. FindBugs dependency graph ... 97

Figure 18. FindBugs dependency graph. .. 101

Figure 19. Boxplots of TLOC in all four system. .. 112

Figure 20. Boxplots of NTC in all four systems ... 113

Figure 21. Scatter plot of the relationship between EC and TLOC in Dependency Finder

(top) and FindBugs (bottom) ... 115

Figure 22. Scatter plot of the relationship between EC and NTC in Dependency Finder

(top) and FindBugs (bottom) ... 116

Figure 23. Scatter plot of the relationship between EF and TLOC in JabRef (top) and

Dependency Finder (bottom) ... 117

Figure 24. Scatter plot of the relationship between EF and EC in JabRef (top) and

Dependency Finder (bottom) ... 118

 XII

Figure 25. Overview of research questions and the link between them 125

Figure 26. Boxplots of the number of test smell types per unit test in all systems 131

Figure 27. Boxplots of the number of code smell types per class in all systems 131

Figure 28. Distribution of test smell types in all eight examined systems 133

Figure 29. Distribution of code smell types in all eight examined systems 134

Figure 30. Percentage of unit tests and production classes that contain smells 134

 XIII

Acronyms

Acronym Full Description

AOP Aspect Oriented Programming

CBO Coupling Between Objects

CC Cyclomatic Complexity

DCBO Dynamic Coupling Between Objects

EC Export Coupling

EF Execution Frequency

IC Import Coupling

IDE Integrated Development Environment

LOC Lines of Code

NOC Number of production Classes

NOM Number of Methods

NTC Number of Test Cases

OOP Object Oriented Programming

OSS Open Source Software

SNA Social Network Analysis

TDD Test Driven Development

TLOC Test Lines Of Code

1

 Introduction Chapter 1

1.1. Background and Motivation

Although it has been defined in a number of ways, software testability is commonly

interpreted as being indicative of the ease with which a software artefact can be

effectively tested. In the last two decades the need to achieve improvements in

software testability, alongside other quality and productivity improvement goals,

has become an increasingly important aim of those involved in software

development. There are numerous reasons for this increased attention. It is

generally acknowledged that software systems are growing larger and are

becoming more complex (Sommerville et al., 2012), and yet there is some evidence

that the resources directed towards testing have not been keeping pace

(Mouchawrab et al., 2005). Software testing activities can be costly, requiring

significant time and effort in both planning and execution, and yet they are often

unpredictable in terms of their effectiveness (Bertolino, 2007). As a result some

estimates suggest that testing can consume as much as 50% of the total time and

cost needed for software development (Brooks, 1975, Myers et al., 2011).

Although such figures are typically associated with waterfall-like processes where

testing is treated as a ‘phase’, the centrality of testing is not just a phenomenon of

plan-based development approaches: Agile software development methods such

as eXtreme Programming (XP) and Scrum also give testing significant attention in

light of its importance. The practice of Test-Driven Development (TDD), for

example, requires that extensive test code be developed and maintained to ensure

that the ‘furthermost’ components of the production code work correctly (Beck,

2002). Such methods follow a test-first approach, which requires the designing

and writing of test code (usually unit tests – see Chapter 2) before the production

 2

code is written. In these methods, in fact, unit tests are viewed as core, integral

parts of the program (Cheon and Leavens, 2002). In further noting the importance

of testing in agile approaches, Beck (1994) recommended that developers spend

between 25% and 50% of their time writing tests. In short, and irrespective of the

development method adopted, testing is recognised as an important but high-cost

activity, and so efforts to reduce the work effort required in testing, or to improve

its cost-effectiveness, are sought after in research and practice.

Initiatives designed to make software easier to test are thus directed towards

improving its testability. However, defining and measuring testability brings

significant challenges in its own right. Like many non-functional properties of

software, testability has been acknowledged as an elusive concept, and its

measurement and evaluation have been considered to be inherently difficult

(Mouchawrab et al., 2005). Although several standards and individual studies

have defined testability, they have done so in various ways, reflecting the fact that

they were motivated by different purposes. These different views of software

testability have directed researchers to investigate various factors of software

processes, products and people that can impact – directly or indirectly – software

testability. Among others aspects, testability has been previously evaluated in

terms of effort expended (ISO, 2001, Freedman, 1991, Traon and Robach, 1995),

test coverage (Bache and Mullerburg, 1990), and the size and quality of the test

suite (Binder, 1994, Bruntink and van Deursen, 2006) (as discussed in more detail

in the following chapter).

The main goals and objectives of the research reported in this thesis are discussed

next.

1.2. Research Goal and Objectives

The first step towards building more testable software components is to

understand the factors that have an impact on their testability. The goal of this

 3

research is to provide researchers and practitioners with a comprehensive

understanding of design and source code factors that can affect the testability of a

class. In light of their widespread use this thesis focuses on the testability of Object

Oriented (OO) systems, and testability is addressed from a unit testing point of

view (rather than, for example, a system testing perspective, which has been the

focus of several prior studies (as described in Chapters 2 and 4)).

As noted above, testability in the literature has been addressed from a range of

perspectives, depending on the way it has been defined. In this thesis we consider

three different views of software testability that address three different, yet

related, aspects.

1. The distribution and coverage of unit tests in relation to the centrality1 of

software production classes. This research utilises a combination of

dynamic metrics and analysis, software visualisation (i.e., network graphs)

and graph metrics to understand the coverage and distribution of unit tests

in programs.

2. The impact of design and implementation factors in software production

code on class testability. Previous research (such as Bruntink and van

Deursen (2006), Mouchawrab et al. (2005) and Zhou et al. (2012)) has

addressed the relationships between several static software properties and

class testability. This thesis additionally investigates the relationship

between two dynamic (i.e., runtime) software properties and class

testability.

3. The relationships between design flaws (i.e., code smells) and code

attributes in production code and test code. We also study the quality and

design factors of unit tests (i.e., test smells) and their relationships with

testability.

1 In graph theory, centrality is the measure of the importance of nodes within a graph.

 4

All three aspects are investigated through experimentation in Open Source

Software (OSS) contexts, as we use data obtained from various open source

projects (as described and justified in Chapter 3). An overview of the aspects of

software testability addressed in this research is shown in Figure 1, and a fuller

explanation of the background to this research is provided in Chapter 2. As the

thesis considers three different views of software testability, that are addressed by

three different experiments, the specific motivation and research questions related

to each experiment (underpinned by a systematic mapping presented in Chapter

4) are set out within the chapter that contains each respective experiment

(Chapters 5-7).

Figure 1. An overview of the testability factors addressed in this thesis.

1.3. Main Outcomes

There are four major outcomes of this work:

1. A detailed systematic mapping study of the research on dynamic software

metrics and their application and usage in software quality, including

dynamic metrics that are used to measure software testability. This is

presented in Chapter 4.

2. A visualisation approach that combines dynamic and static information to

explore unit tests’ distribution. This is presented in Chapter 5.

 5

3. A comprehensive empirical investigation of the relationship between

dynamic software properties and class-level testability. This investigation is

presented in Chapter 6

4. A comprehensive empirical investigation of the quality of unit tests, and the

relationship between several software characteristics and the presence of

design flaws (smells) in unit tests. The outcomes of this study are presented

in Chapter 7.

1.4. List of Publications

During the course of this doctoral thesis, several research papers have been

submitted and published in relevant research venues. At the time of submission of

this work, four papers have been published in four different peer-reviewed

research venues, as follows:

1. Tahir, A. & MacDonell, S. G. 2012, A Systematic Mapping Study on Dynamic Metrics and

Software Quality. IEEE 28
th
 International Conference on Software Maintenance (ICSM). pp.

326-335, Riva del Garda, Italy. IEEE Computer Society.

2. Tahir, A., MacDonell, S. G. & Buchan, J. 2014, Understanding Class-Level Testability through

Dynamic Analysis. 9th International Conference on Evaluation of Novel Approaches to

Software Engineering (ENASE). pp. 38-47, Lisbon, Portugal.

3. Tahir, A., MacDonell, S. G. & Buchan, J. 2015, A Study of the Relationship Between Class

Testability and Runtime Properties. Communications in Computer and Information - ENASE

2014 Extended Versions of Selected Papers, Volume 551, pp. 63-78, Springer .

4. Tahir, A. & MacDonell, S. G. 2015, Combining Dynamic Analysis and Visualization to Explore

the Distribution of Unit Test Suites. 6
th
 ICSE Workshop in Emerging Trends on Software

Metrics (WETSoM), Florence Italy. IEEE Computer Society

Note that there is overlap between the material contained in this thesis and the

published papers.

 The first publication presents the results of a mapping study that

investigates the use of dynamic metrics in software as used to measure

 6

software quality characteristics. The main aim of this work is to

systematically investigate the body of research on dynamic software

metrics to identify issues associated with their selection, design and

implementation. The findings of this work motivated the focus on software

testability, as one of the factors that can potentially benefit from the use of

dynamic software metrics. This work is presented in Chapter 4 of this

thesis.

 The second and the third publications2 examine the relationships between

dynamic software properties, represented by dynamic coupling (motivated

by the findings of the mapping study published in the first publication) and

the newly defined concept of key classes, and software testability. The

results of this work are provided in Chapter 6.

 The fourth publication presents a new approach that visualises data

obtained from both static and dynamic analysis to explore the distribution

of unit tests in software projects. This work builds on the findings from the

earlier publications. The results of this study are presented in Chapter 5 of

this thesis.

1.5. Structure of the Thesis

An overview of the novel research presented in this thesis is shown in Figure 2.

The remainder of this thesis is structured as follows: Chapter 2 presents a general

literature review of the general topics addressed in this thesis. Chapter 3 discusses

in detail the research methodology employed. Chapter 4 presents a systematic

mapping study on the use of dynamic software metrics in software quality. In the

first experiment presented in Chapter 5, we examine the combined use of dynamic

analysis and visualisation to explore the distribution of unit tests in software

systems. We then investigate the relationship between dynamic software

2 The third publication is an extended and revised version of the second publication, which was

selected to be published as a chapter in a specially edited book.

 7

characteristics and class testability, presented in Chapter 6. We subsequently

provide a detailed study in Chapter 7 on test smells and the relationship between

test smells, code smells and the factors that might impact smell distribution.

Finally, Chapter 8 presents a conclusion based on the findings of this thesis, it

provides a discussion of the limitations of the research conducted, and it suggests

a number of future research endeavours that could be carried out on topics related

to those addressed here.

Figure 2. An overview of the research conducted in the thesis

 8

 Literature Review Chapter 2

2.1 Introduction

Although it can be defined and operationalised in many ways, the general notion

of ‘quality’ rightly continues to attract extensive attention in the software industry,

from the perspectives of both research and practice. Quality has long been viewed

as an important success criterion in the software development industry

(Osterweil, 1996) and it continues to play a prominent role in today’s competitive

software market (Elberzhager et al., 2012). Users expect high-quality software

products3 and they would normally evaluate a system’s performance as delivered,

rather than in relation to the underlying development process (McManus and

Wood-Harper, 2007). As such, the quality of the final product is paramount to

users – if its performance (both functional and non-functional) does not meet their

expectations then they are unlikely to use the product. That said, continued use is

very likely to be affected by the development process, as this process will have

affected the internal quality of the product and will also affect the ease with which

the product can be changed. It is known that adherence to quality concepts in the

development process enables projects to better meet customers’ requirements and

expectations, and also increases the efficacy and the quality of the resulting

software product or service (Leung et al., 2007). Management priorities for

software development must therefore take account of development cost, time, and

effort, as well as the quality of the development process and of the final intended

product. Certainly the short release cycles and competitive market pressures now

3 We use the single term software product to represent the collective of software products,

components, systems, services, applications and apps.

 9

predominant in the software sector are squeezing resources, and such pressures

are known to have an impact on quality.

In such a context, many software organisations have therefore sought effective

ways to instil and monitor the ongoing quality of their software. One of the

demonstrably effective ways to obtain an indication of the quality of software is to

quantify some aspects of it, utilising a range of measures. This is the intent of the

work undertaken in the field of software measurement and its constituent

software metrics. Measurement is considered to be fundamental to software

quality, drawing as it does on quality strategies in other fields (e.g.,

manufacturing). Software metrics traditionally defined how various attributes of

software (such as size, cost, and defects) should be measured (Grady and Caswell,

1987). More generally, metrics can be used to quantify characteristics of a software

project, a development process and/or a final product.

Numerous quality attributes have been identified in the literature and captured in

various industry standards (Boehm et al., 1978, IEEE, 1990, ISO, 2001). One of the

key quality attributes that has been highlighted in many software quality models,

and that is of particular relevance to this study, is testability. Testability, in simple

terms, reflects how easy (or difficult!) it is to test a software product. Testability is

believed to impact the cost and effort that are required during software testing

(Elberzhager et al., 2012). The focus of the research conducted and reported in this

thesis is on software testability at the class level. We refer to this level of testability

as “class-level testability” (or simply: class testability).

The remainder of this Chapter is structured as follows: we first explain the central

concept of software testability in detail by looking at its definitions and its

associated factors. We then examine software measurements and their two types:

static and dynamic metrics. We follow this with a reflection on the importance of

test comprehension. Finally, we specifically consider the notion of quality in unit

tests, and we introduce the concept of test smells.

 10

2.2 Software Testability

Like many of the inherently ‘good’ but rather amorphous characteristics

considered in software quality models, testability has been acknowledged as an

elusive concept, and its measurement and evaluation have thus proved to be

challenging (Mouchawrab et al., 2005). Difficulties arise, in particular, due to the

many potential factors that might affect testability. In spite of this, there are good

reasons to further pursue its measurement and evaluation. Software products

with poor testability may be less trustworthy, even after successful testing

(Bertolino and Strigini, 1996). Components with poor testability are also more

expensive to repair when problems are detected late in the development process;

conversely, components and products with good testability can dramatically

increase the quality of software, as well as reduce the cost of testing (Gao et al.,

2003). Over time numerous researchers have come to relate software testability

and test efficiency to the effort and cost of conducting those tests (Gao et al., 2003,

Mouchawrab et al., 2005, Bache and Mullerburg, 1990).

There is a clear economic incentive to improve testability – testing can be very

expensive (Bertolino and Strigini, 1996) as it can consume up to 50% of the total

cost and effort in software development (Brooks, 1975, Harrold, 2000, Myers et al.,

2011). In noting the importance of testing it has been recommended that

developers spend between 25% and 50% of their time writing tests (Beck, 1994).

Further, this is not just a function of waterfall-like processes: contemporary Agile

software engineering processes, such as eXtreme Programming (XP) and Scrum,

give testing significant attention (Cornelissen et al., 2007). The practice of TDD, for

example, requires that extensive test code be developed and maintained to ensure

that the ‘furthermost’ components of the production code work correctly (Beck,

2002). In these processes, in fact, unit tests4 - components written by the

4 In the context of Object Oriented, unit tests are also referred to as Test Classes

 11

developers/tester designed to automatically test individual production classes -

are viewed not as (albeit important) after-the fact add-ons but as core, integral

parts of the program (Cheon and Leavens, 2002). These unit tests provide a

powerful mechanism for validating existing features when in the process of

developing new functionality (Cheon and Leavens, 2002). When well-designed,

the use of unit tests is known to improve software quality from the early stages of

development and to enable the detection of defects more effectively when

compared to other verification strategies (Runeson and Andrews, 2003). Thus, the

ideal ratio of test code to production code (particularly in systems implemented

with test-focused methods similar to TDD) is said to be 1:1 (van Deursen et al.,

2001).

In summary, the research consensus indicates that improving the testability of

software has a direct, positive impact on overall quality, but that challenges in

defining then measuring and assessing software testability remain. The

subsections that follow explain how testability has been defined in previous

research, particularly in studies conducted and reported early in the establishment

of the field. Factors that are believed to strongly influence software testability,

including some novel factors, are also identified and discussed.

2.2.1 Testability Definitions

Defining and measuring testability has long presented a significant challenge, and

so an extensive research effort has been directed to defining the overall

characteristic as well as its associated measures. As a result, several (purportedly)

general standards and many more individual studies have defined testability in a

variety of ways, reflecting the fact that they were conducted in parallel and/or

were motivated by different purposes. This is particularly evident in the early

works in the field, a selection of which we present here. The IEEE standard

glossary of software engineering terminology (1990) in fact established two

definitions for testability, as follows: (1) “the degree to which a system or

 12

component facilitates the establishment of test criteria and the performance of

tests to determine whether those criteria have been met”, and (2) “the degree to

which a requirement is stated in terms that permit establishment of test criteria

and performance of tests to determine whether those criteria have been met”. It is

clear, then, that the IEEE definitions consider software testability from a test

criteria point of view. The first definition focuses on defining test criteria and

checking if these criteria have been met during actual testing, whereas the second

considers test coverage and how the system’s requirements have been tested. The

relevant ISO standard (ISO, 2001) defines testability as “attributes of software that

bear on the effort needed to validate the software product”. Thus, the IEEE

definitions consider software testability from a test criteria point of view, whereas

the ISO definition, in contrast, considers testability based on the effort needed to

test a software product.

Bache and Mullerburg (1990) defined testability based on test coverage, as “the

minimum number of test cases to provide total test coverage, assuming that such

coverage is possible”(p. 3). The authors measured software testability statically

using a flow graph model. Freedman (1991) defined testability based on effort,

time, and resources required in testing a software. Their goal was to drive towards

producing easily testable – and therefore lower cost – software components. Traon

and Robach (1995) extended the well-established notions of analysis of hardware

testability to define software testability as “The effort needed to test and repair a

considered system”. In their view, software testability is concerned with not just

one but three different aspects, namely, test data generation, test result

interpretation, and diagnosis.

Although brief, this discussion should serve to demonstrate how testability has

been viewed and defined in the seminal literature. These different views of

software testability have led to multiple influential factors being identified,

aligned with one or more of these different views. As we consider several of these

 13

factors (or similar) in the work presented later in this thesis we now provide a

brief background explanation of these factors.

2.2.2 Testability Factors

As just noted, different views have been adopted when authors have defined

software testability; researchers have therefore identified multiple factors as

having an impact on the testability of software. For instance, software testability is

said to be affected by the extent of the required validation, by the process and

tools used, and by the representation of the requirements, among other factors

(Bruntink and van Deursen, 2006). Given their various foundations it is

challenging to compile a complete and consistent view on all the potential factors

that may affect testability, and the degree to which these factors are present and

influential under different testing contexts. Several are considered here, intended

to represent the breadth of issues of potential influence.

In one of the earliest works of relevance Freedman (1991) extended a well-

established characterisation scheme used for assessing the testability of hardware

components to software components (as did (Traon and Robach, 1995)). In

Freedman (1991), the author defined what is called ‘domain testability’-which can

be defined and measured using two attributes: observability (the ease of

determining if specified inputs affect the outputs) and controllability (the ease of

producing a specified output from a specific input). Traon and Robach (1995)

categorized testability based on three main factors, namely, complexity of the

unit/component/system under test, effort required in performing the testing of

these units/components/systems, and diagnosability (allowing easy location of

faults).

Lo and Shi (1998) defined three factors that they claimed to substantially affect the

testability of OO systems, namely, structure, communication, and inheritance

factors. Jungmayr (1999) related testability to the dependency between software

components: the greater the dependency, the more tests that are required to

 14

exercise their interface; hence, the higher the dependency between components,

the lower their testability.

As with other quality attributes, in order to be effectively managed (i.e., planned,

monitored and controlled), software testability and its constituent factors should

be modelled, measured, analysed and interpreted. The following section describes

the field of software measurement and metrics and explains the types of metrics

than can be used to measure the characteristics of interest in this study.

2.3 Software Measurement and Metrics

Measurement is a key process in any engineering discipline, and while there

remain some questions over the ‘engineering-ness’ of software engineering the

importance of measurement is nevertheless widely acknowledged and accepted.

The main goals of software measurement are to assist project managers and

software engineers in making predictions to support planning, monitoring

progress to enable control, and judging the performance of the software relative to

goals and objectives (Stockman et al., 1990). The quantification of software

characteristics is effected using software metrics. Software metrics are considered

by many to be fundamental to software quality (McManus and Wood-Harper,

2007), and as such they have played an important and long-established role in the

analysis and improvement of software quality (Basili et al., 1996). Among other

things, software metrics can help personnel to ensure, throughout the software life

cycle, that quality requirements are indeed being met.

As introduced previously, software metrics are commonly considered in relation

to three main categories that are related to different aspects of software

development: product, process and project (Fenton and Pfleeger, 1998, Kan, 2002). In

the software engineering body of literature, quality has been most often associated

with product and process metrics. In line with this thinking, Kan (2002) classified

quality measurements into two classes: in-process and end-product metrics. In-

 15

process metrics help to characterise the quality of the development process, while

end-product metrics reflect the relevant characteristics of the software itself

(though more correctly, and importantly, they might also reflect characteristics of

intermediate products, not just the ‘final’ version).

Within the class of (end) product metrics there are two further sub-classes that

gauge different aspects of a system: static and dynamic metrics. The ISO 9126

model (ISO, 2001) reflects these two different views on software product quality:

1. Attributes and properties that can be measured without executing or running

the program – these attributes characterise the internal quality of the software

and are quantified in the form of static metrics.

2. Attributes and properties that can be measured only at run-time (software

execution) – these attributes are quantified in the form of dynamic metrics.

As both are important in terms of obtaining a complete view of software quality

(discussed further below) both groups are explained in the following sub-sections.

2.3.1 Static Metrics

Static metrics are the group of software metrics collected by measuring non-

running system representations (Sommerville, 2006) and as such they capture only

the static structure of a system (Cleland-Huang et al., 2001). They are typically

collected using static analysis techniques, the ‘traditional’ means of understanding

and measuring a program (or software component), enabling the interested

stakeholder to explore and analyse the source code as well as any associated

products or documentation (Ball, 1999, Pirzadeh et al., 2010, Cornelissen et al.,

2011). Static metrics are invariant (i.e., their values do not change whether they are

collected before or during program execution). Most existing quality metrics come

in static form. The most notable (while perhaps not the most useful) is the Lines of

Code (LOC) metric, which measures the number of physical command lines in a

program/component. McCabe’s well-known indicator of complexity, the

Cyclomatic Complexity (CC) metric (McCabe, 1976), is another widely known static

 16

metric that has been used extensively in the past for assessing the complexity of

software systems.

The main advantage that comes from the use of static metrics is coverage

completeness: static analysis supports the prediction of behaviour resulting from

multiple scenarios/paths through the software, since it is performed without

actually executing the program. Despite this high coverage level, a number of

limitations have been noted with the use of static metrics. Unsurprisingly,

empirical studies show that static measurement and analysis is insufficient for

capturing dynamic dependencies among system modules, such as those related to

polymorphism, dynamic binding, and inheritance (Arisholm et al., 2004). The

presence of dead code in the production code is also difficult to detect statically

(especially in the presence of polymorphism) (Zaidman and Demeyer, 2008).

Furthermore, static analysis may result in the generation and/or collection of a

huge amount of data (Ernst, 2003) that may be difficult to understand and

summarize. These (and other) disadvantages have motivated researchers to look

at possible solutions that can be provided by dynamic metrics, as now discussed.

2.3.2 Dynamic Metrics

Dynamic metrics are the sub-class of software measures that are used to capture

the dynamic behaviour of a software system5 and, like their static counterparts,

they have been promoted as being directly related to several software quality

attributes of interest such as maintainability and reliability (Cai, 2008, Gunnalan et

al., 2005, Scotto et al., 2006). As early as 1996, Basili et al. (1996) stated that

traditional static software metrics may not be sufficient for characterizing,

assessing, and predicting the quality of OO systems, now the dominant structural

5 For the purpose of this thesis, we focus on specific types of dynamic metrics that are related to

particular quality attributes such as maintainability, functionality and testability. Other forms of

dynamic metrics, such as performance and time-related metrics, are considered to be outside the

scope of this thesis.

 17

form for software systems; hence the need for dynamic metrics. Dynamic metrics

are usually computed based on data collected during program execution (i.e., at

runtime) and may be obtained from the execution traces of the code (Gunnalan et

al., 2005) (although in some cases simulation can be used instead of the actual

execution), and as such they can directly reflect the quality attributes of that

system in operation.

Due to their more recent consideration, dynamic metrics have received less

extensive attention in the OO metrics literature compared to that afforded to static

metrics (Yuying et al., 2005). There exists a large body of research on static metrics

and a rapidly growing body of work on dynamic metrics; however, research on

the factors affecting dynamic metrics, and on any relationships with their static

counterparts has been limited (Mitchell and Power, 2006, Hamou-Lhadj and

Lethbridge, 2010). It has been noted that developers have tended to focus more on

static rather than dynamic metrics, at least partly because static metrics are much

easier to compute (Dufour et al., 2003a). There are indeed several challenges

associated with the collection of dynamic metrics, including code instrumentation

and possibly limited availability of the source code.

As stated briefly above, the collection of dynamic metrics can be accomplished in

different ways. Most common is to collect the data by obtaining trace information

using dynamic analysis techniques during software execution. Another method is

to simulate runtime behaviour based on executable models and interaction

diagrams (such as UML and Real-time Object Oriented Modelling (ROOM)

languages). The first approach provides actual figures reflecting system

behaviour, as it captures the true values that accrue under execution. The

disadvantage of this approach is that it is only feasible in the later stages of

development. On the other hand, simulation does not require executable code and

so the metrics data can be collected at an earlier stage. However, given likely

changes between design and code, as well as the greater detail available in the

 18

code, this technique tends not to be as accurate and precise as its execution-based

counterpart. Despite these difficulties, both techniques have been empirically

examined to collect and test several dynamic metrics (Cleland-Huang et al., 2001,

Dufour et al., 2003a, Gupta and Chhabra, 2011, Yacoub et al., 1999). Both static and

dynamic analyses return potentially useful information concerning software

artefacts (e.g., methods and classes) and their relationships (e.g., method calls)

(Stroulia and Systä, 2002). Table 1 summarises the key differences between static

and dynamic metrics.

 Comparison of static and dynamic metrics Table 1.

 Static Metrics Dynamic Metrics

Faster and Easier to collect Slower and more difficult to collect

Can be obtained in early stages of development

(such as design-related metrics)

In most cases, are available in later stages of

development

Provides wide coverage, but shallow (less

precise)

Provides narrow coverage , but very deep

(more precise)

Related to structural characteristics Related to behavioural characteristics

Basic knowledge of the software is required Advanced knowledge of the code required

Capture only invariant properties (i.e., does not

support certain OO features such as dynamic

binding and relationships between objects)

Suitable for collecting unique OO features

(e.g. dynamic binding and relationships

between objects)

This research adopts dynamic analysis during execution, given its ability to

provide more accurate and precise results in comparison to the simulation

method. The intent of this research is to measure programs that have already been

developed, so a prerequisite to inclusion is that the source code should be

available during the measurement process.

 19

Dynamic Analysis

Dynamic analysis is the process of analysing the properties of running programs

(Ball, 1999). It focuses on a real product’s execution (Ball, 1999) and occasionally

or periodically requires run-time data collection to support the investigation of the

properties of interest (Gupta and Chhabra, 2011). Studying the dynamic behaviour

of a program can dramatically improve developers’ understanding of that

program, by revealing characteristics that cannot be found from statically

investigating the source code alone (Corbi, 1989). Data gathered from dynamic

analysis are both detailed and more precise than are available from the analysis of

static features (Pacione et al., 2003, Ernst, 2003, Richner and Ducasse, 1999) in

terms of reflecting runtime behaviours. Another advantage of the use of dynamic

metrics is the reduced level of detail that needs to be reviewed. Examining one or

a few specific execution scenarios dynamically limits the scope of investigation,

resulting in the provision of detailed results but only about those specific scenarios

(Ernst, 2003, Richner and Ducasse, 1999).

The reported disadvantages of dynamic analysis lie in two different but related

points: incompleteness and limited generalisation. Incomplete coverage is one of

the major arguments against the use of dynamic analysis, as the gathered data can

reflect only the scenario that was executed (Cornelissen et al., 2011). However, it

has been argued equally strongly that incomplete coverage of software code is not

necessarily a weakness (Richner and Ducasse, 1999). That is to say, to understand

a program, evaluators need sufficient information to help them to form concepts

about the essential software structure, not necessarily to understand its complete

structure in full detail. This remains a somewhat contentious issue. The

incomplete coverage ‘problem’ leads to the second disadvantage: limited

generalisation of the results obtained. Dynamic metrics’ results may not generalise

to future executions, given that the gathered data pertain solely to the scenario

that was executed at a given point in time (Safari-Sharifabadi and Constantinides,

 20

2008, Cornelissen et al., 2011). There is no way of assuring that the scenario under

which the program was run is representative of all possible program scenarios

and executions (Ernst, 2003). One of the obvious ways to mitigate this problem is

to execute a range of scenarios that together represent all major execution paths

(rather than all possible paths) according to cost-benefit. The combined results,

compiled across multiple scenarios and paths, should consequently provide more

complete as well as more accurate results.

While the above description is sufficient for our purposes, the concepts

underpinning dynamic analysis have been investigated and explained in far more

detail in the literature – the interested reader is referred to the following sources

for further coverage of this technique (Graham et al., 1982, Lange and Nakamura,

1997, Pauw et al., 1998, Ernst, 2003).

The two main techniques that have been used in performing dynamic program

analysis are compiled code instrumentation and source code instrumentation.

Compiled code instrumentation can be useful when source code is not available;

however, given its richer coverage, source code instrumentation is normally

preferred when it is possible. Source code instrumentation itself has two forms:

manual and automatic code instrumentation. Manual instrumentation requires

manual insertion of collection points, whereas automatic instrumentation can

perform the insertion task under the control of a tool. Table 2 briefly describes

these various dynamic analysis techniques and summarizes their advantages and

disadvantages.

One of the main challenges encountered when using software measurement for

assessing product/system quality is achieving the optimum combination of

metrics data. Many researchers have commented on the synergies that could be

gained when combining both static and dynamic information (Rothlisberger et al.,

2009, Riva and Rodriguez, 2002, Ernst, 2003). Their data may complement each

 21

other; therefore they could be used alongside one another in order to build

stronger evidence about the software under investigation.

 Dynamic analysis techniques Table 2.

Technique Description Advantages Disadvantages

Compiled code

(binary)

instrumentation

Perform the

instrumentation

automatically,

under the control

of a debugger

The availability of

the source code is

not required

· Advanced

knowledge of the

binary code is

needed

· Slows down the

execution

S
o

u
rc

e
C

o
d

e

In
st

ru
m

e
n

ta
ti

o
n

Manual

instrumentation

Insert data

collection points

manually in several

locations in the

source code

Fast, as long as the

source code is

understandable

· Prior knowledge of

the source code is

required before

undertaking any

analysis

· The source code will

be modified

· It affects the source

code’s consistency,

readability and

understandability

(as well as size

metrics such as

LOC)

·

Automatic

instrumentation

· Insert data

collection points

automatically in

different locations

all over the

program

· Example: Aspect-

Oriented

Programming

(AOP)

· No need for any

manual

instrumentation

· The source code

does not need to

be modified

· Engineers do not

need to read and

understand the

application’s

source code

· Source code has to

be available

· It can considerably

slow down the

performance

Software metrics have been widely used to quantify several aspects of the

software in order to help engineers in better understanding their architecture and

source code. One of the important applications of software metrics is in program

comprehension. The following section explains the concept of program

comprehension, followed by a discussion on test comprehension and its

relationship with testability.

 22

2.4 Program Comprehension

Program comprehension (also referred to as program understanding) is a key

prerequisite to software maintenance and evolution (Mayrhauser and Vans, 1995).

Extensive effort in both software engineering research and practice has been

directed to supporting the understanding and maintenance of software artefacts.

Program comprehension is the process of obtaining knowledge about a program

and trying to understand the program using the gained knowledge (Biggerstaff et

al., 1993, Mayrhauser and Vans, 1995). Program comprehension is achieved when

the following occurs: “A person understands a program when they are able to

explain the program, its structure, its behaviour, its effects on its operational

context, and its relationships to its application domain in terms that are

qualitatively different from the tokens used to construct the source code of the

program” (Biggerstaff et al., 1993).

The long-held desire to achieve high levels of software reusability and lower

levels of maintenance makes program understanding and comprehension even

more important (Lange and Nakamura, 1997). Program comprehension research

has helped researchers, engineers and quality assurance personnel to develop

effective methods to understand and maintain large and complex software

systems. Program comprehension is one of the key phases of any maintenance

task. Software engineers usually spend a considerable amount of time, up to 60

percent of their total maintenance effort (Corbi, 1989), trying to understand

software code, especially with large software systems, before making any

alteration to the software system (Ko et al., 2006, Singer et al., 1997, Pirzadeh et al.,

2010). Various researchers have examined the use of a range of methods and

techniques to improve program understanding. Visualisation, in particular, has

been used in several previous works for the purpose of supporting developer

understanding of different aspects of production code (Lange and Nakamura,

1997, Jerding and Rugaber, 2000, Cornelissen et al., 2011). Many works (including

 23

(Systä et al., 2001, Lange and Nakamura, 1997)) have proposed and assessed

various methods, techniques and tools that use data obtained from both static and

dynamic analysis to support program understanding.

While more conventionally associated with core application (production) code the

concept of program comprehension also applies to test code. Moreover, given the

centrality of testing to contemporary development methods, maximising test code

quality is itself a worthy software engineering goal. Test comprehension can be

defined as the process of understanding the structure and the functionality of test

suites (e.g., unit tests). This involves understanding the design of the test code, the

structure and design of the test cases, and the quality of its source code. This

section now considers test comprehension and understanding from two different

perspectives: test comprehension (i.e., test coverage and distribution) and test

source code quality.

2.4.1 Test Comprehension

Test comprehension has been the focus of several works that have sought to

explicate the relationship between production and test code, while other works

have considered the structure of unit tests and test suites. It has been

acknowledged that understanding test code and test suites can be a particular

challenge due to the fact that tests are not always well-structured (Hauptmann et

al., 2012).

Test visualisation, as a means of supporting developer understanding, has also

been considered in several previous works. However, and to the best of our

knowledge, the combination of both dynamic analysis and visualisation has not been

addressed in previous research. Cornelissen et al., (2007), based on information

obtained through dynamic analysis (though generated via simulation), used UML

sequence diagrams to visualize test cases to gain knowledge about the structure of

software in order to support program understanding. They asserted that such

visualisations could be beneficial in program understanding and for

 24

documentation purposes. Visualisation of test code dependencies was used by

van Rompaey and Demeyer (2008), to localise unit tests and to investigate the

relationship between test and production code. Their focus was on both the

composition of and dependency between test and production units as well as

among the unit tests themselves. The dependency information was obtained from

static analysis. The authors recommended that size and complexity information of

the various software components should also be considered to provide a more

detailed and comprehensive assessment of the proposed visualisation approach.

In similar work, Zaidman et al. (2011) used visualisation to investigate the co-

evolution between software production code and test suites. Their study focused

on mining software history information from repositories in order to detect testing

information from different versions of software projects. The authors observed a

significant correlation between test effort (i.e., test-writing activity) and test

coverage levels in different releases. The work also proposed three different

visualisation views that could be used to study how test code co-evolves over time

between different releases.

Hauptmann et al. (2012) used a clone detection technique (i.e., finding similar

parts of the software artefacts) to identify and locate tests in order to support

better understanding of those tests. The technique was applied to 4000 tests across

seven industrial systems. In general, clone detection was found to provide useful

information for targeting test automation effort. The findings also revealed that

significant numbers of clones existed in all examined “manually written” tests.

Other works have focused on studying the correlation between different software

characteristics and software testability. The work of Bruntink and van Deursen

(2006) studied the relationship between several external OO metrics and class

testability. The authors found a strong association between several class-level

metrics, such as size and complexity metrics, and unit test size, including the

number of test cases and the lines of code per unit test. Five different software

 25

systems, including one OSS, were traversed during their experiments. However,

the authors did not find any evidence of correlations between inheritance and/or

dependency related metrics, such as Coupling Between Objects (CBO), and the

proposed testability metrics. This is likely to be because the metrics were

considered in a static form. Such relationships can be confirmed through

evaluation at the object level using runtime analysis. In a similar study, Badri et al.

(2011) investigated the relationship between cohesion and testability using the a

set of static Lack of Cohesion metrics. They found a significant relationship

between this measure of static cohesion and software testability, where testability

was measured using the metrics suggested by Bruntink and van Deursen (2006).

In a more recent study, Zhou et al. (2012) analysed the relationship between 80

different structural static metrics (including size and complexity metrics) and class

testability (as in Bruntink and van Deursen (2006), class testability is also

measured in terms of unit test size). Although the study confirmed that there is a

statistical relationship between static size and complexity metrics and class

testability, it did not confirm if these attributes can be used to accurately predict

the testability of a class.

The above section discusses the concept of test comprehension. Given the

particular focus in this work on code quality, test quality and testability the

following section provides an overview of the concepts of code and test smells in

detail.

2.4.2 Test and Code Smells

The term code smells was coined to refer to parts of code that ‘scream out’ to be

refactored (Fowler et al., 1999). Code smells reflect design flaws and/or

implementation issues in the source code that are known to have a negative

impact on software quality attributes such as readability, understandability and

maintainability (Abbes et al., 2011, Yamashita and Counsell, 2013). Code smells

therefore indicate code structures that can lead to difficulties during software

 26

evolution and maintenance. While they become evident, code smells can be the

result of poor design decisions (also known as anti-patterns). Previous empirical

studies have highlighted several relationships between code smells and software

artefact characteristics such as size (Yamashita and Counsell, 2013), change- and

fault-proneness (Khomh et al., 2012), program comprehension (Abbes et al., 2011)

and other maintenance-related tasks (Sjoberg et al., 2013, Yamashita, 2014). Given

their negative impact on both the software and the work of developers, code

smells should be considered for treatment through suitable refactoring actions.

Researchers have also used the term test smells to refer specifically to smells that

affect only unit tests/test classes. The term was first defined by van Deursen et al.

(2001) and was further explained by Meszaros (2006). Test smells, as with code

smells, can result from the poor design or implementation of a unit test.

Society’s growing reliance on software has led to increased research attention

being directed to the study, and prevention, of software quality issues as indicated

by smells. Researchers have therefore been working to provide empirical evidence

of the impact of code smells on software artefacts and processes. In contrast, there

has been relatively little attention given to the study of test smells and their

impact on software artefacts and activities.

A. Code Smells

In 1999, Fowler et al. (1999) introduced the notion of code smells by providing an

explanation of 22 different structures that negatively affect software programs.

The authors also suggested a set of refactoring techniques that could be applied to

eliminate these code smells. Soon afterward a taxonomy of code smells and a set

of possible relationships between different smells was proposed (Mäntylä et al.,

2003). More recently, Zhang et al. (2011) reported a detailed review study of the

research on code smells. The authors found that the Duplicated Code (or code

clones) smell has received the most research attention in the literature. The

authors also reported that only a few works have studied the impact of code

 27

smells on software programs, with the majority of studies instead focusing on

designing and developing code smell detection techniques and tools. Examples of

code smell tools are presented in Marinescu (2004), Tsantalis and Chatzigeorgiou,

2009 (2009) and Moha et al. (2010). Code smells detection techniques include both

manual (such as Travassos et al. (1999)) and automated methods (such as Moha et

al. (2010) and Marinescu and Ratiu (2004)). Mäntylä and Lassenius (2006)

compared manual (subjective) code smell detection methods with automated

detection approaches, and found that experienced developers usually report more

complex smells than less experienced developers.

Several empirical studies have been directed towards studying the impact of code

smells on software quality attributes. For instance, Sabane et al. (2013) studied the

impact of 13 different code smells on class testability. Class testability was

measured based on the number of test cases required to test individual production

classes using the minimal data member usage matrix (MaDUM) technique. This

technique suggests a larger number of test cases than other similar techniques.

The study found that, on average, production classes with code smells required

substantially more test cases compared to classes without smells. Some particular

smells, such as Blob, Anti-Singleton and Complex Class, are shown to be more

strongly associated with the number of test cases in a unit test than other smells.

D’Ambros (2010) found that an increase in the number of code smells in the code

is more likely to introduce faults and bugs. However, the authors did not find any

particular code smell that consistently correlates with the number of faults across

all examined systems. Khomh et al., (2012) also investigated the impact of 13 code

smells on change- and fault-proneness. They studied 54 releases of four different

systems and found that classes with code smells were more change-prone and

fault-prone than others. In a more recent study, Hall et al. (2014) investigated the

impact of five under-studied code smells on faults in three large OSS. The Switch

Statement smell was found to have no effect on faults in the systems examined.

 28

Other smells show varied impacts on faults in different systems. For example,

Data Clump was found to be associated with increased incidence of faults in one

system, but reduced faults in two other systems. Middle Man and Speculative

Generality (individually) were found to be related with reduced faults in at least

one system.

Abbes (2011) conducted a controlled experiment on the impact of two code smells

(i.e. Blob and Spaghetti code) on program comprehension and understanding using

students and professionals as subjects. The authors found that the appearance of

one code smell in the code does not significantly impact its understandability

when compared to code that does not contain either of the two smells. However,

the combination of Blob and Spaghetti Code negatively (and significantly) affected

the subjects' comprehension and understanding of the code.

A series of recent studies (Yamashita, 2014, Sjoberg et al., 2013, Yamashita and

Counsell, 2013, Yamashita and Moonen, 2013) intensively investigated the impact

of code smells on software maintainability and maintenance tasks across multiple

case studies. Yamashita and Counsell (2013) found the number of code smells at

the system level to be correlated with system size. However, their study also

suggested that code smells may not be sufficient for comparing systems that are

significantly different in size, but can potentially be useful for comparing systems

of similar size. Yamashita and Moonen (2013) found that the proportion of

problems associated with code smells was not as large as they initially expected,

with only 30% of maintenance problems being related to components containing

code smells. Finally, Yamashita (2014) stated that the Interface Segregation Principle

smells are more strongly associated with maintenance issues than other studied

smells. Sjoberg et al. (2013) investigated, through a controlled industrial

experiment, the impact of 12 code smells on maintenance effort. They found that

none of the 12 investigated smells was significantly associated with increased

maintenance effort. The authors go on to assert that code size and work practices

 29

that limit the number of changes in the code may be more beneficial, from a

maintenance point of view, than focusing on code smells.

To summarize, previous studies have shown that code smells might be harmful in

software systems from a range of perspectives. Authors have intensively studied

the impact of code smells on software maintenance and evolution. In general, code

smells (combined or sometimes only individual smells) have been shown to

negatively impact program comprehension (Abbes et al., 2011) and testability

(Sabane et al., 2013), and to increase the possibilities of developing faults and

introducing changes in the associated software systems (Khomh et al., 2012).

B. Test Smells

van Deursen et al. (2001) defined and explained a set of smells that are likely to

impact unit tests in object-oriented systems. To distinguish these special code

smells from other general code smells the authors used the name “test smells” to

mark those smells that affect unit tests only, and not the production classes. The

authors followed the same approach that was used by Fowler et al. (1999) to

define code smells, and several refactoring techniques have been suggested to

overcome these smells. One example of these smells is Assertion Roulette, which is

also known to be one of the most diffuse (i.e., common) smells in software systems

(Qusef et al., 2014, Bavota et al., 2014). This smell appears when a test case comes

with too many assertions. This smell affects developers’ error traceability (and

also maintainability), since if one of the assertions fails, it makes it hard to identify

where the error has occurred. General Fixture is another example of a test smell

that appears when a test fixture6 is too general (i.e., the fixture is set to test

multiple classes) and the class under test only accesses part of this fixture. This

smell affects test comprehension and understandability, as it could be hard for

developers other than those who wrote the test to trace back the main target of the

6 in the xUnit framework, this is also known as test setup

 30

test in the fixture. Meszaros (2006) provided a further comprehensive explanation

of these smells and their possible effects.

Most of the work on test smells has focused on designing and implementing smell

detection techniques and tools (mirroring the situation with respect to code

smells). Van Rompaey et al. (2007) proposed a set of metrics that can be used to

detect two test smells i.e., General Fixture and Eager Test. The authors later

proposed a test smell detection tool for the xUnit framework called TestQ

(Breugelmans and Van Rompaey, 2008). Greiler et al. (2013a) presented a tool

called TestHound that targets smells related to the test fixture. The authors defined

six different test fixture related smells, including the well-known General Fixture.

Besides the identification of smells, the proposed tool can also provide

recommendations for refactoring opportunities to overcome these smells.

Reichhart et al. (2007) presented a tool called TestLint that detects, analyses and

quantifies 27 different test smells in Smalltalk programs.

Although many works have considered the issue of test smells, to the best of our

knowledge there are only two studies that have empirically investigated test

smells and their impact on software artefacts. Greiler et al. (2013b) studied how

test fixture smells are distributed in OSS and how they evolve over time by

analysing several releases of five OSS. The main finding of their study shows that

test fixture smells do not continually increase over time (from one release to

another), even when the system’s complexity increases. The study also provided

evidence of a significant correlation between the number of tests cases and the

number of test fixture smells in a system. More recently, Bavota et al. (2014)

conducted two empirical studies on test smells. The first study was concerned

with the distribution of test smells and investigated unit tests in 27 different Java-

based systems (25 OSS and 2 industrial projects). The authors found that test

smells are widely distributed in both OSS and industrial systems. Almost 86% of

the unit tests analysed contained at least one test smell. In the second study, the

 31

authors conducted a controlled experiment using 61 students and practitioners to

study the impact of test smells on program comprehension and understanding

during maintenance tasks. The authors reported that the presence of test smells in

unit tests negatively impacted developers’ comprehension during maintenance

activities.

The focus of most of these previous studies was on the effect of test smells on

software maintenance activities such as program comprehension and

understanding. Many of these previous studies, including those reported in the

last year, have suggested the need for more empirical investigations of the impact

of test smells on different software artefacts.

Having presented the relevant background literature, we turn now to discuss the

research methodology used in this thesis. The research methodology chapter that

follows includes detailed information concerning the techniques and methods

employed to study the range of aspects of testability and test quality addressed in

subsequent chapters of the thesis.

 32

 Research Methodology Chapter 3

3.1 Introduction

Computer science, information systems, and software engineering are all

considered as relatively new research disciplines compared with other more

established fields, including many of the social and physical sciences. Moreover,

these disciplines draw on a number of established foundations. As a wide-ranging

discipline, software engineering, in particular, leverages pure mathematics, logic

and statistics but also engineering, psychology and sociology (as reflected in the

IEEE Software Engineering Body of Knowledge (SWEBOK)). As a result it can

utilise a broad range of approaches to research, depending on the particular focus

of the work at hand. Research that seeks to solve problems through the building

and evaluation of novel artefacts – be they concepts, models, processes or tools –

increasingly derives methods from the science of design.

The research reported in the chapters that follow is empirical – that is, it primarily

draws on observation and data rather than on prior theory (as general theories of

software practice are still nascent) – and as such it follows a now well-established

pattern for empirical software engineering research. Empirical methods have been

used extensively in engineering fields in general, and in the software engineering

context in particular in the last twenty years. While not a ‘pure’ engineering

discipline due to the intangible nature of the software product, software

engineering is a field highly influenced by engineering schools, and engineering

thought, as it works explicitly to link theory and practice (Nunamaker et al., 1990).

Empirical software engineering aims to connect theory and models evident and

observable in real-life software engineering problems and solutions. The general

form of empirical software engineering research and practice is shown in Figure 3.

 33

Theory

Models

Research

Questions

Research

Hypotheses

Research Design

Results

Empirical Software

Engineering

(OSS)

Implementation

Figure 3. The empirical software engineering model used in this thesis

This chapter presents the general aspects of the research methodology used in this

thesis. The more specific aspects of the methodology, including the specialist

methods that are applied in each particular experiment, are presented in each

relevant chapter (Chapters 5, 6 and 7). Note that Chapter 4 presents a systematic

review study; as such it follows a separate method (described in that chapter) to

those employed in the empirical analyses that follow it.

The remainder of this chapter is structured as follows: Section 3.2 presents the

experimental design of the thesis, including a discussion on system selection and

the statistical procedures used to analyse the data, Section 3.3 defines and justifies

the metrics used in the thesis, Section 3.4 describes the data collection procedures

and methods, Section 3.5 discuss the possible threats to the experimental validity

and Section 3.6 provides a summary of the chapter.

 34

3.2 Experimental Design

Empirical software engineering research activities may be conducted in many

forms, including field studies, surveys, laboratory experiments, and case studies.

A wide range of these and other research methods have therefore been employed

in both academic and industrial software engineering research. The choice of

plausible and appropriate methods depends on several factors, such as the

theoretical stance of the researcher, access to resources, and the nature of the

research questions posed by the researcher (Easterbrook et al., 2008, Wohlin et al.,

2012). Given that this thesis addresses a number of research questions each of

which investigates a different aspect of software testability, the specific research

questions and hypotheses examined in this thesis are presented in each relevant

Chapter (Chapter 5-7).

As the current research is empirical in nature, five main methods relevant to this

form of software engineering research are suitable in principle: Laboratory

Experiments, Case Studies, Surveys, Ethnographies, and Action Research. In-depth

discussion of these methods and their relevance to software engineering research

can be found in Easterbrook et al. (2008), Wohlin et al. (2006) and Wohlin et al.

(2012). This thesis presents a number of laboratory experiments that examine several

research questions and hypotheses.

Experimental methods are commonly used in engineering, physics and medicine

research. As in other disciplines, experiments can be particularly helpful in

software engineering as they enable the researcher to work with a limited scope of

effects. The most widely used form of experiment in software engineering is the

laboratory experiment. This type of experiment provides a means of examining an

approach (or a method, technique, tool and so on) in a controlled environment. In

this type of experiment, one or more independent variables are manipulated to

vary their effect on one or more dependent variables (Easterbrook et al., 2008) and

in software engineering these effects are typically analysed by performing

 35

appropriate statistical analyses (Wohlin et al., 2006). In our case the independent

variables are not manipulated as such, as they are drawn from existing software

systems, but the opportunity to consider the relationships between and effects of

differences in independent variables on potentially dependent variables still

applies. In this thesis, we are using secondary sources compiled by others rather

than sources we have obtained directly ourselves. Specifically, these experiments

enable us to statistically examine the presence and strength of any relationships

between characteristics of different software artefacts and software testability. The

hypotheses that reflect these relationships are laboratory tested using a number of

OSS. The principal, pragmatic reason for using OSS is their ready availability. OSS

are publicly available and, in many instances, their source code is completely

accessible7. The OSS selection criteria applied in this research and the resultant list

of the selected OSS are explained in more detail in the following section.

3.2.1 Open Source Systems

Much of the research reported in this thesis utilises data obtained from OSS. As

the name implies, OSS grant free and full access to software projects. Nine

different OSS have been selected for use in the experiments conducted in this

research and reported in subsequent chapters. These OSS were identified from

similar previous empirical studies as well as from well-known OSS repositories

such as SourceForge8, GitHub9and Google Code10. The systems were selected

based on the selection criteria that all systems should:

 be fully11 written in Java (Java is one of the most widely used OO

programming languages in the OSS domain, based on the number of projects

7 In some cases, parts of source code might not be publicly available.
8 http://sourceforge.net/
9 https://github.com/
10 https://code.google.com/
11 Only comprising Java code and not other languages

http://sourceforge.net/
https://github.com/
https://code.google.com/

 36

developed in Java,12 and it is also considered to be one of the most popular

programming languages in terms of the number of developers using it13)

 be fully open source (i.e., giving unrestricted access to all core project artefacts)

 contain a reasonable number of unit tests (i.e., at least 20 observation points in

each system, for statistical significance14).

A further, important consideration in system selection was applied across the set

of systems, rather than to each individual system, and that was that the systems

should be of different sizes. Consideration of systems of different sizes is intended

to enable assessment of the scalability of the analyses conducted in this work,

which can help in generalising the findings presented here. The goal is to be able

to conduct experiments without having to make any assumptions regarding the

size of the software system being examined. Based on the above criteria a set of

nine OSS were selected for use across the experiments that follow (though it

should be noted that not all systems were used in all experiments). The selected

systems are further classified based on their sizes, according to the LOC metric,

using a classification scheme motivated by the prior work of Zhao and Elbaum

(2000), but with changes in its structure in order to meet the growing scale of OSS.

Application sizes are therefore categorized into bands based on the number of

Kilo LOC (KLOC) in the system:

 Tiny: fewer than 1 KLOC

 Small: 1 up to 10 KLOC

 Medium: 10 up to 100 KLOC

 Large: 100 up to 1000 KLOC

 Extra-large: comprising more than 1000 KLOC.

12 http://githut.info

13 http://stackoverflow.com/research/developer-survey-2015#tech-lang

14 This does not apply to JDepend, as this particular system was not used in any experiments that

involve examining the significance of a correlation between two variables. The system was used

only in the experimental work presented in Chapter 5.

http://githut.info/
http://stackoverflow.com/research/developer-survey-2015#tech-lang

 37

 List of selected OSS Table 3.

System Version URL Description

JFreeChart 1.0.17
http://www.jfree.org/jfree

chart

Java chart library that creates a variety of

professional quality charts and graphs

FindBugs 2.0.3
http://findbugs.sourceforg

e.net

Static code analyser that analyses Java

bytecode to find and detect a wide range

of pre-defined bugs and defects. The tool

includes more than 200 bug patterns.

JMeter 2.9 http://jmeter.apache.org/

An application designed to load test

functional behaviour and measure

performance of software application

JabRef 2.9.2
http://jabref.sourceforge.n

et

Bibliography tool that provides GUI-

based reference management support for

BibTeX files - the standard LaTeX

bibliography format.

Apache

Commons

Lang

3.3.2
http://commons.apache.or

g/proper/commons-lang

Helper utilities for the java.lang API,

notably String manipulation methods,

basic numerical methods, object

reflection, concurrency, creation and

serialization and System properties. It

contains basic enhancements to

java.util.Date and a series of utilities

dedicated to help with building methods,

such as hashCode, toString and equals.

Dependency

Finder

1.2.1-

beta4

http://depfind.sourceforg

e.net

An analyser that extracts dependencies

and dependency graphs of complied Java

code and mines some other useful

dependency information. The tool also

provides basic OO quality metric

assessment of source code.

MOEA 1.17
http://www.moeaframew

ork.org

A framework that supports development

and experimentation of multi-objective

evolutionary and optimisation

algorithms. The tool is intended to

provide fast and reliable implementations

of several state-of-the-art multi-objective

algorithms.

Barcode4J 2.1
http://barcode4j.sourcefor

ge.net

A free and flexible automatic barcodes

generator.

JDepend 2.9
http://www.clarkware.co

m/software/JDepend.html

Lightweight analysis tool that evaluates

Java packages using several OO quality

metrics. The tool provides an automated

way to measure the quality of software

design.

http://www.jfree.org/jfreechart
http://www.jfree.org/jfreechart
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://jmeter.apache.org/
http://jabref.sourceforge.net/
http://jabref.sourceforge.net/
http://commons.apache.org/proper/commons-lang
http://commons.apache.org/proper/commons-lang
http://depfind.sourceforge.net/
http://depfind.sourceforge.net/
http://www.moeaframework.org/
http://www.moeaframework.org/
http://barcode4j.sourceforge.net/
http://barcode4j.sourceforge.net/
http://www.clarkware.com/software/JDepend.html
http://www.clarkware.com/software/JDepend.html

 38

The aim was to have at least one OSS fit into each of the small, medium and large

size categories, as considering systems of different size should enable the

applicability of each experimental technique to be assessed at different scales.

It is important to note that, although there have been some efforts to investigate

testing in OSS, the actual extent of testing performed and the way developers test

their projects in OSS are still unclear. A large scale study conducted on 20,000 OSS

projects hosted in GitHub reports that almost 62% of the studied projects have

unit tests (Kochhar et al., 2013), although other recent figures from a smaller-scale

study (of 460 projects) note that the proportion of active tests (i.e., tests that are

working and being maintained) is less than 35% (Beller et al., 2015).

 Characteristics of the selected OSS Table 4.

System
Total Size

(KLOC)
Size

Production Code

Size (KLOC)

#Classes

(NOC)

Total #of

unit tests

JFreeChart 140.6 Large 99.4 669 366

FindBugs 117 Large 114.5 1245 46

JMeter 106.4 Large 90.8 1150 127

JabRef 90.4 Medium 84.7 616 68

Apache Commons Lang 63.6 Medium 23.5 132 142

Dependency Finder 58 Medium 26.7 450 280

MOEA 42 Medium 25.5 407 209

Barcode4J 16.4 Medium 13.2 158 42

JDepend 3.6 Small 2.460 29 18

A short description of each of the nine selected OSS is shown in Table 3. General

characteristics of the selected systems are shown in Table 4, where Table 5

provides information about the project’s age and the number of developers that

contribute to the project’s repository. The number of systems used within each

experiment is noted in the relevant Chapter (Chapters 5, 7 and 8). Similarly, the

 39

numbers of unit tests analysed vary from one experiment to another, depending

on the specific objectives of each experiment. Together these systems form around

638 Kilo lines of code (KLOC) and contain in total 4856 production classes and

1298 unit tests.

 Age and the number of contributors in all selected systems Table 5.

System
System’s age

(1st version release date - age)

Contributors
(all releases)

JFreeChart 2000 – 15 Years 8

FindBugs 2007 – 8 Years 11

JMeter 2001 – 14 Years 15

JabRef 2003 – 12 Years 38

Apache Commons Lang 2002 – 13 Years 15

Dependency Finder 2003 – 12 Years 2

MOEA 2011 – 4 Years 1

Barcode4J 2004 – 11 Years 17

JDepend 2003 – 12 Years 2

3.2.2 Statistical Analysis Procedures

A number of statistical analysis procedures are used in this thesis. The selection of

procedures again depends on the objectives of the designed experiment, as well as

on characteristics of the data being analysed. This section discusses general

statistical procedures that have been applied in all chapters.

The Shapiro-Wilk test is used to check whether a data distribution adheres to the

characteristics and assumptions of a normal distribution. Shapiro-Wilk is reported

to be one of the most powerful normality tests (Razali and Wah, 2011) and it has

been recommended for use over other normality tests, such as the Kolmogorov-

Smirnov test (Thode, 2002). The Shapiro-Wilk test has been recommended to be

 40

used for sample size up to 2000 data points (Royston, 1992, Razali and Wah, 2011).

Use of such a test is necessary as selection of statistical analysis tests should be

informed by the nature of the distributions being normal or non-normal.

Parametric tests assume the data being analysed comes from an underlying

distribution, most often the normal distribution, and so the null hypothesis for the

Shapiro-Wilk test is that data is normally distributed. Further common statistical

analysis procedures and tests are now also explained. Note that for the statistical

tests undertaken a threshold of 5% for all obtained significance values (p-values

[p]) is employed.

Given the intent to seek evidence of possible relationships among variables,

several tests of correlation are conducted across the experiments. Where data

distributions are skewed, a rank order test is preferred, so in the experiments

reported in this thesis the non-parametric Spearman's rho (ρ) rank correlation

coefficient test is used. Spearman's ρ is a non-parametric procedure to test for

statistical association between two independent variables. In some instances the

examined correlations are for binary variables (i.e., zero or one, representing

absence or presence of a phenomenon). Such data are first classified using the

binary classification mechanism (through the use of a 2×2 contingency table15), and

then the correlations are examined using the Phi (φ) Correlation Coefficient test (a

statistical measure of association between two binary variables).

Phi correlation is computed from the contingency table (shown in Table 6). The Phi

correlation for variable x and y is calculated using the following formula (1):

 𝜑 =
(𝑎×𝑑)−(𝑏×𝑐)

√𝑎𝑐×𝑏𝑑×𝑎𝑏×𝑐𝑑
 (1)

15 A contingency table (or a cross tabulation) is a matrix based table that categorises variables based

on their distribution frequency.

 41

 A 2×2 contingency table Table 6.

 Y=1 Y=0 Total

X=1 a b ab

X=0 c d cd

Total ac bd n

Effect size (ez) (for non-parametric data) is measured using the following formula

(2) (Fritz et al., 2012, Coolican, 2014):

ez =
𝑍

√𝑁
 (2)

where N is the number of observations, Z is the standard score (z-value).

Cohen’s classification (Cohen, 1988) is used to interpret the degree of association

(measured using Spearman’s rho, ρ) between variables: there is said to be a low

association when 0 < ρ < 0.3, medium when 0.3 ≤ ρ < 0.5 and high when ρ ≥ 0.5. This

interpretation also applies to negative correlations, but the association is inverse

rather than direct (Daniel, 2000). Cohen’s classification scheme (Cohen, 1988) is

also used to classify effect size values as small (0 < ez < 0.3), medium (0.3 ≤ ez < 0.5)

or high (ez ≥ 0.5).

To compare differences in distribution between two independent groups the non-

parametric Mann–Whitney U test is used. Where multiple tests are conducted the

significance values obtained from the Mann–Whitney U test are adjusted/corrected

using the Holm-Bonferroni correction procedures (Abdi, 2010) using the following

formula (3):

p H-Bi = (C - i + 1) × p (3)

 42

where C is the number of tests conducted; p is the original p-value; i is the rank order of the p-value

A summary of the general statistical analysis procedures used in this thesis is

shown in Table 7. The majority of the tests performed in this research are

conducted using the IBM SPSS16 (version 22) toolset. Graphs are generated using

both Microsoft Excel17 and R18.

 Summary of the general statistical analysis procedures used in this thesis Table 7.

Test nature
Statistical analysis

procedure

Relevant

Chapters

Measuring the dependence between two

variables of non-parametric data

Spearman's rho (ρ) rank

Correlation Coefficient test

6

7

Measuring the dependence between two

binary variables of non-parametric data

Phi (φ) Correlation

Coefficient test
7

Compare the significance differences

between two independent groups
Mann–Whitney U test

5

7

3.3 Metrics Selection

One of the well-known challenges faced by researchers and practitioners when

measuring software products is the choice of appropriate measurements. Metric

selection in this research has been determined in a ‘goal-oriented’ manner using

the Goal/Question/Metrics (GQM) framework (Basili and Weiss, 1984) and its

extension, the GQM/MEtric DEfinition Approach (GQM/MEDEA) framework

(Briand et al., 2002). The GQM concept was first introduced by Victor Basili to

encourage selection and use of software metrics in a more systematic manner – as

opposed to the prior prevailing convention to measure whatever could be

16 http://www-01.ibm.com/software/analytics/spss
17 http://products.office.com/en-us/excel
18 http://www.r-project.org

http://www-01.ibm.com/software/analytics/spss
http://products.office.com/en-us/excel
http://www.r-project.org/

 43

measured. The approach was developed originally to support the evaluation of

software defects in a set of NASA projects (Basili and Weiss, 1984). GQM is

acknowledged as the most widely known and used goal-oriented approach to

software measurement (Solingen and Berghout, 1999, Patzke et al., 2012). GQM

and other similar goal-oriented frameworks enable researchers and practitioners

to transition from what knowledge might be potentially available to that which is

actually needed.

The main goal of this thesis is to better understand what affects software

testability, and our objective is to assess the presence and strength of any

relationships between different software characteristics on the one hand and

software testability on the other. The specific purpose is to measure and ultimately

predict class testability in OO systems. Our viewpoint is as software engineers,

and more specifically, testers, maintainers and quality engineers. The targeted

environment is Java-based OSS.

The following section presents the general metrics used in this thesis.

3.3.1 Source Code Metrics

Program size is measured using the two well-known static metrics: LOC19 and

Number of Classes (NOC). Class size is measured in terms of the Number of

Methods (NOM) within a class and the number of LOC within that class. We also

measure the complexity of a class using the class’s Cyclomatic Complexity (CC).

Dynamic Coupling is measured using the Dynamic Coupling Between Objects

(DCBO), Import Coupling (IC) and Export Coupling (EC) metrics (dynamic

coupling metrics are explained in more details in Sections 5.5 and 6.2.1,

respectively). Details of the selection of these dynamic metrics and their

specialised data collection procedures are provided in Chapters 5 and 6.

19 LOC counts the number of all lines other than blank and comments-only lines. This also applies to

the TLOC metric.

 44

3.3.2 Class Testability Metrics

Testability in this study is considered at class-level. As explained previously, class

testability refers to the one-to-one relationship between each production class and

the corresponding unit test that is designed to test the production class. Following

the ISO definition of testability, we define class testability in terms of the attributes

of a class that bear on the effort needed to validate the class. Class testability is then

measured in terms of the size of the unit test. Two static metrics are used for this

purpose: the Test Lines of Code (TLOC) and Number of Test Cases (NTC). These

metrics are motivated by the test suite metrics suggested by Bruntink and van

Deursen (2006). TLOC, derived from the classic LOC metric, is a size measure that

counts the total number of physical lines of code within a test class. NTC is a

design metric that counts the total number of test cases in a unit test. These same

testability metrics have been widely used in several previous studies (e.g.,

(Bruntink and van Deursen, 2006, Badri et al., 2010, Zhou et al., 2012)). Note that

the two class testability measures are themselves known to be correlated i.e.,

TLOC increases with NTC.

Because the two metrics are collected at post-production phase, they may in fact

represent the effort expended to test a class. The assumption here is that the effort

expended is indicative of the effort needed. This has a reflection on the test suites

of the OSS we used in the thesis. We conduct some of the analysis of this thesis

(especially in Chapters 6 and 7) under the assumption that the two class testability

metrics are representative of the effort needed to test a class, leading us to make

some conclusions about the relationship between several class artefacts and class

testability.

We examined the suitability of the test suites to ensure that the set of unit tests we

are using here are representative of the effort needed to test production classes.

We first check the relationship between unit tests size and production class size in

all examined systems. Size has been widely used as an indicator of many aspects

 45

of software development processes. For instance, well-established effort

estimation models such as the COnstructive COst MOdel (COCOMO) (Boehm,

1981) and the Software LIfecycle Management (SLIM) model (Putnam, 1978) use

size (and specifically LOC) as the main input to their models. In keeping with

such models, in this study there is an expected relationship between the effort

required to develop a class and the effort required to test the class. In other words,

there is an expected strong relationship between the size of a class and the size of

the unit test that is designed to test the same class. (Such a relationship has been

shown in previous research (Bruntink and van Deursen, 2006).) We checked if

such a relationship existed in the systems we examined in this thesis, to get an

indication whether the effort expended to develop a production class is related to

the effort expended to test the class. We therefore statistically examine the

correlation between LOC and TLOC in all eight systems using the Spearman's rho

test (see Section 3.2.2). Detailed results of the correlations are shown in Table 8.

The results of this test showed that both metrics are significantly correlated in all

but one of the examined systems (with FindBugs being the exception (showing no

significant correlation)). There is a strong positive correlation between the size of a

class and the size of its associated unit test in six systems (JFreeChart, JabRef,

Commons Lang, Dependency Finder, MOEA and Barcode4j); and one system

showed a medium, significant correlation (JMeter). In considering size as a proxy

for effort, these relationships suggest that the more effort that is needed to write a

class, the more effort will be expended to test that class.

 Spearman’s ρ correlations between LOC and TLOC Table 8.

LOC

 JFreeChart FindBugs JMeter JabRef
Commons

Lang

Dependency

Finder
MOEA

Barco-

de4J

TLOC ρ .50 -.11 .30 .68 .71 .56 .52 .52

p .00 .26 .01 .00 .00 .00 .00 .00

 46

A second task was carried out to check the extent of the test suites’ coverage –

high coverage provides some assurance of the completeness of the testing (though

it is acknowledged that high coverage does not necessarily indicate ‘high quality’

tests20). We measure four different types of coverage: statement coverage (number of

executed (tested) statements), branch coverage (number of executed control

structures (such as if-else and case statements), line coverage (number of executed

lines of code) and method coverage (number of executed methods). Descriptive

statistics of the retrieved coverage information are provided in Table 9.

 Coverage infromation from a selected set of classes Table 9.

System
Statement

Coverage

Branches

Coverage

Line

Coverage

Method

Coverage

JFreeChart Mean 58% 89% 60% 65%

Median 60% 51% 65% 63%

Std dev. 0.275 3.189 0.260 0.228

FindBugs Mean 51% 37% 52% 57%

Median 46% 29% 43% 49%

Std dev. 0.285 0.348 0.276 0.270

JabRef Mean 77% 70% 77% 82%

Median 98% 84% 96% 100%

Std dev. 0.323 0.342 0.316 0.280

Commons Lang Mean 87% 79% 88% 89%

Median 96% 82% 97% 100%

Std dev. 0.216 0.232 0.209 0.216

We collected test coverage information for a sample of classes over a number of

the systems investigated in detail in Chapters 6 and 7. Specifically, we examined a

selection of classes from two of the large-size systems (JMeter and JFreeChart) and

two of the medium-size systems (JabRef and Apache Commons Lang). In total we

examined 20% of the unit tests (and their associated production classes) from each

20 http://martinfowler.com/bliki/TestCoverage.html

http://martinfowler.com/bliki/TestCoverage.html

 47

of the abovementioned systems. The 20% of classes were selected based on the

size of the unit tests – half of these (10%) are selected from the ‘smallest’ unit tests

in each system, while the other half (10%) are selected from the set of ‘largest’ unit

tests. In total, we examined the test coverage of 72 unit tests from JFreeChart, 8

from FindBugs, 12 from JabRef and 24 from Commons Lang.

The results (Table 9) show that all of the investigated classes exhibited fair to high

levels in regard to method coverage (between 57% and 89%) and branch coverage

(between 37% and 89%). Branch and method coverage are relatively high in

JFreeChart, JabRef and Commons Lang. Taken together, the results of the

correlation analysis between class size and unit test size and the analysis of unit

test coverage provide reasonable evidence that an appropriate level of effort had

been expended when constructing the test suites. We therefore believe that the

unit tests used in the experiments that follow are indeed generally representative

of the effort needed to test the targeted production classes.

3.3.3 Code and Test Smells

All code and test smells are detected using automated tools, and some of the

smells are identified using a metrics-based approach. Details of the test and code

smells considered in this thesis are provided in Chapter 7.

3.4 Data Collection Methods and Procedures

To identify unit tests and associate them with their corresponding production

classes in the selected OSS, two established test-to-code traceability techniques are

used (Van Rompaey and Demeyer, 2009). First, we used the Naming Convention

technique, which reflects the widely suggested practice (for instance, in the JUnit

documentation) that a unit test should be named after the corresponding class that

it tests, by adding “Test” to the original class name. For example, the unit test for

class ‘Domain’ should be: ’DomainTest’. Second, we used a Static Call Graph

technique, which inspects method invocations in the test case. Both processes

 48

were carried out manually. The effectiveness of the Naming Convention technique

is reliant on developers’ efforts in conforming to the recommended coding

standard, whereas the Static Call Graph approach reveals direct references to

production classes in the unit tests. Van Rompaey and Demeyer (2009) explained

that traceability strategies such as Naming Convention results in high precision and

recall but also they depend on the testing strategy and guidelines followed. Other

strategies such as Static Call Graph and Last Call before Assertion have high

applicability but score low in accuracy. Therefore, the authors recommended

using a combination of strategies, which we did here.

It is important to note here that only core system code is considered: that is, only

production classes that are developed as a part of the system are assessed.

Additional classes (including those in jar files and external libraries) are excluded

from the measurement process. These files are generally not part of the core

system under development and any dependencies could negatively influence the

results of the measurement process.

A set of tools and procedures has been used to collect and analyse the data. A

summary of the tools used in this thesis, and in which specific chapters their use is

reported, are noted in Table 10. In terms of the metric collection tools employed,

we selected tools that follow the same metric definitions that we identified for all

static metrics. For example, we defined LOC as the number of all lines other than

blank and comment-only lines in class. Therefore, we sought automated tools that

measured LOC following the same definition. The same applies to all other static

metrics of interest, such as NOM, CC and TLOC.

All data (i.e., metrics) collection and access to the OSS were performed in Eclipse.

All static metrics, including LOC, NOC, NOM, CC and TLOC, are collected using

the CodePro Analytix tool. The values of these metrics were later checked and

verified using the Eclipse Metrics Plugin. Values for the NTC metric are collected

directly from the JUnit framework and these values were verified manually.

 49

 List of Tools Used in the Thesis Table 10.

Tool Description Usage Chapter

Eclipse IDE21
A multi-language integrated

development environment

Development and access to

OSS. Most of the tools listed

below have plugins that

integrate well with Eclipse

5,6,7

AspectJ22
An AOP implementation for

Java language

Collection of the dynamic

metrics data
5,6,7

JUnit23
Unit testing framework for

Java
Analysis of unit test suites 5,6,7

CodePro

Analytix24

Java source code analytical

tool

Collection of a set of static

metrics
5,6,7

InCode25
An industrial code smell and

design flaw detection tool

Collection of a set of code

smells
7

JDeodorant26
Code smell detection and

refactoring tool

Collection of a set of code

smells
7

PMD27
Static Java source code

analyser

Collection of a set of code and

test smells
7

Eclipse Metrics

Plugin28

Static metrics tool for Java

code

Collection of a set of static

metrics
5,6,7

NodeXL29
Template for Microsoft Excel

that creates network graphs

Creation of dependency

graphs and extraction of

graph metrics

5

Emma30 Code coverage tool
Measurement of several test

coverage levels
5,6,7

CodeCover31 Code coverage tool
Measurement of several test

coverage levels
5,6,7

21 https://eclipse.org

22 https://eclipse.org/aspectj

23 http://junit.org

24 https://developers.google.com/java-dev-tools/codepro/doc

25 https://www.intooitus.com/products/incode

26 http://www.jdeodorant.com

27 http://pmd.sourceforge.net

28 http://metrics2.sourceforge.net

29 http://nodexl.codeplex.com

30 http://emma.sourceforge.net

31 http://codecover.org

https://eclipse.org/
https://eclipse.org/aspectj
https://developers.google.com/java-dev-tools/codepro/doc
https://www.intooitus.com/products/incode
http://www.jdeodorant.com/
http://pmd.sourceforge.net/
http://metrics2.sourceforge.net/
http://nodexl.codeplex.com/
http://emma.sourceforge.net/
http://codecover.org/

 50

3.5 Threats to Experimental Validity

There are a number of threats that can affect the results presented in this thesis.

Some of these validity threats are common threats that could impact the results of

two or more experiments – these are therefore considered here. Details of the

specific validity threats that could affect each individual experiment are presented

in the relevant Chapters. Note that the validity threats to the mapping study

(Chapter 5) are different in nature than those relevant to the experiments

presented in Chapters 6, 7 and 8.

3.5.1 Internal Validity

Ambiguity about Direction of Causal Influence

This refers to the question of which variable causes or influences the other (e.g., A

causes B, B causes A, or even X causes A and B). In some of the analyses that

follow we build in assumptions of directionality (impact or cause-effect) in the

correlations between different variables based on the theory and findings

identified in previous research. However, we do not investigate the directed

impacts between individual variables per se. Further specific details of this internal

validity threat are presented in Chapters 6 and 7.

Confounding Variables

Some of the correlations identified between variables might be influenced by

confounding factors (e.g., A causes X which causes B). A confounding factor is an

unmeasured mediating factor, whose presence means it is difficult to distinguish

the effects of factors on each other (Wohlin et al., 2012). These confounding factors

might be the reason why some of the discovered correlations appear. Thus,

although we study the strength of correlation between different variables, in the

experiments reported here we ignore the possibility that there are other factors

that could cause or influence the discovered correlations. The influence of

confounding variables is discussed further in Chapter 7.

 51

Selection of Executions Scenarios

This threat applies specifically to the experiments in Chapters 5 and 6. Execution

scenarios are designed to mimic as closely as possible ‘actual’ system behaviour,

based on the available system documentation and, in particular, indications of

each system’s key features. However, it is important to acknowledge that the

selected scenarios might not be fully representative of the typical uses of the

systems. Analysing data that is collected based on different scenarios might give

different results. This particular issue is very common in most research that

employs dynamic analysis techniques. However, this threat is mitigated by

carefully checking user manuals and other documentation of each of the examined

systems and deriving the chosen scenarios from these original sources. Most listed

features were used (at least once) during the execution.

Class Testability Metrics

Class testability is measured in this thesis using two unit tests metrics i.e., TLOC

and NTC. As explained in Section 3.3.2, these metrics have been used in several

previous works to measure class testability. However, if best practice is not

followed then the two metrics may not necessarily correspond to class testability.

For example, these metrics do not take into account the number of test cases that

are actually required to effectively test a production class. Rather, these metrics

reflect the true development practice in the examined OSS. To reduce the impact

of this threat we decided to use OSS that have been in use (and under continuous

improvement) for several years (see information about systems’ ages in Table 5).

We chose the latest available version of each system at the time when they were

selected. Furthermore, we also included well-known systems (such as JFreeChart,

FindBugs and JabRef) and systems from well-established open source

groups/foundations such as the Apache Software Foundation (i.e., JMeter and

Commons Lang). Therefore, given the maturity and long-term use of the selected

 52

systems, we would expect that they would have adequate test suites, following

best practice. This threat applies to the experiments in Chapters 6 and 7.

Selection of Classes and Unit Tests

Production classes and unit test selections can be another validity threat. Only

production classes that have corresponding unit tests are included, which may

lead to a selection bias. Since none of the examined systems have available unit

test for all production classes (i.e., provide a complete class coverage), classes that

are extremely difficult to test, or are considered too simple, might have no

associated unit test and, hence, would not be considered in our analyses.

3.5.2 External Validity

Generalisation of Findings

A total of nine different OSS are examined in the course of the research conducted

for this thesis. The number of examined systems varies from one experiment to

another, however. While in each experiment a minimum of four systems is used,

and those systems have been selected with deliberate criteria in mind and to cover

a range of system sizes (see Section 3.2.1), there is still a possibility that

consideration of other systems might affect the results obtained, and that more

systems are needed to validate the results for the purpose of wider generalisation.

This threat applies to all three experiments (Chapters 5, 6 and 7).

Limited Scope of System Coverage

This thesis presents analysis that has been conducted on OSS applications due to

the availability of their source code (both production code and unit tests).

Therefore, the results of this study are limited to OSS and cannot be directly

generalised to include closed-source, industrial applications. Although we have

used a variety of systems in this study (i.e., applications of different sizes and

from different domains), we acknowledge that experiments across more

 53

applications will build greater assurance regarding our current conclusions. This

threat applies to all three experiments (Chapters 5, 6 and 7).

Efficacy of Tools Used

All metrics used in this research are collected using automated tools (see Section

3.4). The accuracy of these tools – or lack thereof – could be a threat to the

findings. To address this threat we selected tools that have been used in previous

research in empirical software engineering. Where possible, data collected by one

tool was cross-validated by those obtained from a similar tool32. (For example,

static metrics data were collected using CodePro Analytix (see Table 4) and were

validated using the Eclipse Metrics plugin.) Some of the tools are open source,

free-access tools (such as CodePro Analytix), while others are closed-source,

industrial-based tools (such as InCode).

3.5.3 Conclusion Validity

Selection of Statistics Methods

The use of statistical analysis procedures in this work is central to its outcomes.

Therefore, the decisions made regarding the selection and application of all

statistical methods used in this research must be robust and appropriate. In all

cases the analyses are driven by clearly defined research questions and

hypotheses. The specific statistical analysis methods used are selected based on

well-known reference works in statistics and on the conduct of previous similar

research in empirical software engineering. Moreover, the selected tests

(especially for the experiment used in Chapter 7) were further validated through

discussions with two academic statisticians from the Department of Mathematics

and Statistics, University of Otago.

32 Note that using multiple tools was not possible in many cases due to the availability of the tools.

 54

3.6 Summary

This Chapter has described the research methodology that applies across the work

reported in the thesis. It explains the general experimental design, the systems

used in the experiments, the data collection methods and the statistical procedures

used to analyse the data, as well as possible general validity threats.

The following Chapter presents the results of a systematic mapping study on

dynamic metrics and their use in measuring software quality.

 55

 A Systematic Mapping Chapter 4

Study on Dynamic Metrics

4.1 Introduction

After early advances in the adoption of systematic measurement programmes in

the 1980s software measurement went out of favour in industry. Organisations

saw measurement as a costly overhead that was delivering limited, if any, benefit.

This was due to over-zealous promotion of the use of software metrics as a

panacea to the major challenges of software project management, poor alignment

of measurement programmes with organisational goals and priorities, and high

compliance costs. The relatively recent emergence of analytics as a real-time

component of organisational intelligence and improvement, however, has seen a

resurgence in interest in software measurement – ‘rebranded’ as software

analytics. Managers are once again seeking efficient ways to continually evaluate

and improve their software processes and products. A renewed research focus has

therefore been directed to the use of software metrics in helping software

engineers to measure and assess various characteristics of the software

components they produce. As introduced in Chapter 2 (Section 2.3), there are two

different sets of software metrics that might be useful: static metrics and dynamic

metrics. The latter is the subject of the systematic mapping study presented in this

chapter.

A systematic mapping study is intended to deliver a comprehensive summary of

the body of research related to a specific topic, based on primary studies identified

through a robust search strategy. As such, mapping studies tend to cover a wider

spectrum of work in comparison to systematic literature reviews. Once found, the

 56

body of prior work related to a topic area is then categorised and quantitatively

characterised based on a variety of dimensions (Kitchenham et al., 2011).

Systematic mapping studies are mainly concerned with structuring a research area

under investigation, whereas systematic literature reviews aim at synthesising

evidence (Petersen et al., 2015). Results from systematic mapping studies can help

to highlight issues that could benefit from further investigation via new primary

studies, or new research perspectives that could be brought to bear on the topic.

(Differences between systematic mapping and review studies are covered in

Kitchenham and Charters (2007), Petersen et al. (2008) and Kitchenham et al.

(2011)).

This chapter presents the results of one such mapping that sets out to identify and

classify relevant research on the topic of dynamic software metrics. The objectives

of this review are to obtain a general overview of the prior research conducted on

this topic and to inform researchers and other readers of potential research gaps

that could be studied further. In terms of its role in this thesis, the particular

motivation behind this review is to systematically investigate which dynamic

metrics have been used to measure aspects of software quality. Dynamic software

metrics, their key advantages and the techniques used to the collect them have

been explained in detail in Chapter 2 (Section 2.3.2). As also noted, it is a goal of

this research to use dynamic metrics to measure software testability.

As far as can be ascertained there has been just one prior review on the topic of

dynamic metrics (Chhabra and Gupta, 2010), and this was not a systematic

review. In that work Chhabra and Gupta (2010) summarised the research

problems, challenges and opportunities relevant at that time in the dynamic

software metrics domain. The paper discussed some of the most notable works in

the field of Object Oriented (OO) metrics, such as the ‘CK’ metric suite

(Chidamber and Kemerer, 1994) and the MOOD metrics suite (Harrison et al.,

1998). While undoubtedly informative, the review was informal; i.e., there were

 57

no defined research questions, search process or data extraction process. Perhaps

as a result, the review overlooked some important works in the area of dynamic

metrics, including those of Dufour et al. (2003a), (2003b) and (2004) that addressed

dynamic metrics for Java programs and compiler developers, and the AspectJ tool,

and the early work of Voas (1992) on software reliability.

Initial observations of the relevant body of literature indicates that the first paper

to study dynamic metrics is indeed that of Voas (1992) just noted. (Note that this

study does not consider other forms of run-time measurements such as those

concerned with system performance and other time-dependent measurements.

These reflect aspects of systems not relevant to maintenance or re-engineering

effort, and as such, we consider such work to be outside the scope of this thesis.)

This work proposed the Revealing Ability metric, a dynamic metric that predicts a

program's ability to allow faults to be undetected during dynamic testing.

Another work published in the same year, by Munson and Khoshgoftaar (1992),

used a unique run-time metric called Functional Complexity to measure the

dynamic complexity of a software system. The publication of these papers

signalled the beginning of the research effort on the topic of dynamic software

metrics.

The review methodology used in this systematic mapping study is detailed in the

following section.

4.2 Review Methodology

This review targets the topic area of dynamic software metrics. It is intended to

characterise and evaluate the use and utility of dynamic metrics, identifying the

benefits and drawbacks of this group of software metrics as described in the body

of literature. This work was conducted according to the guidelines suggested by

Kitchenham and Charters (2007) and informed by the mapping study-specific

guidelines of Petersen et al. (2008).

 58

The remainder of this Section discusses the research questions, search strategy and

search process. The review protocol, which provides a high-level overview of the

steps in the review study, is shown in Figure 4

Figure 4. Review protocol

4.2.1. Research Questions

For any review work, defining the set of research questions is a critical first step,

as the research questions directly inform the search and data extraction strategies.

The two research questions for this systematic mapping study are:

 59

RQ4.1: Which aspects of dynamic metrics have been most frequently subjected

to study?

RQ4.2: Which aspects of dynamic metrics could be recommended as topics for

future research?

RQ4.1 addresses recent and current research addressing the use of dynamic

software metrics, categorizing all research activities in the field within a defined

time window. In terms of advancing the field it is essential to have a baseline as to

what metrics have already been developed and an understanding of the

characteristics that these metrics actually measure. Answering this question

should also contribute to an understanding of the usefulness and the drawbacks

of this group of metrics. By fully understanding the metrics, their coverage and

their mechanisms of action, we should then be in a position to identify any current

difficulties or limitations associated with their use, as a precursor to suggesting

solutions or possible avenues of further primary investigation – thus informing

RQ4.2. RQ4.2 is expected to be of help in directing future research in the field, based

on stated, and implied, research limitations, open problems and newly identified

gaps.

4.2.2. Search Strategy

The search process is divided into two main phases: Automatic and Manual. The

Automatic search is used to search for materials via electronic search engines

using a defined (and pre-tested) search string. The Manual search, on the other

hand, is performed by researchers scanning and reading through selected journals

and conference proceedings manually. This step can help to assure coverage of a

wider range of materials, enabling verification of the efficacy of the automatic

search and helping to ensure that the review does not miss relevant primary

studies in the literature. Our search was conducted for the period between

January 1992 and December 2014. As stated in Section 4.1, initial evidence

suggests that the first two papers to study dynamic metrics were both published

 60

in 1992. In order to confirm the appropriateness of the selected search period, a

brief search was conducted in IEEEXplore database using the term “dynamic

metrics” seeking articles published in the two years before the suggested starting

date of our search period (i.e., between 1990 and 1992). No related articles were

found. Thus, it was confirmed that the search period should begin from January

1992.

A) Automatic Search

The automatic search was conducted using two different electronic sources,

namely: SCOPUS and Google Scholar. SCOPUS has a user friendly search engine

that provides efficient and complete web access to over 5,000 international

publishers as well as hundreds of open access journals. SCOPUS indexes well-

known publishers that publish papers in computer science and information

technology, including: IEEE, ACM, Elsevier, Springer and Wiley-Blackwell

publishers. In addition, Google Scholar is used to reveal technical reports and

articles that could not be found by SCOPUS (e.g., have not been published by the

abovementioned publishers). Google Scholar is a powerful search engine that

provides very wide coverage of articles and materials on the web.

The search string that is used in the automatic searching process is shown in

Figure 5. It has been noted previously that using a specific and verified search

string (see Section 4.3.3) may improve the search process by increasing the

likelihood of finding relevant studies while reducing search workload (MacDonell

et al., 2010).

Figure 5. Search string

((software OR program) AND ("dynamic metrics" OR "dynamic

metric" OR "dynamic measurement" OR "runtime metrics" OR

"dynamic measure")) OR ("dynamic analysis" AND ("program

comprehension" OR "program understanding") AND metrics)

 61

 Manual search results Table 11.

Type Names Acronym

No of Retrieved

Articles (filtered

by title)

No of Selected

Papers (filtered

by abstracts)

No. after

Removing

Duplications

Jo
u

rn
al

s

IEEE Transactions on Software

Engineering

TSE 15 6 3

ACM Transactions on Software

Engineering and Methodology

TOSEM 0 0 0

Journal on Systems and Software JSS 14 6 6

IEEE Software IEEE Softw. 2 2 2

Information and Software Technology IST 6 3 3

Journal on Software Maintenance and

Evolution

JSME 7 2 1

Empirical Software Engineering

Journal

ESEJ 10 4 2

Software Quality Journal SQJ 4 2 1

58 28 18

C
o

n
fe

re
n

ce
s

International Conference on Software

Engineering

ICSE 9 7 7

International Conference (Workshop)

on Program Comprehension

ICPC

(IWCP)

13 13 13

IEEE International Software Metrics

Symposium

METRICS 4 4 2

International Conference on Software

Maintenance

ICSM 12 8 5

Workshop on Program

Comprehension through Dynamic

Analysis

PCODA 6 5 5

International Symposium on

Empirical Software Engineering

ISESE 0 0 0

International Symposium on

Empirical Software Engineering and

Measurement

ESEM 4 3 2

 Workshop on Dynamic Analysis WODA 2 0 0

 Workshop on Emerging Trends in

Software Metrics

WETSoM 2 2 1

 52 42 35

 62

This search string was used only with the SCOPUS database portal.

Unfortunately, the nature of Google Scholar’s search structure did not support us

effectively using our search string as defined. When it was attempted to do so it

returned a huge, unworkable number of papers and materials, many of which

were not even related to the field. Therefore, it was decided to use a much simpler

search string term, “Dynamic Metrics”, to search for papers via Google Scholar. It is

important to highlight that Google Scholar was used here mainly as a secondary

source to improve the level of assurance regarding coverage of the relevant

literature.

B) Manual Search

Unless an automatic search string is extremely obscure it is basically a given that

such a search will find more results in comparison to a necessarily labour-

intensive manual search. However, if they are not conducted with care, automatic

searches can be of poor quality (Kitchenham et al., 2010). The value of a manual

search is in increasing the reliability of the search process, through increased

assurance that important literature in the field that cannot be found using the

search string is not missed in the review. The overlooking of studies in automatic

searchers occurs mainly due to restriction criteria on the scope of automatic

searches. Combining the two techniques, automatic and manual, can thus solve

problems that might arise when using either the manual or automatic search only.

During this phase we searched manually for relevant articles in a list of eight

journals and nine conference and workshop proceedings relevant to the defined

research topic. Based on our prior knowledge of the research domain, these

journals, conferences and workshops were known to be closely related to software

metrics, program analysis and comprehension, and the software maintenance and

reengineering fields. The retrieved articles were filtered based on titles and then

abstracts. The full list of the selected journals and proceedings traversed in the

manual search is shown in Table 11.

 63

C) Reference Checking

In addition, the lists of references of all the selected articles relevant to our study

were examined. This additional process can add to the coverage of the literature

and further reduce the chances of omitting any significant work in the field

(Cornelissen et al., 2009). Potentially relevant studies identified through this

process are added to the selection loop so that they too are examined for relevance

in terms of the review and their adherence to the defined selection criteria.

4.3 Search Process

The review process was composed of six main stages. Figure 6 highlights the

review process and the numbers of publications identified by the end of each

stage.

As shown in Figure 6, the automatic and manual searches are conducted in stage

one. The process began with the automatic search of the SCOPUS database (which

found 487 papers) and was followed by the manual search of the list of journals

and proceedings noted in Table 11. In stage 2, the first filtration was performed by

discarding papers with irrelevant titles that had been returned by the automatic

search, leaving 97 papers. In stage 3, articles were filtered based on their abstracts

leaving 74 papers, although when the abstract was ambiguous or unclear, the

introduction was also checked. The latter two stages (stages 2 and 3) were not

needed for the manual search, as selection in the first place was based on the title

and abstract. This was followed by the second automatic search, this time on

Google Scholar, which resulted in the identification of 20 potentially relevant

articles (filtered by titles and abstracts). In stage 4 of the search process, the results

of both the automatic and manual searches are then combined, giving 95 studies.

A full text review of those studies was then performed in stage 5, leaving 64

papers. Finally, a reference check was then conducted on all selected papers in the

final list. During this step, 20 additional papers were retrieved, and 8 of these

were added to the final list of selected articles and another round of reference

 64

checking was conducted on the newly added papers. Inclusion and exclusion

criteria (Section 4.3.2) were applied through all stages. The final list included 69

studies.

4.3.1 Study Selection Criteria

Based on the goals of the review and the identified research questions, a set of

selection criteria is defined. The selection criteria of the identified studies are as

follows:

 All works must be relevant to dynamic software metrics. The main goal is to

select works related to dynamic software metrics and their applications. This

may exclude related but separate topics as tracing, debugging, and program

slicing.

 The review strongly focuses on dynamic metric topics (processes,

techniques, methods and tools); works that only address static metrics will

not be considered.

 This work studies dynamic metrics and their collection techniques. Studies

such as those focuses on the use of dynamic analysis in trace visualisation

are not considered.

4.3.2 Inclusion and Exclusion Criteria

Inclusion and exclusion criteria are used to filter and rule out studies that are not

relevant to our defined research questions. The review included papers published

between January 1992 and December 2014. Only primary studies were included;

secondary studies (such as review studies) are excluded.

We also exclude the following:

· Papers not written in English.

· Editorials, prefaces, covers, article summaries, books, interviews, news,

correspondence, discussions, comments, tutorials, readers’ letters and

summaries of workshops and symposia.

 65

· Duplicated studies (e.g. several reports of the same study published in

different places or on different dates).

· Studies that did not specify which particular dynamic metrics were used.

4.3.3 Selection Pilot Study

 It has been suggested that those undertaking a review of this nature should

conduct a pilot study to validate the selection approach and verify the

effectiveness of the search string before conducting the actual review (Kitchenham

and Charters, 2007). Thus a pilot study was conducted using a short search string

(software AND dynamic AND metrics) to search for materials in the IEEEXplore

database. We searched for articles between January 2001 and January 2011. Based

on the pilot automatic search, the total number of articles retrieved was 298. After

applying the defined inclusion and exclusion criteria (Section 4.3.2), 22 relevant

articles were selected. The results of this pilot study were validated by checking

whether the pilot search returned articles that are known in the field. Fifteen of the

22 articles were identified as being familiar, and the other seven were deemed to

be relevant based on a review of their content. Based on these results, we

concluded that these terms should be included in the search string, as they

returned relevant articles. The list of the selected papers from the pilot study is

found in Appendix A.

66

Figure 6. Overview of the mapping review process

Combining results for

automatic and

manual searches and

remove duplicated

studies

Automatic

Exclusion based

on abstracts

Full Text

Review
Exclusion based

on titles

Final List of

Selected

Articles
Search for Papers

in Relevant

Venues

Manual Search

Reference

checking

SCOPUS

Google

Scholar

Journals

Proceedings

N:58

N:52

N: 69

N: 74

N: 20

N: 482
N: 97 N: 64

Stage One Stage Two Stage Three Stage Four Stage Five Stage Six

N: 20

N: 834

N:18

N:35

N: 8

N: 95

5 New
3 Duplicated

67

4.3.4 Paper Classification Schemes

The general classification scheme proposed by Petersen et al. (2008), in their

foundation work on systematic mapping studies in software engineering, is used to

classify the retrieved studies. Publications were categorized in three distinct

classification schemes: research type, research focus and contribution type. For the

research type, the categorization scheme proposed by Wieringa et al. (2006) is used.

This scheme was recommended by Petersen et al. (2008) and has been used in several

recent systematic review and mapping studies, such as that of Kitchenham et al.

(2011). Research type is categorized into the following categories, as suggested by

Wieringa et al. (2006) and summarised by Petersen et al. (2008):

1) Evaluation papers: evaluate the use and implementation of different problems,

techniques or solutions. It shows how the technique or method was

implemented and what the consequences of implementation are.

2) Proposal papers: solutions are proposed. It also argues for the relevance of the

proposed solution without any providing any in-depth analysis. The proposed

solution must be novel, or a significant improvement of an existing one.

3) Validation papers: investigate novel techniques or methods that have not been

implemented previously.

4) Philosophical papers: propose a new way of looking at existing things.

5) Opinion papers: express the personal opinion on certain techniques or

methods. Opinion papers do not usually rely on related literature or specific

research methodology.

6) Experience papers: focus on the personal experience of the author on specific

matter (e.g. project). Experience papers must contain some of the lessons

learned in practice by the author(s).

Contribution type is classified into five main categories as follows:

1) Method: description of how to measure specific software aspects.

2) Process: research that deals with the measurement process itself.

 68

3) Tool: any automated tool that is designed to support the measurement process

(in the form of a prototype).

4) Metrics: any metrics designed to measure aspects of software programs (both

new metrics and claimed improvements on existing metrics).

Finally, research focus is classified into four main categories:

1) Estimation: metrics that are used for the purpose of estimation (e.g. size or

complexity estimation metrics).

2) Design level: metrics that can be collected at the design level or early in the

development process (e.g. metrics that may be collected from UML diagrams).

3) Code level: metrics that are related to the source code level (e.g. code

complexity and size metrics).

4) Reengineering/comprehension: metrics that are used for the purpose of

reengineering, comprehension, understanding or maintenance. Some of these

metrics can also be related to the design or code level, but here we consider

them separately from the other groups.

4.4 Results

After determining all of the relevant articles the total number of selected primary

studies was 69. (The numbers of articles found using the manual search were shown

in Table 11.) The distribution of the selected studies (Table 12) shows that the

majority were published in conference proceedings. Table 13 shows the distribution

of articles per publication venue.

 Distribution of articles per source type Table 12.

Publication Type No. of Studies Percentage

Journals 19 27%

Conferences 38 54%

Workshops 9 13%

Technical Reports/ Newsletters 4 6%

 69

As shown in Figure 7, it is evident that the number of publications addressing

dynamic metrics has not been particularly steady since 2002, and that 41 of the 69

articles (59%) were published between 2007 and 2014.

Figure 7. Articles distribution per year

In order to provide a more accessible representation of the extracted results we chose

to summarise the data using tables and visual representations. Figure 8 depicts a

map of publications over the defined classification criteria. Research focus is shown

on the Y axis, Contribution type is shown on the right X axis, and Research type is

shown on the left X axis. Each bubble’s size represents the number of publications in

the corresponding category pair. As is evident, the proposal and evaluation of code

metrics and methods currently dominate the body of literature on this topic.

Breaking Figure 8 down, Figures 9, 10 and 11 show the distributions of articles per

research type, contribution type and research focus respectively.

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

er
 o

f
A

rt
ic

le
s

Year

 70

 Top publication venues Table 13.

Conference Name Abbreviation Type
No. of

articles

ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications
OOPLSA Conference 3

IEEE Transactions on Software Engineering TSE Journal 2

International Workshop/Conference on Program

Comprehension
IWPC/ICPC

Workshop/

Conference
2

ACM Software Engineering Notes ACM SIGSOFT Newsletter 2

International Conference on the Principles and

Practice of Programming in Java
PPPJ Conference 2

IEEE International Working Conference on Source

Code Analysis and Manipulation
SCAM Conference 2

Journal of Systems and Software JSS Journal 2

Workshop on Program Comprehension through

Dynamic Analysis
PCODA Workshop 2

We also considered classifying metrics in terms of the software

engineering/programming paradigm that they belong to (Figure 12). Based on the

retrieved data, it was found that a high proportion of the papers dealt with OO

metrics: over 78% of the studies (Figure 12). The remainder addressed a mix of

procedural, aspect-oriented and service-oriented approaches. Studies of specific

named metrics were categorized based on their use. It is important to note that many

of the metrics and factors are interrelated. For example, coupling metrics are related

to complexity. However, the work distinguished between metric categories based on

the stated (or in a few cases, presumed) intent of each study.

Having covered the general topics in the area of dynamic metrics (defined in the

three classification schemes), we next provide a detailed explanation of the groups of

metrics that are covered most often in the selected papers. There are several groups

of dynamic metric topics that appear to be the central focus of the studies, described

in the sections that follow. A detailed distribution of papers per topic and metric

types is provided in Appendix B.

71

Figure 8. Map of research focus over research and contribution types

72

Figure 9. Articles distribution by research type

Figure 10. Articles distribution by contribution type

Figure 11. Articles distribution by research focus

Figure 12. Articles distribution by programming focus

Validation
13%

Proposal
31% Evaluation

46%

Philosophical
4%

Experience
papers

4%

Opinion papers
2%

Method
39%

Process
19%

Tool
13%

Metrics
29%

Estimation
9%

Design
9%

Code
65%

Reengineering /
Comprehension

17%

OO
78%

Non OO
22%

73

4.4.1 Coupling

A relatively strong body of research related to dynamic coupling was found (e.g.

(Arisholm et al., 2004, Hassoun et al., 2005, Mitchell and Power, 2006, Yacoub et al.,

1999)). Of note is that most of the dynamic coupling measurement works were

motivated by the C&K metrics suite (Chidamber and Kemerer, 1994) and their well-

known static coupling measure Coupling Between Objects (CBO). Cho et al. (1998)

introduced a metric that assesses dynamic coupling at an object level by measuring

the message passing load. Yacoub et al. (1999) proposed two dynamic coupling

metrics (i.e. Import and Export object coupling) to measure coupling at the design

level using Real-time Object Oriented Modelling (ROOM) charts. These authors later

applied the same set of metrics to estimate and assess reliability risks during early

phases of development (Yacoub and Ammar, 2002). Arisholm et al. (2004) introduced

a set of code-level dynamic coupling metrics based on the dynamic analysis of

systems. The authors found that dynamic coupling measures can be a good indicator

of the complexity and change-proneness of a system. Burrows et al. (2010, 2011)

empirically examined several dynamic coupling metrics, in the context of Aspect

Oriented Programming (AOP). It was found that most of the existing AOP coupling

metrics did not correlate well with several faults related specifically to aspect-

orientation. Out of these metrics, the authors found that Base-Aspect Coupling (BAC)

and Crosscutting Degree of an Aspect (CDA) were the two metrics that displayed the

strongest correlation with faults (Burrows et al., 2010). Furthermore, the authors

indicated that the extensions of C&K object-oriented based metrics had not proven to

be good indicators of fault-proneness in AOP.

4.4.2 Cohesion

Cohesion is another reasonably well-studied topic and, as with coupling, most of the

proposed dynamic cohesion metrics are based on the C&K metrics suite (Chidamber

and Kemerer, 1994). One of the earlier works on runtime cohesion (Gupta and Rao,

 74

2001) uses a novel program execution-based approach to measure the module

(functional) cohesion of legacy systems, by applying a dynamic slicing approach to

overcome the limitations of over-estimation resulting from the classic static slice. The

more recent work of Gupta and Chhabra (2011) defined a set of dynamic metrics to

measure cohesion at an object level. The authors defined four types of metrics to

measure four levels of relationships. Their empirical evaluation showed that these

new measures were more accurate when compared to other existing cohesion

metrics.

A runtime form of C&K‘s Lack of Cohesion in Methods (LCOM) metric was introduced

by Mitchell and Power (2004). Two new metric variants are the Run-time Simple

LCOM, which is derived directly from the C&K static LCOM metric, and the Run-

time Call-Weighted LCOM metric, which measures each instance variable by the

number of times it is accessed at runtime. Three dynamic measures were proposed

by Khurana and Kaur (2009) based on the Read/Write interactions between methods.

These metrics were also inherited from the C&K static cohesion metrics. Cho et al.

(1998) measured cohesion based on the message passing load, taking into account

both the number of messages as well as the load carried in each.

4.4.3 Complexity

Like software quality, complexity is an amorphous concept that, when measured, is

operationalized in other terms. That said, the studies considered here utilized the

term ‘complexity’ so we have retained it for this discussion. Munson and

Khoshgoftaar (1992) defined their Functional Complexity metric, said to measure the

dynamic complexity of systems. This metric was further used in a later, related study

(Munson and Hall, 1996) to estimate and examine the test effectiveness of software

programs. Two additional dynamic complexity measures were introduced in their

work, namely the Fractional and Operational Complexity metrics. The latter study

(Munson and Hall, 1996) found a direct relationship between these dynamic metrics

and software faults. Yacoub et al. (1999) later used the Operational Complexity metric

 75

to measure the ‘dynamic complexity’ of software. This metric is based on McCabe's

static Cyclomatic Complexity metric and can be collected during the early stages of

development using State Charts of the ROOM simulation modelling environment.

Voas (1992) introduced the Revealing Ability dynamic metric, which proposed to

measure semantic software complexity by predicting a program’s ability to allow

faults to be undetected during dynamic random testing. Another run-time

complexity metric was introduced by Mathur et al. (2010) based on decision points in

code, where one option is chosen from an available selection.

4.4.4 Other Metrics

Burrows et al. (2011) used dynamic metrics to measure code churn33, which has been

shown to have a direct effect on the incidence of faults. Cai (2008) proposed a set of

dynamic metrics that was used to measure the modularization of software

components during maintenance tasks. This was achieved by comparing different

versions of a program. The metrics considered the differences between versions, in

terms of modules added, deleted, and changed.

A requirement-based dynamic metric was proposed by Cleland-Huang et al. (2001)

as being useful in predicting network communication loads. The authors contended

that this metric could be applied during the early stages of development, using data

collected from a system’s requirement specification and defining a ‘typical’ usage

scenario. Mendes et al. (2005) empirically tested a size-based dynamic metric to

measure the features and functionalities of web-based applications. This metric was

used alongside other static metrics for the purpose of cost estimation during the early

stages of development.

Gani et al. (2006) proposed a solution for dynamic metric collection to support

adaptation via object mobility, for mobile applications. Six different metrics were

used in their work to measure aspects related to execution frequency, performance,

33 Code churn is the measure of the amount of added or modified code in a software component over time.

 76

execution time, and resource utilization. In a similar work, Shtern et al. (2014)

proposed a dynamic metric for cloud computing that is said to assess how effectively

an application uses cloud infrastructure.

4.4.5 Metrics Suites

Several works have introduced metrics suites (i.e., sets of dynamic metrics) that

could be used to collectively measure various aspects of software programs. These

metrics could be collected either separately or as a set. In addition to broad coverage

a key benefit of using a metrics suite is that there is potential for multiple measures

of the same underlying construct (Chidamber and Kemerer, 1994), potentially of use

for result triangulation.

Dufour et al. (2003a) proposed a set of dynamic metrics for Java programs that could

be used to measure several runtime properties of software programs. These dynamic

metrics were gathered into five main groups: size and structure of programs, data

structures, polymorphism, memory, and concurrency. These metrics were examined

empirically against several well-known Java benchmarks. The authors contend that

these metrics could be used to capture relevant qualities; especially for compiler

optimisation developers. More recently, Sarimbekov et al. (2013) proposed a similar

set of dynamic metrics targeting JVM languages.

A metrics suite for Component Based Development (CBD) was presented by

(Narasimhan and Hendradjaya, 2007). Several metrics, both static and dynamic, were

designed to measure the complexity and criticality of component assembly.

Röthlisberger (2010) designed and implemented five different dynamic metrics to

enhance the Eclipse IDE analysis of Java applications, in order to help developers

achieve a better understanding of their software. These metrics collect method

execution and memory-related data.

 77

4.4.6 Tools

Several tools have been implemented to help automate the dynamic measurement

process. Some of these tools are implementations of some of the metrics suites just

described. A summary of these tools is shown in Table 14.

 Summary of current dynamic metrics tools Table 14.

Tool Description

*J

 (Dufour et al., 2003b)

*J is a tool designed to ease the dynamic metrics data collection

process. The tool is used to gather, compute and present dynamic

metrics data for Java programs.

A new debugging tool

(Aggarwal et al., 2003)

A debugging tool to compute the number of executions for

individual methods. This is the only tool found that has been

designed specifically for the C language.

AOP Hidden-Metrics

(Cazzola and Marchetto, 2008)

An AOP-based adaptable tool that collects dynamic metric data in

a non-invasive way. They employ an AOP technique using

AspectJ.

Senseo

(Rothlisberger et al., 2009)

A plugin to enhance the traditional static information provided

by Eclipse with various dynamic metrics information. Senseo

collects both runtime information and performance-related

metrics.

DynaRIA

(Amalfitano et al., 2010)

A tool designed to support and enhance the comprehension of

Ajax applications for the purpose of maintenance, reverse

engineering and testing.

A new (CCRCs) profiler

(Moret et al., 2010)

A profiler that uses (CCRCs) visualisation charts to enable

efficient construction and navigation of large Calling Context Trees

during execution. It also provides a visualisation environment for

the collected dynamic data.

The *J tool (Dufour et al., 2003b) was one of the first tools designed to collect

dynamic metrics’ data. This tool supported the metrics suite designed in Dufour et al.

 78

(2003a) (described in Section 4.3.5) and so collected measures of Size, Data structures,

Polymorphism, Memory allocation and Concurrency and Synchronization.

AOPHiddenMetrics (Cazzola and Marchetto, 2008) uses AspectJ to collect dynamic

metrics in execution time. The data collected addresses Coupling, Cohesion, Code

Coverage, Code Execution, Memory Usage, and Concurrency metrics. Rothlisberger et al.

(2009) implemented an Eclipse plugin called Senseo that could be support to ease the

measurement and analysis process, using the same set of dynamic metrics that was

presented in (Rothlisberger, 2010). Similar to the tool developed by (Cazzola and

Marchetto, 2008), Senseo also employs an AOP technique to gather the required

runtime data. The main goal of Senseo is to dynamically analyse software and

augment the static perspectives of Eclipse with dynamic metrics data, including

method invocations, method execution, and counts of objects created during a

particular execution scenario. These dynamic metrics are aggregated over several

runs of the subject system, and the developer then decides which runs to take into

account. The DynaRIA tool (Amalfitano et al., 2010) was designed to support the

comprehension of Ajax web applications. In addition to other dynamic information,

the tool collects dynamic metrics data such as size and code coverage metrics. Moret

et al. (2010) presented a profiler that used visualisation charts, called Calling Context

Ring Charts (CCRCs), to enable efficient construction and navigation of a large

Calling Context Tree (CCT) while the program is being executed.

All of the works just described targeted the OO paradigm. Aggarwal et al. (2003)

designed a tool to generate the execution sequence of modules during a run of any

software. That said, this tool was mainly designed for procedural C programs, to

measure the number of executions of all modules, using the Most Frequently Executed

Module (MFEM) dynamic metric.

4.5 Discussion

The results of this mapping study indicate that issues related to dynamic metrics are

receiving increased attention from researchers. Over half the body of relevant papers

 79

were published between 2007 and 2011. However, there has been a drop in the

number of publication between 2012 and 2014, compared to the number of articles

published between 2009 and 2011. In this section we address the research questions

noted in Section 4.2.1.

RQ4.1: Which aspects of dynamic metrics have been most frequently subjected to

study?

The most widely studied aspects of dynamic metrics have been software complexity,

memory allocation and usage, and code execution metrics. A relatively large

proportion of research has been focused on coupling, cohesion and other complexity

and maintainability metrics. Coupling has been the most studied single metric type.

A number of studies have proposed new or amended sets of coupling-related

metrics. Several empirical studies used dynamic coupling metrics to collect data for

the purpose of software comprehension and/or reengineering.

RQ4.2: Which aspects of dynamic metrics could be recommended as topics for

future research?

In respect to the many dimensions of software quality, it is clear that complexity- and

maintainability-oriented dynamic metrics have been the most widely discussed in

the literature; however the same high level of attention has not been directed to

metrics for other quality dimensions such as reusability, testability and portability. In

our view dynamic metrics could be well suited to measure, and predict, testability.

Measuring testability dynamically could be effective, particularly when considering

different levels of testing (e.g., unit, integration, system) and the relationships

between components. In addition, we considered the use of dynamic metrics at

various levels of development and found that the proportion of investigations into

design-level metrics is relatively low when compared to that for code-level studies. If

useful metrics can be determined at the design stage this could help to reduce or

minimize the risk of later costly errors and failures.

 80

4.6 Threats to Validity

The main validity threat to this review study is the incomplete or inappropriate

selection of publications. In spite of us following a systematic approach, it is still

possible that we have missed some relevant studies especially if they were published

in sources other than those we considered or that had not been cited in any of the

articles selected in our search. To mitigate this risk we defined our search string for

the automatic search alongside the search strategy. We also conducted our search

using multiple automatic search sources. A manual search was then conducted to

manually check for articles in a list of selected journals and conferences. In addition,

we used a reference checking procedure to carefully look at the list of references in

all identified articles. Thus, while it is still possible that we may have missed a small

number of relevant papers, we would contend that the impact of such an oversight

on the overall conclusions of the mapping study, given the number of papers that

were selected and reviewed, would not be significant.

There is also a chance that some related papers have used terms other than those we

used in our search string. If terms other than “dynamic metrics”, “dynamic

measurement”, or “runtime metrics” were used then the possibility of us missing a

study is high. To avoid such a problem we repeatedly refined our search string and

performed sequential testing in order to recognize and include as many relevant

studies as possible. In addition, we conducted reference checks on all reference lists

of the selected articles on the topic, to locate any missing influential articles. The

selected studies were then examined and subsequently added to the final set of

papers to be reviewed. In our view this was of use in limiting the number of missing

influential articles (although we are unable to ‘prove’ this). Furthermore, the manual

search we conducted was intended to fill any gaps by directly targeting relevant

reputable publishing venues.

Another possible threat to the validity is the way the studies are classified. The

classification was done mainly by one researcher. It is possible that some of the

 81

articles can be classified differently by different researchers due to the possibility that

some of these articles can fit into multiple categories of the same classification

scheme.

4.7 Summary

This Chapter has reported a systematic mapping study of dynamic software metrics.

In summary, this work presented 1) a general overview of the field of dynamic

software metrics, 2) the selection of key works in the area based on number of

inclusion and exclusion criteria, and 3) a mapping and classification of the selected

articles. Detailed review results are shown in Figure 6, and a map of all the selected

articles is shown in Figure 8. The classification results of these works are given in

Figures 9-12. A list of all recognized metrics is provided in Appendix B.

The results of this mapping study indicate that there is indeed ongoing interest in

dynamic metrics among the software engineering research community. That said,

most prior studies on dynamic metrics have focused specifically on software

complexity aspects (either directly or indirectly). Moreover, with most of the studies

focusing on OO systems, a great deal of emphasis has been directed towards OO-

related factors such as coupling and cohesion. Beyond complexity, these metrics have

been identified as being relevant to a number of other software quality attributes,

such as complexity and maintainability. Given this, the empirical analyses that

follow investigate the potential of these and other relevant metrics in relation to

testability and test quality.

The following chapter presented the results of our first experiment on the use of

visualisation and dynamic analysis to explore the distribution of unit test suites.

 82

 Exploring the Distribution Chapter 5

of Unit Test Suites

5.1 Introduction

This chapter analyses test adequacy in several OSS. It presents a novel approach that

combines dynamic coupling and unit test static data in order to enable developers

and those undertaking re-engineering to gain greater visibility into unit tests’

distribution (i.e., the distribution of the unit tests over a system’s classes), across five

OSS. In this experiment, a visual representation (based on complex network and

dependency graph theories) of dynamic information is developed to present the

dynamic information directly in relation to unit tests.

The field of software visualisation has long offered substantial promise in aiding

software developers and maintainers to better understand certain aspects of software

behaviour (Maletic et al., 2002). Researchers have also suggested that software

metrics should be examined through appropriate visualisations, thus achieving

improved understanding beyond the ‘raw’ numbers of the metrics alone (Lanza and

Marinescu, 2006). In short, using visualisations to support program comprehension

and the understanding of software artefacts (including test artefacts) appears to be

effective and useful (Lange and Nakamura, 1997, Jerding and Rugaber, 2000,

Cornelissen et al., 2007, van Rompaey and Demeyer, 2008, Cornelissen et al., 2011).

Section 2.4.1 provides a discussion on the previous works that used test visualisation

as a means of supporting developer comprehension and understanding.

We contend that visualising such data could be especially helpful when maintenance

and reengineering activities take place, as the visualisation process elucidates the

hierarchy of the production classes and the distribution of unit tests corresponding to

 83

the production classes. In addition, such visualisations would provide developers

and maintainers with a high-level view of the dependencies between different classes

within a system and the possible utilisation of methods for future testing activities,

i.e., what components are not being tested, the degree to which other components are

tested, and where testing effort should be focused.

The experimental design is discussed in the following section.

5.2 Experimental Design

Understanding test code and its use in systems is an important task in software

development, and particularly during software maintenance, reverse engineering

and refactoring. In the object-oriented paradigm, production code and test code are

similar in nature (i.e., they are written in a similar manner); thus, analysing and

understanding test code requires similar skills and methods as used with production

code. The following subsections present the specific objectives and contributions of

this experiment, along with a description of the metrics used in its conduct.

5.2.1 Objectives

The main objective of this experiment is to explore unit test distribution by using a

novel visualisation approach that combines specific static and dynamic information.

We demonstrate the application of the visualisation on sample OSS, including

systems of different sizes and with different test coverage levels.

In achieving the above objectives this research will enable us to assess whether

dynamic information, here represented by dynamic coupling, might be useful when

added to unit test information to represent the distribution of unit tests in OSS. The

goal is to develop a visualisation approach that combines dynamic information

associated with production code and test information, with a view to supporting

better understanding of the distribution of unit test suites in OSS. Then this

experiment studies the distribution of unit tests to determine whether production

 84

classes and unit tests are evenly distributed; that is, do all highly and/or tightly

coupled classes have dedicated unit tests?

5.2.2 Contribution

The findings of this work contribute to the general body of knowledge on program

comprehension and understanding (and more specifically, test comprehension) by

enabling the visualisation of a new combination of static and dynamic data that

could aid the test understanding process. The methods developed in this study

should provide developers with knowledge of the unit test distribution in OSS.

One possible use of the proposed visualisation is when maintenance and

reengineering activities are planned. The visualisation should enable software

developers, maintainers and reengineers to explore the distribution of unit tests in

relation to the dynamic behaviour of the software before conducting their work. It

should also benefit program understanding by providing a visual representation of

the dependencies based on actual use of the functional capabilities of the system.

Newcomers to a project could also use the proposed visualisation to understand

which aspects have been directly covered with unit tests in relation to their dynamic

dependencies view (van Rompaey and Demeyer, 2008). The visualisation could also

be beneficial in dynamic or Agile-like development contexts, in which unit tests serve

as a key form of documentation (Cornelissen et al., 2007).

5.2.3 Metrics Definition

In this study Dynamic Coupling has been selected as one of the system

characteristics to measure and investigate regarding its relationship to class

testability. Coupling has been shown in prior work to have a direct impact on the

quality of software, being linked in particular to software complexity and

maintainability (Offutt et al., 2008, Al Dallal, 2013, Arisholm et al., 2004). It has been

shown that, all other things being equal, the greater the coupling level, the greater

the complexity, and the harder it is to maintain a system (Chaumun et al., 2000). This

suggests that it is reasonable to expect that coupling will be related to software

 85

testability in general. Dynamic rather than static coupling has been selected for this

work to address some of the expected shortcomings of the traditional static measures

of coupling. As noted above, coupling has generally been measured statically, based

on limited structural properties of software. This misses the coupling that occurs

between objects at execution-time – such as typical interactions that happen during

polymorphism and dynamic binding. Dual consideration of this form of coupling

should capture a more complete picture (as it captures runtime dependencies

between different classes/objects (Arisholm et al., 2004)) and so relate better to class

testability. The notion of measuring dynamic coupling is quite common in the

emergent software engineering research literature.

For the purposes of this work, dynamic coupling metrics that capture coupling at the

object level (at runtime) are used. In this work, we define dynamic coupling

following the definition proposed by Zaidman and Demeyer (2008): dynamic

coupling is defined based on an analysis of runtime interactions between

classes/objects - “two objects are dynamically coupled when one object acts upon the

other. Object X is said to act upon object Y, when there is evidence in the execution

trace that there is a calling relationship between objects X and Y, originating from X.

Furthermore, two classes are dynamically coupled if there is at least one instance of

each class for which that [sic] they are dynamically coupled holds” (p 391).

There are various ways to measure dynamic coupling. The specific measure of

coupling used here is based on runtime method invocations/calls: two classes, class A

and class B, are said to be coupled if a method from class A (caller) invokes a method from

class B (callee) at run-time, or vice versa. Multiple invocations to the same class are still

counted as a single (one) coupling.

In this experiment the Dynamic Coupling Between Objects (DCBO) metric is used. As

the name implies, DCBO is the dynamic form of the well-known CBO metric

(Chidamber and Kemerer, 1994). For any class, the DCBO metric computes the total

number of classes that are invoked by that class during program execution (and note

 86

that self-calls to cohesive methods from the same class are excluded). This metric is

collected through an AOP approach using the AspectJ framework (see Section 3.4).

The following shows our defined AOP (AspectJ) rules that detect calls made during

typical program execution:

pointcut capture() : call (* *..*(..)) // capture all method calls made during the execution

pointcut exclude(): !call (system-under-examination)// excludes all calls that are not relevant to
the program under examination such as default java libraries and default AspectJ compiler’s calls

before() : capture() && !excluded()

 {

// capture the name of the caller class

caller = thisEnclosingJoinPointStaticPart.getSignature().getDeclaringTypeName();

// capture the name of the callee class

callee = thisJoinPoint.getSignature().getDeclaringTypeName();

}

As explained above, dynamic instead of static coupling is used to measure coupling

between classes. As shown in Chapter 4 dynamic coupling has received increasing

research attention in recent years, but looking at the relation between such metrics

and testability has not been done previously.

5.3 Data Collection and Execution Scenarios

Five of the OSS from the list presented in Section 3.2.1 were used in this study:

FindBugs, JabRef, Dependency Finder, MOEA and JDepend. General characteristics

of these systems are shown in Table 4. As is evident in Table 4, the five selected

systems represent a variety of sizes (one large, three medium and one small). Table

15 shows detailed test coverage information for all five systems.

In order to arrive at dynamic analysis values that are associated with typical, genuine

use of a system, the selected execution scenarios must be representative of such use.

The goal is to mimic ‘actual’ system behaviour, as this will enhance the utility of our

results. Execution scenarios are therefore designed to use all key system features,

based on the available documentation and user manuals for the selected systems, as

well as our own prior knowledge of these systems. Note that all five systems have

 87

GUI components, and the developed scenarios assume use via the available GUI.

Details of the particular execution scenario developed for each system, and used in

this experiment, now follow.

FindBugs: FindBugs’ main GUI tool is used to analyse JAR and source code files of

three other Java OSS, two of large size (FindBugs itself and Apache

JMeter) and one of medium size (Dependency Finder). During execution,

cloud-based storage was activated by loading the tool’s external cloud

plugin. Finally, all analysis reports were exported for all three systems in

various formats.

JabRef: The tool is used to generate and store a list of references from an original

research report. References of all types supported by the tool were

included (e.g., journal articles, conference proceedings, reports,

standards). Reports were then extracted using all available formats

(including XML, SQL and CSV). Finally, the list of references was

managed using all the provided features. All additional plugins provided

at the tool’s website were added and used during this execution.

Dependency Finder: This scenario involves using the tool to analyse the source code

of three large systems (FindBugs, Apache JMeter, and Apache Ant) and

one medium-sized system (Colossus). This scenario involves computing

dependencies, dependency graphs and OO metrics at all layers (i.e.,

packages, classes, features). Analysis reports were extracted and stored

individually in all possible formats.

MOEA: The tool has a GUI diagnostic tool that provides access to a set of

algorithms, test problems and search operators supporting multi-objective

optimization. The diagnostic tool was used to apply those algorithms on

all of the predefined test problems. The algorithms were executed at least

once on each problem. The tool was then used to display metrics and

performance indicators for all results obtained from those different

 88

problems and algorithms. Statistical results of these multiple runs were

displayed and stored at the end of the execution.

JDepend: A small GUI was designed as part of this research to provide access to all

of the quality assessment and reporting functionalities of JDepend (Note:

this additional code was excluded from the measurement collection and

analysis.) The tool was then used to load and analyse four different OSS,

three of medium size (Dependency Finder, JabRef, and barcode4j) and one

of large size (FindBugs). All three user interfaces provided by the tool

(namely: swing-graphical, textual and XML) were used during this

execution.

 Test coverage data Table 15.

5.4 Results

This section presents the results and analysis of the empirical investigation of the

proposed measurement and visualisation approach. A dependency graph is used to

visually depict the dependencies between classes with each system. Dependencies,

shown here with undirected edges, represent method invocations (calls sent or

received) between classes, shown as nodes. An undirected edge between nodes A

and B means that the two nodes are coupled. That is, a dependency between classes

A and B represents at least one invocation from a method in class A to a method in

System
Class

Coverage

Statement

Coverage

Branch

Coverage

Line

Coverage

Methods

Coverage

FindBugs 26.5% 13.3% 6.9% 14.1% 18.6%

JabRef 46.7% 29.6% 14.2% 29.5% 31.0%

Dependency Finder 59.5% 59.8% 44.3% 57.2% 43.3%

MOEA 86.5% 77.2% 46.2% 66.6% 60.5%

JDepend 41.8% 25.9% 14.9% 28.1% 28.5%

 89

class B, and/or vice versa. A description of the dependency graph node symbols is

provided in Table 16. For tightly coupled classes the size of the vertex represents the

relative degree of coupling measured by DCBO.

Graph metrics are used here to quantify the level of association that a node (i.e.,

class) has with other nodes in the graph. Centrality, in graph theory, is defined as the

level of reachability of two different nodes of a graph (Boccaletti et al., 2006). Graph

centrality is a well-known concept in graph theory that has been applied increasingly

in recent times to analyse Complex Networks34. It has been long used across multiple

domains to analyse large, complex networks such as those used in Social Network

Analysis (SNA)35 (Freeman, 1978, Borgatti, 2005).

 Dependency graph node symbols Table 16.

Symbol Description

 Tightly coupled class, with at least 1 associated unit test

 Tightly coupled class, with no associated unit test

 Loosely coupled class, with at least 1 associated unit test

 A production class with no associated unit test

In particular, we identified two centrality metrics to be used: Degree Centrality and

Betweenness Centrality. Degree Centrality is defined as the number of ties upon a node

in a graph (Borgatti, 2005), and it is measured based on the total number of links

(connections) for a node. This metric directly reflects the dynamic coupling

information, which is obtained from the DCBO metric, reflecting messages sent or

received by a class (also known as Import and Export Coupling). Betweenness

Centrality, on the other hand, is defined as “the share of times that a node i needs a

34 Complex Networks are widely used in many fields; include physics, biology, epidemiology and computer

network and telecommunications.

35 SNA is the study of relationships between different social entities (such as communications between

different members of a social group) through the use network graphs.

 90

node k (whose centrality is being measured) in order to reach a node j via the shortest

path” (Borgatti, 2005). In other words, this metric calculates the number of times a

node acts as a bridge between two other nodes in the graph. Both centrality metrics

are computed for each individual node on the graph.

Figures 13 to 17 show dependency graphs for all five systems. Given that all

visualisation graphs should be presented in a complete form and seen in clear

colouring, a full-size, high-resolution version of these graphs is provided in an

external webpage36.

 Centrality metrics for JDepend Table 17.

Class
Degree

Centrality

Betweenness

Centrality

Unit

test
Class

Degree

Centrality

Betweenness

Centrality

Unit

test

framework.JDepend 9 92.8 Yes FileManager 2 0.5 Yes

JavaPackage 9 72.6 Yes AbstractParser 2 18.0 No

swingui.JDepend 5 37.5 No
PropertyConfigur

ator
2 0 Yes

JavaClass 5 8.6 No xmlui.JDepend 2 0 No

PackageComparator 4 5.0 No ParserListener 1 0 No

textui.JDepend 4 3.2 No AfferentNode 1 0 No

JavaClassBuilder 3 34.0 Yes DependTree 1 0 No

PackageNode 3 18.0 No DependTreeModel 1 0 No

ClassFileParser 3 0.8 Yes EfferentNode 1 0 No

PackageFilter 3 0.5 Yes StatusPanel 1 0 No

As shown in Table 17 and visually in Figure 13, the framework.JDepend and

JavaPackage (highlighted) classes of the JDepend system are shown to have the

highest levels of (Degree and Betweenness) Centrality. Both classes are also directly

36 http://goo.gl/nuGZ4u

 91

tested through dedicated unit tests. Other classes, including swingui.JDepend and

JavaClass, have high levels of Degree Centrality (both have the second-highest value)

but have no associated unit tests. In contrast, we also note that the FileManager and

PropertyConfigurator classes have dedicated unit tests associated with them even

though they are not shown to be central to the system’s operation (i.e., their

Centrality levels are low, especially in terms of Betweenness Centrality).

Figure 13. JDepend full dependency graph

Table 18 shows a comparison of the Centrality values (both Degree and Betweenness

Centrality) for tested classes across the five systems, using a proportion of classes

from the ‘top’ and ‘bottom’ of their ranked lists. For each system, Centrality values

are ranked and then divided into four groups based on three quartile data points. The

1st (Q1 - the lower) and the 3rd (Q3 - the upper) quartiles split off the bottom and top

25% of the data points in terms of their centrality values, respectively, whereas the

2nd quartile (Q2 - the median) reflects the middle 50% of the data. Those classes with

Centrality values above the Q3 threshold are relatively highly coupled, and those

with values below the Q1 threshold are coupled loosely.

 92

 Levels of centrality in all examined systems Table 18.

System

Number and

proportion of

tested classes

above Q3 for

Degree Centrality

Number and

proportion of tested

classes above Q3 for

Betweenness

Centrality

Number and

proportion of

tested classes

below Q1 for

Degree Centrality

Number and

proportion of tested

classes below Q1 for

Betweenness

Centrality

FindBugs
11

7%

4

2%

1

1%

2

1%

JabRef
9

13%

11

15%

9

13%

4

6%

Dependency

Finder

31

69%

24

53%

3

7%

19

42%

MOEA
25

66%

21

55%

17

45%

20

53%

JDepend
2

40%

3

60%

0

0%

2

40%

For the Dependency Finder system (Figure 14), classes with Centrality values above

the Q3 threshold are examined (being 46 classes, with some exceeding the threshold

for both Centrality measures). It is found that almost half of the classes in the Q3

threshold had no associated unit tests. For example, the dependency.Printer

(highlighted) class has a Degree Centrality value of 53 (which is the second highest

value in the system) and its Betweenness Centrality is 2032 (ranked fifth highest in

the system), yet it has no associated (dedicated) unit tests. The same applies to

dependency.VisitorBase (highlighted), which has a Degree Centrality of 52 (third

largest Degree Centrality value) and has a Betweenness Centrality of 1283, and yet

has no associated unit tests. These classes are considered to be central to the system

based on its dynamic coupling values. In contrast, we observed other classes with

very low levels of Centrality but with dedicated unit tests. For example, the

RegularExpressionParser and PrinterBuffer classes both have devoted unit tests even

though they have the lowest Centrality values, with only a value of one for Degree

Centrality and zero for Betweenness Centrality. This latter result indicates that these

 93

classes do not appear to be central to the system’s operation in terms of their

dynamic coupling. A similar pattern is repeated in JabRef. As shown in Figure 15, the

central classes of Globals, JabRefPreferences and BasePanel have no devoted unit tests

while they still have high Degree and Betweenness Centrality values (these classes

have the highest two Degree Centrality values respectively). On the other hand,

classes such as CaseChanger and DOICheck appear to be less central (i.e. with low

Centrality values) but they still have dedicated unit tests. In considering the Q3

classes by Degree Centrality in JabRef (71 classes), only nine classes (among the 71)

were found to have dedicated unit tests. Similarly, only eleven classes with the

highest Betweenness Centrality measure (among those 71 classes, which form only

15% of the classes in Q3 threshold) were found to have dedicated unit tests.

A generally similar pattern of unit tests’ distribution is evident in all other examined

systems. Figures 16 through 17 show dependency graphs for MOEA and FindBugs,

respectively. Full Centrality metrics values (i.e., Degree and Betweenness Centrality)

for all system are provided in the Appendix C.

In regard to the MOEA system (Figure 16), unit tests are present for 25 (66%) of the

classes above the Q3 Degree Centrality threshold and for 21 (55%) classes above the

Q3 value for Betweenness Centrality. However, MOEA also has the highest

proportions of tested classes below the Q1 Centrality measure thresholds of the five

systems considered, with 45% and 53% of these classes having unit tests. This may be

a reflection of the generally high levels of test coverage in MOEA, as MOEA has

around 87% class coverage (which means that 87% of the production classes are

covered by unit tests, see Table 18). The lowest percentages of tested classes above

Q3 for both Degree and Betweenness Centrality are evident for FindBugs (although it

is also the largest of the five systems examined). It has 11 (~7%) classes with

associated unit tests among the 164 classes in Q3, and only 1 tested class (< 1%) in Q1

for the Degree Centrality classes. For Betweenness Centrality, there are 4 tested

classes in Q3 and 2 tested classes in Q1.

 94

Figure 14. Dependency Finder dependency graph

 95

Figure 15. JabRef dependency graph

 96

Figure 16. MOEA dependency graph

97

Figure 17. FindBugs dependency graph

98

To provide a more formal statistical analysis of the relationship between the two

Centrality metrics’ values and the availability of unit tests for production classes

the non-parametric (two-tailed) Mann-Whitney U test is used (as the data come

from non-normal distributions – see Section 3.2.2 for more details about this

statistical test). The following research hypothesis is investigated: “there is a

significant difference between the Centrality metrics’ values of production classes with

associated unit tests and those without associated unit tests”. In addition, the effect size

(ez) of these differences is calculated using equation (2) in section 3.2.2 and is then

classified into small, medium and large using Cohen’s classification (Section 3.2.2).

 Centrality metrics Mann-Whitney U test results with effect size Table 19.

Metrics FindBugs JabRef
Dependency

Finder
MOEA JDepend

Betweenness

Centrality

p 0.00* 0.50 0.00* 0.08 0.11

ez 0.12 0.04 0.27 0.14 0.36

Degree

Centrality

p 0.01* 0.16 0.03* 0.45 0.26

ez 0.10 0.08 0.16 0.06 0.25

Table 19 reports the results of the Mann- Whitney U test (with effect size) of the

Centrality metrics and the presence of unit tests. All Significant p-values (p) are

marked with an asterisk (*). As shown in Table 19, significant p-values are shown

for only two of the five systems examined (i.e., FindBugs and Dependency Finder).

Furthermore, even though the p-values are significant in these systems, the effect

size values are small for both Centrality metrics. No significant values are shown

for the other three systems. This result leads to a rejection of the hypothesis – there

is no evidence of a significant difference between Centrality metrics’ values of

production classes with associated unit tests and those without associated unit

tests.

 99

5.5 Discussion

Several observations can be made based on the results just presented. The main

observation, enabled by the visual representations of the dependency graphs and

the two graph centrality metrics, is that there is no statistically significant

association between the centrality metrics of Degree Centrality (which is also a

representation of the dynamic coupling level in the systems) and Betweenness

Centrality, and unit test coverage – unit tests do not appear to be distributed in

line with the systems’ dynamic coupling and centrality values. In all five OSS

examined, it is evident that many classes (i.e., over 40% of the classes as shown in

three of the five examined systems) that are loosely coupled and have few

connections have received testing attention and effort, as they have dedicated unit

tests. Loosely coupled classes, shown at the outside of the graphs, have fewer

connections and so are not intensively accessed by other classes. On the other

hand, high proportions of classes in each system (up to 69% of the classes as

shown in Dependency Finder) that are tightly coupled, in terms of being linked to

or accessed by other classes, have no dedicated unit tests.

Of particular note is that this distribution pattern is present in all five systems,

regardless of their other test coverage information, such as class and statement

coverage (although, the specific numbers of tested and untested classes naturally

varies from one system to another). As shown in Table 19, it is evident that the

proportion of unit tests in relation to coupling and centrality levels is different in

all five systems. This suggests that, even in mature OSS such as those used in this

experiment, the dispersed nature of contributions to the project may mean that

test distribution can be uneven, and provision of tests is reliant on the

commitment or otherwise of individual developers.

We acknowledge that the current visualisation tends to become dense with large

systems, i.e., when the numbers of nodes and edges increase (as in the case of

FindBugs – see Figure 17). In such cases the visualisation could be simplified if

 100

needed, by reducing the numbers of nodes and edges that are depicted in the

graph. One option could be to show only certain classes (i.e., nodes) of interest and

to hide all other classes. For instance, an interest in tested classes would mean that

only classes with associated unit tests would appear in the visualisation – Figure

18 shows such a simplified version of FindBugs (after removing additional nodes

and edges). The results presented in this experiment suggest that the distribution

of unit tests may require more attention from software engineers and testers, but

also from those managing software development. We contend that the suggested

visualisation can help in focusing and optimising testing effort by allowing

engineers to identify and initially target central system classes and to dedicate

relatively less effort to non-central classes. We also suggest that the centrality

metrics themselves could be helpful in providing quantitative support for the

visualisations of the dependency graphs. The two centrality metrics provided us

with a comprehensive insight into the levels of dependency between system

classes. Such data could be used to supplement other test optimisation and

prioritization techniques, alongside other considerations, to enhance future testing

decisions. The same approach could also be applied to explore test distribution at

smaller scales, such as at sub-system level or even at a package level.

While we believe that the results we have achieved so far are interesting, we

readily acknowledge the need for user evaluation of the utility of the visual

representations. The work presented in this chapter is exploratory (a proof of

concept) in nature, and it was driven purely by an open question as to the

feasibility of combining dynamic and static metrics with visualisations in the

context of testing. Certainly we recognise the need for external evaluation, and this

is planned for future work. This could be undertaken through a controlled

experiment using real software developers/testers.

101

Figure 18. FindBugs dependency graph.

102

5.6 Threats to Validity

A number of threats to the validity of the results presented above are

acknowledged here. Note that the nature of some of these threats is explained

more fully in Section 3.5.

Selection of the Execution Scenarios

The selection of the execution scenarios is another possible threat to the validity of

our results. Execution scenarios are designed to mimic as closely as possible

‘actual’ system behaviour, based on the available system documentation and, in

particular, indications of each system’s key features. However, it is acknowledged

that the selected scenarios might not be fully representative of the typical uses of

the systems. Analysing data that is collected based on different scenarios might

give different results. This is a very common threat in most dynamic analysis

research. However, we tried to mitigate this threat by carefully checking user

manuals and other documentation of each of the examined systems and deriving

the chosen scenarios from these sources. Most listed features were visited (at least

once) during the execution. More scenarios will be considered in the future in

order to extend the presented analysis and to compare the results obtained from

these different scenarios.

Generalisation of Findings

Results discussed here are derived from the analysis of five OSS (including one

large, three medium and one small system). This threat is also discussed in more

detailed in Section 3.5.2.

Availability of Testing Information

The varied availability of detailed testing information could be another threat to

the validity of this experiment. Whatever test information was available for the

five systems was used in the analysis, but this did not extend to information

 103

regarding the testing strategy employed. Test strategy and criteria information

could be informative if combined with the test metrics, given that test criteria can

inform testing decisions, and the number of test cases designed is highly

influenced by the selected test strategy. Moreover, a more comprehensive picture

of the analysis could be gained by also considering indirect tests.

Test Quality

Finally, no attempts were made to direct attention to test quality – the intent at this

stage was to investigate the existence or otherwise of unit tests for system classes.

An analysis approach that considers both the quantity and quality of the tests

developed would seem likely to be optimal, however, and should be the subject of

future research.

5.7 Summary

This chapter has presented a new visualisation approach that combines dynamic

information obtained from production code with static test information to depict

the distribution of unit tests in OSS. Five such systems of different sizes were

selected for examination in this experiment. For each system, a full dependency

graph was generated to show the dependencies between classes using the

collected dynamic coupling information. Test information was then extracted and

added to the dependency graphs to illustrate how unit tests were distributed in

comparison to the dynamic coupling information. The goal of this visualisation is

to assist engineers and maintainers – and their managers – to observe and

understand the distribution of unit tests in a software system based on a dynamic

view of that system. The visualisation is further supported by the use and analysis

of graph Centrality metrics that provide insight into the relationship between

production classes and their unit tests.

 104

Having investigated unit test distribution based on dynamic analysis in this

chapter, the following chapter explores the relationship between particular

dynamic software properties (i.e., runtime characteristics) and class testability. The

goal is to provide a general understanding of what affects class testability and how

dynamic analysis can help in this regard.

 105

 Investigating Class Chapter 6

Testability through

Dynamic Analysis

6.1 Introduction

The diversity of design and code characteristics that can affect the testability of a

software product has been the subject of a large body of work. For example, the

relationships between internal class properties in OO systems and characteristics

of the corresponding unit tests have been investigated in several previous studies

(e.g., (Bruntink and van Deursen, 2006, Badri et al., 2011, Zhou et al., 2012)). In

these studies, OO design metrics (drawn mainly from the C&K suite (Chidamber

and Kemerer, 1994)) have been used to explore the relationship between

class/system structure and test complexity. Some strong and significant

relationships between several complexity- and size-related metrics of production

code and internal test code properties have been found (e.g., (Bruntink and van

Deursen, 2006, Zhou et al., 2012)).

However, as far as could be ascertained from the systematic mapping study, all

previous research addressing class testability has used only static software

measures. As explained in Chapter 4, it has been noted for some time that

traditional static software metrics may be necessary but not sufficient for

characterising, assessing and predicting the entire quality profile of OO systems

(Basili et al., 1996). Additional characteristics of interest can be captured through

the use of dynamic metrics. As described in Section 2.3.2., dynamic metrics have

been shown to directly reflect the quality attributes of a system in operation. The

 106

work described in this chapter extends the investigation of software features as

factors in class testability by characterising that code using dynamic metrics. A

fuller discussion of dynamic metrics and their relative advantages over static

metrics is presented in Chapters 2 and 4.

In this chapter, the relationships between dynamic software properties and class

testability are investigated. In particular, two dynamic concepts are investigated:

Dynamic Coupling (i.e. highly coupled classes) and Key Classes (i.e. frequently executed

classes). The two concepts are contended to be related to class testability, as

described in the section that follows.

6.2 Testability Concepts

6.2.1 Dynamic Coupling

Dynamic, instead of static, coupling is used to measure coupling between classes,

for the many advantages of this group of metrics over the static ones (See Section

2.3.2). As shown in Section 4.4.1, the measurement of dynamic coupling was found

to be the most widely investigated topic in the literature on dynamic metrics.

Although dynamic coupling has been used to measure several quality attributes,

no previous work have attempted to relate dynamic coupling to testability. Section

2.3.2 provides a detailed overview on how dynamic coupling metrics can provide

more insight compared to other traditional coupling metrics.

For the purposes of this work, dynamic coupling metrics that capture coupling at

the object level are used. The specific measure of coupling used here is based on

runtime method invocations/calls, and also on the direction of the invocation: two

classes, class A and class B, are said to be coupled if a method from class A (caller)

invokes a method from class B (callee), or vice versa. This relationship is described

as a ‘client-server’ relationship: a ‘client’ class imports services from a ‘server’

class.

 107

Therefore, coupling is measured in the following two forms (i.e., to account for

both callers and callees):

1) When a class is accessed by another class at runtime, and

2) When a class accesses other classes at runtime.

To measure these levels of coupling we select the previously defined Import

Coupling (IC) [also known as Efferent Coupling (EC)] and Export Coupling (EC)

[also known as Afferent Coupling (AC)] metrics (Arisholm et al., 2004).

The IC for class A is the number of method invocations/calls received by class A

(callee) from other classes (callers) in the system (4). This metric is also referred to

as IC_CC (Import Coupling, Class-level, Distinct Class).

The EC for class A is the number of method invocations/calls sent from methods

within class A to other classes (callees) in the system (5). This metric is also referred

to as EC_CC (Export Coupling, Class-level, Distinct Class).

For both the IC and EC metrics, all invocations to and from methods within the

same class (i.e., cohesive methods) are excluded. Also, multiple invocations to the

same class are counted as a single (one) coupling. The formal definition of both

metrics are given as follows (Arisholm et al., 2004):

𝐼𝐶𝐶1
= {(𝑚1, 𝑐1, 𝑐2)|(∃(𝑚1, 𝑐1), (𝑚2, 𝑐2) ∈ 𝑅𝑀𝐶) ^ 𝑐1 ≠ 𝑐2^ (𝑚1, 𝑐1, 𝑚2, 𝑐2) ∈ 𝐼𝑉} (4)

𝐸𝐶𝐶1
= {(𝑚2, 𝑐2, 𝑐1)|(∃(𝑚1, 𝑐1), (𝑚2, 𝑐2) ∈ 𝑅𝑀𝐶) ^ 𝑐1 ≠ 𝑐2^ (𝑚2, 𝑐2, 𝑚1, 𝑐1) ∈ 𝐼𝑉} (5)

Where

C: set of classes in a systems.

M: set of methods in a system (as identified in each class in the system).

RMC: set of all methods that are defined in a class: 𝑅𝑀𝐶 ⊆ 𝑀 × 𝐶.

IV: set of all possible method invocations in the system: 𝐼𝑉 ⊆ 𝑀 × 𝐶 × 𝑀 × 𝐶 . An

invocation is characterized by the invoking class and the class that has been

invoked.

 108

6.2.2 Key Classes

The notion of a Key Class is introduced in this study as a new production code

property to be measured and its relationship to class testability investigated.

OO programs are formed around groups of classes that interact with each other. In

typical software development, the number of classes increases as software systems

and programs grow in size. To analyse and understand a software program, how

it works, its potential for decay and its need for repair, it is important to know

where to start and which aspects should be given priority. From a program

comprehension and software maintenance perspective, understanding the roles of

classes and their relative importance in a system is essential. In this respect, there

are classes that could have more influence and play more prominent roles in the

program design and architecture than others. In this thesis this group of classes is

referred to as ‘Key Classes’. We define a Key Class as a class that is executed

frequently in the typical use profile of a system. Identifying these classes should

inform more effective planning. One of the potential uses of these classes is in

prioritising testing activities – quality assurance personnel and software testers

could usefully prioritise their work by focusing on testing these Key Classes first,

alongside consideration of other factors such as risk and criticality information.

The concept of a key class has been used in a different way in previous work (e.g.,

(Tahvildar and Kontogiannis, 2004, Zaidman and Demeyer, 2008)). For example,

in the work of Zaidman and Demeyer (2008), classification as a key class is based

on the level of coupling of a class: key classes are those that are tightly coupled. In

contrast, the definition presented in this work is based on the usage of these

classes: Key Classes are those that have high execution frequency at runtime. The

goal here is to examine whether Key Classes (i.e., those classes with higher

frequency of execution) have a significant relationship with class testability. A

new dynamic metric called Execution Frequency (EF) is proposed to identify and

 109

locate those Key Classes (6). EF for class C counts the number of executions of

methods within class C, excluding self-calls.

Consider a class C, with methods m1, m2,..... mn. Let EF(mi) be the number of

executions of method mi of class C, then:

 EF(𝐶) = ∑ EF(𝑚𝑖)

𝑛

𝑖=1

 (6)

where n is the number of executed methods within class C

6.3 Experimental Design

As explained in Chapter 3 (Section 3.3), metric selection in this research has been

determined in a ‘goal-oriented’ manner. Our goal in this experiment is to better

understand what affects class testability, and the objective is to assess the presence

and strength of the relationships between dynamic complexity attributes

(represented here by Dynamic Coupling and Key Classes) on the one hand and

class testability (measured in terms of unit test size) on the other. The specific

purpose is to measure and ultimately predict class testability in OO systems. The

viewpoint is as software engineers, and more specifically, testers, maintainers and

quality engineers. The targeted environment is Java OSS.

6.3.1 Research Questions and Hypotheses

The design above reflects the contention that two factors of interest are, in

principle, related to class testability: Dynamic Coupling and Key Classes. To

evaluate this contention the following research question is investigated:

RQ6.1: Is class complexity significantly correlated with class testability?

The following two research hypotheses are investigated to answer RQ6.1:

H6.1: Dynamic Coupling has a significant correlation with unit test size.

H6.2: Key Classes have a significant correlation with unit test size.

The corresponding null hypotheses are:

 110

NH6.1: Dynamic Coupling has no significant correlation with unit test size.

NH6.2: Key Classes have no significant correlation with unit test size

6.3.2 Data Collection and Execution Scenarios

As explained in Chapter 2, the collection of dynamic metrics data can be

accomplished in various ways. The most common (and perhaps the most accurate)

way is to collect the data by obtaining trace information using dynamic analysis

techniques during software execution. Such an approach is taken in this study and

is implemented by collecting metrics using the AspectJ framework, a well-

established Java implementation of AOP. Previous works (including those of

Cazzola and Marchetto (2008), Adams et al. (2009) and Tahir et al. (2010)) have

shown that AOP is an efficient and practical approach for the objective collection

of dynamic metrics data, as it can enable full runtime automatic source-code

instrumentation to be performed. For coupling metrics, we used the same AOP

(AspectJ) rules explained in Section 5.2.3 to collect these metrics. For EF metric, we

use the following AspectJ rules:

pointcut capture_execution(): execution (* *..*(..)) // capture the executed classes

pointcut exclude(): ! execution (system-under-examination) // excludes all classes executions
that are not relevant to the program under examination such as the execution of default java
and AspectJ compiler’s classes

executedClass_count = 0; // for each executed class

before (): capture_execution() && exclude()

{

// capture the name of the executed class

 executedClass = thisJoinPoint.getSignature().getDeclaringTypeName();

 // count the frequency of the execution (for each executed class)

 executedClass_count = count + 1;

}

In this study four OSS are selected for examination: FindBugs, JabRef,

Dependency Finder and MOEA. Information about the selection process of these

systems is shown in Section 3.2.1. General characteristics of the selected systems

 111

are provided in (Tables 3 and 5). As explained in Section 5.3, execution scenarios

are designed to use key system features, based on the available documentation

and user manuals for each system, as well as any prior knowledge of the systems

held by those running the scenarios. Details of the execution scenario for each

system are now explained.

FindBugs: the tool is run to detect bugs in a large-scale OSS (i.e., JFreeChart) by

analysing the source code and the associated JAR files. The web plugin

was installed during the execution and data were uploaded to the

FindBugs webserver. Results were stored using all three file formats

supported.

JabRef: the tool is used to generate and store a list of references from an original

research report. All reference types supported by the tool were

included (e.g., journal articles, conference proceedings, reports,

standards). Reports were then extracted using all available formats

(including XML, SQL and CSV). References were managed using all the

provided features. All additional plugins provided at the tool’s website

were installed and used during this execution.

Dependency Finder: this scenario involved using the tool to analyse the source

code of four medium- to large-sized systems one after another, namely,

FindBugs, JMeter, Ant and Colossus. Dependencies were computed and

depicted (in dependency graphs) and OO metrics at all layers (i.e.,

packages, classes, features) were calculated. Analysis reports on all four

systems were extracted and saved individually.

MOEA: MOEA has a GUI diagnostic tool that provides access to a set of 6

algorithms, 57 test problems and search operators. This tool was used to

apply the different algorithms to the predefined problems. Each of these

algorithms was applied at least once on each problem. Metrics and

performance indicators for all results provided by those different

 112

problems and algorithms were displayed. Statistical results of these

multiple runs were displayed at the end of the analysis.

6.4 Results

On applying the Shapiro-Wilk test to the collected data for all four systems, the

results confirmed that the data were not normally distributed (see Figures 19 and

20). Therefore, it was decided to use Spearman’s ρ correlation test (Spearman’s ρ is

explained in more detail in Chapter 3 (Section 3.2.2)). In this work Spearman’s ρ is

calculated to assess the degree of association between each dynamic metric of the

production code (i.e., IC, EC and EF) and the class testability metrics (defined in

Section 3.3.2).

Figure 19. Boxplots of TLOC in all four system.

 113

The number of observation points37 considered in each test varies in accordance

with the systems’ execution scenarios described in Section 6.3.2. The numbers of

observations are: FindBugs (23), JabRef (26), Dependency Finder (80) and MOEA (76).

The total number of unit tests for each of these systems is shown in Table 4

(Chapter 3).

Table 20 shows the Spearman’s ρ results for the two dynamic coupling metrics

against the class testability metrics. Corresponding results for the EF metric

against the test suite metrics are presented in Table 21. For all analyses, it is

interpreted that there is a significant correlation between two variables if there is

statistically significant evidence of such a relationship in at least three of the four

systems examined. All significant values in Tables 20, 21 and 22 are marked with

an asterisk (*) and all medium and high correlations are shown in Bold

Figure 20. Boxplots of NTC in all four systems

37 The number of observation points here is represented by the number of the tested classes that were

traversed in the execution (i.e., classes that have corresponding tests and that were captured during

the execution by any of the dynamic metrics used).

 114

As is evident in Table 20, EC is observed to have a significant medium to high

correlation with the TLOC metric in all four systems. The correlation was found to

be high in Dependency Finder and medium in FindBugs, JabRef and MOEA. A

similar significant correlation between EC and NTC is evident in three of the four

systems: FindBugs (high association), JabRef and Dependency Finder systems (both

medium associations). In terms of relationships with the IC metric, a significant

correlation between IC and TLOC is evident only in one system (high association

in Dependency Finder). For the relationship between IC and NTC, a direct medium

correlation was found only in one system i.e., Dependency Finder. A low inverse

association between IC and NTC is evident for the MOEA system.

 Spearman’s ρ correlations between dynamic coupling and class Table 20.

testability metrics

Systems Metrics

TLOC NTC

ρ p-value ρ p-value

FindBugs

EC .43 .04* .58 .00*

IC -.07 .77 -.09 .69

JabRef

EC .35 .04* .33 .05*

IC .28 .09 .23 .13

Dependency Finder

EC .52 .00* .41 .00*

IC .52 .00* .33 .00*

MOEA
EC .30 .01* .12 .16

IC -.08 .24 -.24 .02*

As shown in Table 21, positive significant associations were found between EF

and the class testability metrics in three of the four systems (the exception being

MOEA). A significant medium correlation between EF and TLOC was found in

FindBugs, JabRef and Dependency Finder. Also, a medium correlation between EF and

NTC was found in JabRef, and a low correlation is found in Dependency Finder.

 115

 Spearman’s ρ correlations between EF and class testability metrics Table 21.

Systems Metrics
TLOC NTC

ρ p-value ρ p-value

FindBugs EF .42 .05* .37 .09

JabRef EF .44 .01* .38 .03*

Dependency Finder EF .33 .00* .22 .03*

MOEA EF .03 .41 -.10 .19

Figure 21. Scatter plot of the relationship between EC and TLOC in Dependency
Finder (top) and FindBugs (bottom)

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40

TL
O

C

EC

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60

TL
O

C

EC

 116

Figure 22. Scatter plot of the relationship between EC and NTC in Dependency
Finder (top) and FindBugs (bottom)

Based on our analysis H6.1 is accepted and NH6.1 is rejected; that is, there is

evidence of a significant association between dynamic coupling (either EC or IC)

and the two class-testability metrics for all four systems. As EF is also found to be

significantly associated with the testability metrics for three of the four systems

considered, H6.2 is also accepted and NH6.2 is rejected on the balance of evidence.

Scatter Plot graphs of the most significant (and highly associated) correlations are

now depicted. Figure 21 shows Scatter Plots of the relationship between EC and

TLOC in Dependency Finder and FindBugs. Figure 22 shows Scatter Plots of the

relationship between EC and NTC in FindBugs and Dependency Finder. Scatter plots

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

N
TC

EC

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40

N
TC

EC

 117

of the relationship between EF and TLOC in JabRef and FindBugs are shown in

Figure 23. Note that these graphs are from the systems with the most significant

(and highly associated) correlations (this also applies to Figures 21-24). Graphs for

all other significant correlations are provided in Appendix D. As shown in these

graphs, there are a number of outlier and leverage points that should be taken into

consideration if a prediction model is developed based on these results.

Figure 23. Scatter plot of the relationship between EF and TLOC in JabRef (top)
and Dependency Finder (bottom)

Another test of relevance in this experiment is to consider whether the dynamic

metrics used are themselves correlated, since this may indicate that only a subset of

these metrics needs to be collected. Therefore, a further correlation analysis was

0

200

400

600

800

1000

1200

0 200000 400000 600000 800000 1000000 1200000

TL
O

C

EF

0

100

200

300

400

500

600

700

800

900

0 50000000 100000000 150000000 200000000

TL
O

C

EF

 118

performed to investigate this correlation. The results show that the two dynamic

coupling metrics used here (i.e., IC and EC) are correlated with EF to varying degrees

for the four systems investigated (with Scatter Plots shown in Figure 24). High direct

and medium direct associations between EC and the EF metric are evident in three

systems (the only exception is FindBugs). IC is correlated with EF in only two systems

(high correlation in Dependency Finder and low in MOEA).

Figure 24. Scatter plot of the relationship between EF and EC in JabRef (top) and
Dependency Finder (bottom)

6.5 Discussion

The outcomes of this experiment indicate that complexity attributes that can be

measured through dynamic analysis are indeed associated with class testability.

0

10

20

30

40

50

60

0 200000 400000 600000 800000 1000000 1200000

EC

EF

0

10

20

30

40

50

60

0 200000000 400000000 600000000 800000000

EC

EF

 119

There is statistical evidence of a significant association between dynamic coupling

(via either the EC or IC metric) and unit test size in all four OSS that were

examined in the experiment. Coupled classes are ‘connected’ with other classes

within the program. It seems plausible to assert that, when writing a unit test to

test a tightly coupled class, a developer/tester will require adequate coverage of

the code. This might mean a need to include all other dependent components

related via method calls/invocations made from and to these classes. This would

result in an increase in the size of the unit test, due to the extended connections

that the unit test might need to cover. Additionally, Key Classes (i.e., frequently

executed classes) is also found to be significantly associated with the testability

metrics collected, for three of the four systems considered. This suggests that

tightly coupled classes and classes that are executed frequently in genuine use

scenarios for a program are more likely to have larger unit tests compared to other

classes within a system.

Thus, in revisiting the list of the investigated research questions, dynamic

coupling has been found to have a significant (although not very strong) direct

association with class testability (H6.1). A more significant correlation was found

between key classes (i.e., frequently executed classes) and class testability metrics

(H6.2). By answering RQ6.1, this suggests that dynamic coupling and key classes can

act, to some extent, as initial complementary indicators of class testability. It is

contended here that a tightly coupled or frequently executed class would need a

large corresponding unit test (i.e., higher numbers of TLOC and NTC). Such

results could be helpful for testers and maintainers as they provide empirical

evidence regarding the relationship between two important dynamic properties

and class testability. We recommend that similar dynamic information should be

taken into consideration when developing unit tests or maintaining existing unit

tests. While further testing is needed we would at this stage conclude that the two

 120

dynamic properties examined should be used ahead of static properties as they

provide a more comprehensive indication of class testability.

An additional test of relevance in this study is to consider whether the dynamic

metrics used are themselves related, since this may indicate that only a subset of

these metrics should be collected. Therefore, a further correlation analysis was

performed to investigate this. The results indicate that the two dynamic coupling

metrics are correlated with EF (Table 22) to varying degrees for the four systems

investigated. That is, Key Classes are also associated with dynamically coupled

classes: a Key Class is most likely to be a tightly coupled class, and vice-versa.

Which particular metrics should be used in a given analysis is an appropriate

subject of future study.

 Spearman’s ρ results for the correlation between coupling and EF Table 22.

dynamic metrics

Systems Metrics
IC EC

ρ p-value ρ p-value

FindBugs EF .32 .14 .31 .15

JabRef EF .27 .09 .81 .00*

Dependency Finder EF .56 .00* .51 .00*

MOEA EF .29 .01* .40 .00*

6.6 Threats to Validity

A number of threats that could affect the validity of the results of this experiment

are acknowledged in the following. Note that the nature of these threats is

explained in more detail in Section 3.5.1.

Ambiguity about the Direction of Causal Influence

In this chapter, the directions and impacts of the correlation between individual

variables were not investigated (directly). This thesis makes assumptions of

 121

directionality (impact or cause-effect) in the correlations between different

variables based on the theory and findings identified in previous research.

However, it has not been considered if there are other factors that can cause the

discovered correlations. Obtaining testing strategy information can be helpful to

reduce this threat. Such information can help to identify which pieces of the code

were developed first.

Generalisation of Findings

One of the possible threats to the validity of this study is the limited number of

systems used in the analysis. The results discussed here are derived from the

analysis of four open source systems. The consideration of a larger number of

systems, perhaps also including closed-source or industrial based systems, could

enable further evaluation of the associations revealed in this study and so lead to

more generalizable conclusions.

Selection of the Execution Scenarios

One of the possible threats is the subjective selection of the execution scenarios.

This threat and its mitigation have been discussed in more detail in Section 3.5.1.

6.7 Summary

In this chapter the presence and significance of associations between two runtime

code properties, namely Dynamic Coupling and Key Classes, and the internal

testability of classes has been investigated using four OSS. Class testability was

measured using two size metrics, namely TLOC and NTC, while Dynamic

Coupling and Key Classes were measured using dynamic software metrics

collected via AOP. Correlations were analysed statistically using the Spearman’s ρ

test to study the strength of the associations.

The resulting evidence indicates that there is a significant association between

Dynamic Coupling and internal class testability – Dynamic Coupling metrics, and

especially EC, have a significant direct association with TLOC. A less significant

 122

association was found between IC and NTC. Similarly, Key Classes are also shown

to be significantly associated with the class testability metrics in two of the three

systems examined.

The following Chapter looks in more detail at the issue of code and test smells and

their impact on both unit test and production classes.

 123

 On the Quality of Unit Tests Chapter 7

The Impact of Test Smells

7.1 Introduction

Society’s growing reliance on software has led to increased research attention

being directed to the study, and prevention, of software quality issues as indicated

by smells. Researchers have been working for several years to provide empirical

evidence of the impact of code smells on software artefacts and processes. In

contrast, there has been relatively little attention given to the study of test smells

and their impact on software artefacts and activities. Test smells, as with code

smells, can arise as a result of poor design or implementation of a unit test.

Researchers have used the term test smells to refer specifically to the group of code

smells that affect only unit tests. The term was first defined by van Deursen et al.

(2001) and was further explained by Meszaros (2006).

The primary motivation of this particular experiment was to address the so far

limited coverage given to test smells by providing an in-depth empirical

investigation into the factors that may impact the presence of smells in a unit test,

from a range of perspectives. Specifically, the experiment presented in this chapter

investigates the relationship between test smell types (individually and

collectively) and:

1) the size of the unit test,

2) the size and complexity of the associated production class,

3) the co-occurrence of test and code smell types, and

4) the co-occurrence of test smells (i.e., how often the presence of a test smell

type in a unit test implies the presence of another test smell type).

 124

through nine research questions. This experiment is motivated by recent work in

test and code smells which has suggested the need for more comprehensive

studies to investigate the impact of smells on software systems (Zhang et al., 2011,

Bavota et al., 2014).

The experimental design is presented in the following section.

7.2 Experimental Design

The goal of this experiment is to investigate the relationships between test smells

and the size, complexity and presence of code smells in classes. Note that these

relationships are assessed at class-level (i.e., relationships between a unit test and

its associated production class). The context of the work is unit tests and their

associated production classes in OSS. The quality focus is to reduce the effort

required in understanding and maintaining unit tests during software

maintenance. The viewpoint of this work is from both researchers and

practitioners who are seeking to understand the design and source code factors

that may result in test smells in a unit test.

7.2.1 Research Questions and Hypotheses

The experiment presented in this chapter investigates a number of research

questions that are related to test smells and/or class testability. The main aim of

this chapter is to improve overall understanding of the relationships between test

smells and software characteristics on the one hand, and between test smells and

code smells on the other. In this experiment the relationships between 9 different

test smells and 10 other code smells are therefore explored. Tables 23 and 24

provide full descriptions of the test and code smells respectively that are

considered in this experiment. These smells were selected because they are well-

defined in the literature, they have been considered in similar previous studies (so

their descriptions are clear), and there were tools available (a mix of academic and

commercial tools) to detect these smells. The possible impact of these test and code

 125

smells, and suggested refactoring techniques to eliminate their impact, are

explained in detail in van Deursen et al. (2001) and Fowler et al. (1999)

respectively.

 List of test smells and the detection tools used Table 23.

Test Smell Description Tool

Assertion-free A test case without assertion PMD

Assertion Roulette Test method having more than one assertion PMD

Sensitive Equality The toString method is used in assert statements (Bavota et al., 2014)

Mystery Guest A test case that uses external resources. (Bavota et al., 2014)

Indirect Test A test allocates resources also used by others (Bavota et al., 2014)

General Fixture
A test fixture is too general and the test methods access only

part of it

(Bavota et al., 2014)

Duplicated Code
Sets of test commands that contain the same invocation and

data access sequence.

CodePro

Eager Test
A unit test has at least one method that uses more than one

method of the tested class

(Bavota et al., 2014)

Lazy Test
Several test methods check a method of the tested class using

the same fixture

(Bavota et al., 2014)

Figure 25. Overview of research questions and the link between them

 126

 List of code smells and the detection tools used Table 24.

Code Smell Description Tool

Feature Envy
A method making too many invocations to methods of another

class
JDeodorant

Large Class
A class with at least one large method (in terms of LOC)

compared to the other methods within the class
CodePro

Type Checking A complicated conditional statement within a class JDeodorant

Brain Class Too complex class that takes too much responsibilities JDeodorant

Duplicated Code
Fragments of source code that appear in more than one place in

the program
CodePro

Schizophrenic

Class
A class with a large and non-cohesive interface InCode

Data Class
A class with an interface that exposes data members, instead of

providing any substantial functionality
InCode

Data Clumps
Large groups of parameters that appear together in the signature

of many operations
InCode

Tradition Breaker
A class that breaks the interface inherited from a base class or an

interface
InCode

Message Chain
An operation that accesses a sequence of data exposer members

from other classes to hop between multiple objects
InCode

Table 25 lists all of the research questions and hypotheses investigated in this

chapter, and Figure 25 provides a high-level overview of the relationships

between the research questions. The first point of investigation is whether the size

of a unit test has an impact on the number of smell types (both test smells [RQ7.1]

and code smells [RQ7.2]). The first question specifically considers whether the

number of test smell types increases with the size of the unit test (RQ7.1). The

recent work of Bavota et al. (2014) studied the relationships between the number

of test smells in a system and several system size measures including LOC and

NOC, number of unit tests and the size of the development team in a project. In

 127

contrast, the focus in this thesis is on relationships at the class-level rather than the

system level (i.e., relationships between smells in individual unit tests and their

associated production classes). This should enable greater precision, as it enables

us to investigate the relationship between artefact size and test smells at a smaller,

more fine-grained scale (via the relationship between unit tests and production

classes). As explained in Section 3.3.2, the size of a unit test was measured here

using the two testability metrics TLOC and NTC. For RQ7.1, the following

hypothesis H7.1 is tested: there is a significant positive relationship between the size of a

unit test and the number of test smell types in that unit test.

We then explore the relationship between the number of code smell types in a

production class and the size of the corresponding unit test. Recently Sabane et al.

(2013) found that classes that contain code smells require a higher number of test

cases compared to classes without smells. This experiment addresses a similar

research question: is the number of code smell types in the production class

related to the size of the corresponding unit test (measured using NTC and TLOC)

(RQ7.2). However, while Sabane et al. (2013) used the MaDUM technique, which

estimates the number of test cases required to test each production class, this work

uses the actual number of test cases in the unit test. It is contended that using the

actual number of test cases is likely to better reflect the true development practice

in OSS. We test the following hypothesis for RQ7.2- H7.2: there is a significant positive

relationship between the number of code smell types present in a production class and the

size of the unit test.

Another aim of this work is to investigate whether static properties of a

production class (i.e., size and complexity) have an impact on the number of test

smells present in the corresponding unit test. This research question is motivated

by the previous findings which explain how software size is related to many other

software metrics (i.e., it is a confounding factor) (El Emam et al., 2001, Zhou et al.,

2014). The following research question is investigated: is the number of test smell

 128

types in a unit test related to the size of the corresponding production class?

(RQ7.3). We investigate the following hypothesis for this research question H7.3:

there is a significant positive relationship between the number of test smell types present in

a unit test and the size of the corresponding production class.

 Summary of the research questions and hypotheses Table 25.

Research Question Hypothesis

RQ7.1 Does the number of test smell types

increase with the size of the unit test?

H7.1 There is a significant positive relationship

between the size of a unit test and the number of

test smell types in that unit test.

RQ7.2 Is the number of code smell types in the

production class related to the size of the

corresponding unit test?

H7.2 There is a significant positive relationship

between the size of the unit test and the number

of code smell types in the associated production

class.

RQ7.3 Is the number of test smell types in a unit

test related to the size of the

corresponding production class?

H7.3 There is a significant positive relationship

between the number of test smell types present

in a unit test and the size of the corresponding

production class.

RQ7.4 Is the number of test smell types in a unit

test related to the complexity of the

corresponding production class?

H7.4 There is a significant positive relationship

between the number of test smell types present

in a unit test and the complexity of the

corresponding production class.

RQ7.5 Does the number of test smell types in

the unit test increase with the number of

code smell types in the corresponding

production class?

H7.5 There is a significant positive relationship

between the number of test smell types in a unit

test and the number of code smell types in the

corresponding production class.

RQ7.6 Does the size of the unit test vary among

unit tests exhibiting different kinds of test

smell types?

H7.6 There is a significant difference in the size of

unit tests that contain different kinds of test

smell types.

RQ7.7 Does the size of the unit test vary among

classes exhibiting different kinds of code

smell types?

H7.7 There is a significant difference in the size of

unit tests that contain different kinds of code

smells in the associated production class.

RQ7.8 Do individual test smell types in a unit

test co-occur with particular code smells

in the corresponding production class?

H7.8 There is a significant relationship between the

co-occurrence of individual test smell types and

individual code smell types

RQ7.9 Do individual test smell types co-occur

with each other in the same unit test?

H7.9 There is a significant relationship between the

co-occurrence of individual test smell types.

As explained previously in Section 2.4.1, prior research (such as Bruntink and van

Deursen (2006)) has shown how the complexity of a class can impact its testability.

 129

We also explained in Chapter 6 how dynamic complexity measures of a class are

correlated with its testability. Given that such relationships exist between class

complexity and class testability, it is equally important to see if such relationships

impact the presence of test smells in the unit tests. To address this, we investigate

the following research question: is the number of test smell types in a unit test

related to the complexity of the corresponding production class? (RQ7.4). Class

complexity is measured here based on the average cyclomatic complexity per

class. For RQ7.4, the following hypotheses are tested – H7.4: there is a significant

positive relationship between the number of test smell types present in a unit test and the

complexity of the corresponding production class.

This experiment next considers whether the total number of test smell types in a

unit test is correlated with the total number of code smell types in its

corresponding production class. In particular, the work investigates the following

question: does the number of test smell types in the unit test increase with the

number of code smell types in the corresponding production class? (RQ7.5). For this

research question, the following hypothesis is tested H7.5: there is a significant

positive relationship between the number of test smell types in a unit test and the total

number of code smell types in the corresponding production class.

The study then looks deeper into the relationship between smells (both test and

code) and unit test size by inspecting this relationship in regard to all individual

smells. The conjecture is that some smells are more associated with the size of the

unit test than others, given the nature of some of the smells as they appear to be

influenced by size. In particular, we investigate how the size varies among unit

tests that contain different kinds of test smells, by addressing the following

question: does the size of the unit test vary among unit tests exhibiting different

kinds of test smell types? (RQ7.6). We then look at the equivalent relationship

between code smells and the size of the unit test by addressing the following

question: Does the size of the unit test vary among classes exhibiting different

 130

kinds of code smell types? (RQ7.7). For RQ7.6 and RQ7.7, we investigate the following

hypotheses respectively- H7.6: there is a significant difference in the size of unit tests

that contain different kinds of test smell types, and H7.7: there is a significant difference in

the size of unit tests that contain different kinds of code smell types in the associated

production class.

The final aspect of this experiment examines the co-occurrence (or coexistence) of

test and code smell types. The intent here is to check if any of the test smell types

co-occur with particular code smell types. The experiment considers all individual

test smell types and their correlation with individual code smell types: do

individual test smell types in a unit test co-occur with particular code smell types

in the corresponding production class? (RQ7.8), expressed in the following

hypothesis, H7.8: there is a significant relationship between the co-occurrence of individual

test smell types and individual code smell types.

Similarly, this experiment investigates the co-occurrence (coexistence) of test smell

types among themselves. The following research question is examined: do

individual test smell types co-occur with each other in the same unit test? (RQ7.9)

which is expressed in the following hypothesis, H7.9: there is a significant relationship

between the co-occurrence of individual test smell types. For both questions, we

investigate a relationship between two binary variables.

7.2.2 Data Collection

In total, eight different OSS are selected for this experiment: JFreeChart, FindBugs,

JMeter, JabRef, Apache Commons Lang, Dependency Finder, MOEA and

Barcode4J. The selection process of these systems is explained in Section 3.2.1 and

their general characteristics are shown in Tables 3, 4 and 5. These systems form

around 635 KLOC and contain in total 4854 production classes and 1280 unit tests.

Across the eight systems examined a total of 1100 unit tests are analysed in this

experiment. (Note that we excluded all non-valid unit tests (180 unit tests in total)

e.g., a unit test that does not directly test one single production class.) Boxplots of

 131

the numbers of test and code smell types respectively in all eight systems are

shown in Figures 26 and 27.

Figure 26. Boxplots of the number of test smell types per unit test in all systems

Figure 27. Boxplots of the number of code smell types per class in all systems

H7.1- H7.5 are tested using the non-parametric Spearman's rho (ρ) rank correlation

coefficient test (as per the detailed description of all the statistical tests used in this

thesis provided in Section 3.2.2). H7.6 and H7.7 are examined using the Mann-

Whitney U test. We also measure the effect size (ez) for this non-parametric data (see

N
u

m
b

er
 o

f
co

d
e

sm
el

l
ty

p
es

N

u
m

b
er

 o
f

te
st

 s
m

el
l

ty
p

es

 132

Section 3.2.2). For RQ7.8 and RQ7.9, the relationships between two binary variables

are investigated, therefore H7.8 and H7.9 are tested using the Phi (φ) Correlation

Coefficient test.

All smells (both test and code) are captured using the tools shown in Tables 23 and

22. Only the Feature Envy code smell was detected using two tools. For this smell,

the results from both JDeodorant and InCode were aggregated. We flagged a class

as having Feature Envy if it is detected by either tool. We initially did this because

we were not sure of the rules JDeodorant uses to identify Feature Envy. However,

we found that over 90% of the reported Feature Envy instances were detected by

both tools.

To improve the accuracy of the smells detected, a verification process was carried

out through a manual inspection process. This was followed by cross-validation of

some of the results with those obtained for the same systems considered in the

prior work of Bavota et al. (2014) using the authors’ publically available data38 (for

the 6 smells detected by the tool as shown in Table 23, i.e., Sensitive Equality,

Mystery Guest, Indirect Test, General Fixture, Eager Test and Lazy Test). The cross-

validation was conducted manually on the following systems39: FindBugs, JabRef,

Dependency Finder and Barcode4J. In total, 224 unit tests were cross-validated,

which corresponds to approximately 21% of the total number of the studied unit

tests. Table 26 shows details of the total number smells in the cross-validated unit

tests. These unit tests contain 143 instances of smells in total (and note that this

only includes test smells detected by the tool). The cross-validation highlighted

38 The results were obtained from the same tool. However, the authors conducted a manual inspection

on all detected smells before performing any analysis on the obtained results.

39 Note that the authors did not analyze all unit tests within the examined systems. For example, this

work examined 220 unit tests for Dependency Finder, whereas Bavota et al. (2014) provided results

for only 120 unit tests. The reason for reporting smells from only a selected number of unit tests was

not explained in the original work of Bavota et al. (2014).

 133

approximately 12% false positive smells. All false positive results were rechecked

and revalidated manually, before they were removed

 Cross-validation results Table 26.

System
#Analysed
unit tests

#Cross-validated
unit tests

Total number of
false positive

FindBugs 38 26 4

JabRef 56 49 6

Dependency

Finder
220 118 10

Barcode4J 31 31 6

The relative proportions of each individual test and code smell in all eight systems

are shown in Figures 28 and 29 respectively, and the corresponding numbers of

test and code smells are presented in Tables 27 and 28. Figure 30 shows the

proportion of unit tests and production classes that contain at least one smell

across all eight systems. The following section presents the results of the

experiment conducted in this chapter.

Figure 28. Distribution of test smell types in all eight examined systems

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%
JFreeChart

FindBugs

JMeter

JabRef

Commons
Lang
Dependency
Finder
MOEA

Barcode4J

P
re

ce
n

ta
ge

 o
f

te
st

 s
m

el
ls

 in
 e

ac
h

 s
ys

te
m

 134

Figure 29. Distribution of code smell types in all eight examined systems

Figure 30. Percentage of unit tests and production classes that contain smells

7.3 Results

The results first address the distribution of smells across all eight OSS. Assertion

Roulette was found to be the most frequently occurring test smell in all systems, as

it makes up between 34% and 48% of the total number of test smell types in seven

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0% JFreeChart

FindBugs

JMeter

JabRef

Commons
Lang
Dependency
Finder
MOEA

Barcode4J

P
re

ce
n

ta
ge

 o
f

co
e

sm
el

ls
 in

 e
ac

h
 s

ys
te

m

0%

20%

40%

60%

80%

100%

% unit tests that contain at least one test
smell

% of classes that contain at least one
code smell

JFreeChart

FindBugs

JMeter

JabRef

Commons
Lang
Dependency
Finder
MOEA

Barcode4J

 135

of the eight systems (see Figure 28). Its occurrence in JFreeChart was an even

higher exception, as Assertion Roulette accounts for almost 71% of the test smells

captured in that system. The Duplicated Code test smell was the second most

commonly distributed smell in all eight systems. On the other hand, Indirect Test

and Lazy Test appear to be the smells that are least likely to occur. Lazy Test and

Indirect Test both form less than 5% of the total number of smells in all studied

systems. For code smells, Duplicated Code and Brain Class appear to be the most

commonly occurring smells in all eight systems (Figure 29), while Message Chain

and Tradition Breaker are the least widely distributed code smells.

 Number of unit tests that contain different test smells Table 27.

Test

Smell
JFreeChart FindBugs JMeter

Commons

Lang
JabRef

Dependency

Finder
MOEA

Barco-

de4J

Assertion-

free
9 2 19 31 5 15 8 4

Assertion

Roulette
347 21 63 85 51 172 140 25

Sensitive

Equality
6 3 14 58 5 11 2 16

Mystery

Test
0 8 7 5 10 29 23 0

Indirect

Test
0 2 7 2 1 22 3 2

General

Fixture
28 11 23 16 9 112 27 0

Duplicated

Code
59 5 35 36 17 85 66 7

Eager Test 33 3 11 14 8 30 19 10

Lazy Test 9 2 4 5 2 0 4 1

Total 491 57 183 252 108 476 292 65

In the analyses reported in the remainder of this section we interpreted there to be

a significant relationship between two variables if there is statistically significant

evidence of such a relationship in at least five of the eight examined systems (and

where details of the definition of statistical significance were explained in Chapter

 136

3, Section 3.2.2). The discussion and the consideration of the implications of the

findings follow later in Section 7.4.

The presentation of the results related to the RQs are divided into three parts: the

first part shows the results related to RQ7.1 through RQ7.5, which investigate a

number of bivariate correlations between smell types and software artefacts

characteristics of size and complexity. The second part presents all results related

to RQ7.6 and RQ7.7, which look at the relationship between individual smells and

unit test size. The third part shows the results related to RQ7.8 and RQ7.9, which

investigate the co-occurrence of test and code smells.

 Number of production classes that contain different code smells Table 28.

Code

Smell
JFreeChart FindBugs JMeter

Commons

Lang
JabRef

Dependency

Finder
MOEA

Barco-

de4J

Feature

Envy
76 3 15 2 1 20 18 2

Large Class 54 6 13 33 4 29 20 6

Type

Checking
5 6 4 2 0 6 9 0

Brain Class 63 23 8 33 9 36 29 7

Duplicated

Code
122 17 23 40 16 33 48 15

Schizophre-

nic Class
3 1 0 1 0 6 3 0

Data Class 10 0 1 3 0 4 4 0

Data

Clumps
59 0 0 2 2 0 3 1

Tradition

Breaker
0 1 1 0 0 1 0 0

Message

Chain
0 0 1 0 0 0 0 0

Total 392 57 66 116 32 135 134 31

Relationships between smell types and software artefacts

For RQ7.1, Table 29 reports the results of the correlation analyses between size and

the number of test smell types in a unit test. Results of the correlation analyses

between size and the number of code smell types in the corresponding production

 137

classes are shown in Table 30 (RQ7.2). Note that all medium and strong correlation

coefficient values in Tables 29 through 32 are reported in Bold40.

 Spearman’s ρ correlation between test smell types and unit tests’ size Table 29.

metrics

 Number of Test Smell Types

Metrics JFreeChart FindBugs JMeter JabRef
Commons

Lang

Dependency

Finder
MOEA

Barco-

de4J

TLOC
ρ .33 .59 .74 .72 .65 .63 .54 .66

p .00 .00 .00 .00 .00 .00 .00 .00

NTC
ρ .26 .48 .71 .73 .57 .49 .26 .65

p .00 .00 .00 .00 .00 .00 .00 .00

For the relationship between test smell types and size (RQ7.1, Table 29), it was

found that TLOC in a unit test has a significant positive correlation with the

number of test smell types present in a unit test in all eight systems studied. The

relationship between TLOC and the number of test smell types present in a unit

test was typically high (JFreeChart was the only exception here, where the

strength of the relationship is medium). In addition, NTC was found to have a

significant correlation with the number of test smell types in a unit test. However,

the correlation between NTC and the number of test smell types is weaker than

the correlation between TLOC and the number of test smell types in a unit test.

Evidence indicated a high correlation between NTC and the number of test smell

types in four systems (JMeter, JabRef, Commons Lang and Barcode4J), a medium

correlation in FindBugs and Dependency Finder, and a low correlation in

JFreeChart and MOEA. Therefore, H7.1 is accepted: there is a significant positive

relationship between the size of a unit test and the number of test smell types in that unit

test. The larger the unit test, the higher the number of test smell types in the unit

tests.

40 Note that most of the non-bold entries in Tables 7-10 are still significant but their correlations are

rather weak.

 138

 Spearman’s ρ correlation between code smell types and unit tests’ size metrics Table 30.

 Number of Code Smell Types

Metrics
JFreeChart FindBugs JMeter JabRef

Commons

Lang

Dependency

Finder
MOEA

Barco-

de4J

TLOC
ρ .26 .13 .27 .45 .50 .37 .36 .53

p .00 .22 .02 .00 .00 .00 .00 .00

NTC
ρ .18 .11 .28 .44 .40 .25 .24 .32

p .00 .25 .02 .00 .00 .00 .00 .08

In regard to RQ7.2, the degree of association between the number of code smell

types in a production class and the size of its corresponding unit test was

investigated. As shown in Table 30, it was found that there was a significant

correlation between the number of code smell types in a production class and

TLOC in its corresponding unit test. High correlations between the number of

code smell types and TLOC were found in Apache Commons Lang and Barcode4J.

Medium correlations were found in JabRef, Dependency Finder and MOEA, and a

low correlation was found in JFreeChart and JMeter. Overall the correlation

between the number of code smell types in a production class and TLOC was

found to be generally stronger than the correlation between code smells and NTC.

For the latter relationship, it was found that there were medium correlations in

JabRef and Apache Commons Lang, whereas low correlations were noted in four

systems (i.e., JFreeChart, JMeter, Dependency Finder and MOEA). No significant

correlations for NTC were found in FindBugs and Barcode4J. Therefore, H7.2 is also

accepted: there is a significant positive relationship between the size of the unit test and

the number of code smell types in the associated production class. That is, the higher the

number of code smell types in a production class, the larger the corresponding

unit test.

Table 31 reports all of the statistically significant correlations between the number

of test smell types and the size and complexity of the corresponding production

code (RQ7.3 and RQ7.4). Note that no significant correlations were found in

 139

FindBugs, while JMeter showed a significant correlation only with LOC. The size

of the production class was found to be positively correlated with the number of

test smell types in its corresponding unit test (RQ7.3). LOC was also shown to have

a high positive correlation with the number of test smell types in JFreeChart,

JabRef, Commons Lang and Barcode4J, a medium correlation in Dependency

Finder and MOEA, and a low correlation in JMeter. Number of Methods (NOM)

per class was also shown to be correlated with the number of test smell types in

the corresponding unit test in six systems (although this correlation was slightly

weaker than the correlation between the number of test smell types and LOC). The

strength of the correlation was high in JabRef, Commons Lang and Barcode4J,

medium in JFreeChart and low in Dependency Finder and MOEA. We therefore

accept H7.3: there is a significant positive relationship between the number of test smell

types present in a unit test and the size of the corresponding production class. That is, the

number of code smell types in a unit test increases when the size of the production

class increases, or vice versa.

 Spearman’s ρ correlation between test smell types and size and complexity of the Table 31.

corresponding production class

 Number of Test Smell Types

Metrics
JFreeChart FindBugs JMeter JabRef

Commons

Lang

Dependency

Finder
MOEA

Barco-

de4J

LOC
ρ .51 -.11 .26 .58 .56 .35 .30 .54

p .00 .26 .02 .00 .00 .00 .00 .00

NOM
ρ .44 .03 .18 .68 .50 .25 .28 .50

p .00 .42 .12 .00 .00 .00 .00 .00

CC
ρ .24 -.25 .20 .22 .19 .38 .24 .02

p .00 .07 .09 .05 .02 .00 .00 .94

Turning to RQ7.4, class complexity (which is represented here by the CC metric)

was found to be significantly correlated with the number of test smell types in the

corresponding unit test (Table 31, last row), in five of the eight systems examined.

 140

However, although the correlations were found to be significant, the strength of

the correlations were not high: a medium correlation between the number of test

smell types and CC was found in Dependency Finder, whereas a low correlation

was found in JFreeChart, JabRef, Commons Lang and MOEA (and we did not find

any significant correlations in FindBugs, JMeter and Barcode4J). On balance H7.4 is

therefore also accepted: there is a significant positive relationship between the number of

test smell types present in a unit test and the complexity of the corresponding production

class. More complex classes are generally more likely to have higher numbers of

test smell types in their associated unit tests, and vice versa.

 Spearman’s ρ correlation between test and code smell types Table 32.

Number of Test Smell Types

 JFreeChart FindBugs JMeter JabRef
Commons

Lang

Dependency

Finder
MOEA

Barco-

de4J

Number of

Code Smell

Types

ρ .51 .17 .37 .46 .50 .22 .39 .53

p .00 .15 .00 .00 .00 .00 .00 .00

One of the most interesting findings that emerged from the analysis was the

significant positive correlation between the number of test smell types in a unit

test and the number of code smell types in the corresponding production class

(RQ7.5). As shown in Table 32, there are significantly high correlations between the

number of test and code smell types in three systems (i.e. JFreeChart, Commons

Lang and Barcode4J), medium correlations in three further systems (i.e., JabRef,

JMeter and MOEA) and a low correlation in Dependency Finder. Again, no

significant correlation was found in FindBugs.

We therefore accept the hypothesis for this question, H7.5: there is a significant

positive relationship between the total number of test smell types in a unit test and the

total number of code smell types in the corresponding production class. Whenever the

number of code smell types in a production class increases, the number of test

smell types in the associated unit tests also increases, and vice versa.

 141

 Mann-Whitney U test results with effect size for the relationship between Table 33.

test size metrics and test smell types

Smells Metric JFreeChart FindBugs JMeter JabRef
Commo-

ns Lang

Dependenc-

y Finder
MOEA

Barco-

de4J

Assertion-

free

TLOC p .39 1.00 .15 1.00 .13 .66 .68 .68

ez

NTC p 1.00 .98 .06 .48 .14 .29 .21 1.00

ez

Assertion

Roulette

TLOC p .42 1.00 .01* .38 .00* .01* .00* .52

ez 0.4 0.3 0.2 0.2

NTC p .50 .92 .01* 1.00 .02* .31 .78 .35

ez 0.4 0.3

Sensitive

Equality

TLOC p 1.00 .675 .05* .02* .14 1.00 .68 .10

ez 0.3 0.4

NTC p .76 1.00 .02* .02* .13 .86 .67 .12

 ez 0.3 0.4

Mystery

Guest

TLOC p ---- .33 .62 .26 .04* .04* .00* -----

ez 0.2 0.2 0.3

NTC p ---- 1.00 .60 .46 .18 .00* .02* -----

ez 0.2 0.2

Indirect

Test

TLOC p ---- 1.00 .16 1.00 .69 .01* .10 1.00

ez 0.2

NTC p ---- .63 .24 1.00 .89 .25 .53 .64

ez

General

Fixture

TLOC p .91 .02* .00* .08 .04* .00* .00* -----

ez ----- 0.5 0.5 .2 0.3 .4

NTC p .25 .01* .00* .32 ----- .02* .00* -----

ez 0.5 0.5 0.2 0.3

Eager Test

TLOC p .00* .29 .60 .05* .00* .56 .62 .23

ez 0.2 0.4 0.4

NTC p .01* 1.00 .48 .01* .00* .21 1.00 .96

ez 0.2 0.5 0.3

Lazy Test

TLOC p 1.00 .90 .84 .82 .17 ---- .58 1.00

ez

NTC p 1.00 .88 .42 .83 .19 ---- 1.00 .91

ez

Duplicat-

ed Code

TLOC p .00* .01* .00* .00* .00* .00* .00* .01*

ez 0.4 0.5 0.6 0.5 0.4 0.6 0.3 0.6

NTC p .00* .04* .00* .00* .00* .00* .72 .00*

ez 0.3 0.5 0.5 0.5 0.3 0.5 0.7

 142

Relationships between individual smell types and unit tests size

The next component of the experiment investigates which particular smells are

more closely associated with unit test size (RQ7.6 and RQ7.7). Tables 33 and 34

report the values of the Mann-Whitney U tests and effect size for the relationships

between the test’s size metrics and test and code smell types, respectively. All

significant values are marked with an asterisk (*) and all medium and high effect

sizes are shown in Bold. Results that are significant for five or more of the eight

systems are highlighted.

As shown in Table 33, tests’ Duplicated Code smell type was found to have a

significant correlation with TLOC in all of the systems studied, and with NTC in

seven of the eight systems. Among those, five systems are shown to have a high

effect size with TLOC and NTC, in FindBugs, JMeter, JabRef, Dependency Finder

and Barcode4J, and medium effect size in JFreeChart, Commons Lang and

MOEA41. General Fixture is another smell type that was found to be closely

associated with size. General Fixture and TLOC are significantly correlated in five

systems (with high effect size in FindBugs and JMeter, medium effect size in

Dependency Finder and MOEA, and low effect size in Commons Lang). The

relationship between General Fixture and NTC was evident only in four of the

eight systems. On the balance of evidence, H7.6 is accepted for two smell types:

General Fixture and Duplicated Code; that is, there is a significant difference in the size of

unit tests that contain the General Fixture or Duplicated Code smell types and unit tests

that do not contain these smell types.

It should be noted here that there was no expectation of finding any statistically

significant results for the Message Chain and Tradition Breaker code smells because

of the very limited occurrence of these smells (see Figure 29 and Table 28). Message

Chain appeared only once in JMeter, while Tradition Breaker appeared only once in

41 Note that Duplicated Code was not significantly correlated with NTC in MOEA.

 143

three systems i.e., FindBugs, JMeter and Dependency Finder. Therefore, no

correlation analysis was performed on these individual smells, and they are

excluded from any further analysis.

 Mann-Whitney U test results with effect size for the relationship between test Table 34.
size metrics and code smell types

Smells Metric JFreeChart FindBugs JMeter JabRef
Commons

Lang

Dependen-

cy Finder
MOEA

Barco-

de4J

Feature

Envy

TLOC p .00* 1.00 .35 .12 .60 .05* .12 .75

ez 0.2 0.2

NTC p .56 1.00 .35 .32 .35 .68 .86 .68

ez

Large Class

TLOC p .19 1.00 .54 .16 .00* .48 .06 .39

ez 0.4

NTC p .55 1.00 .70 .16 .00* .58 .27 .49

ez 0.4

Type

Checking

TLOC p .30 1.00 .64 ---- 1.00 .08 .02* ----

ez 0.2

NTC p 1.00 1.00 .91 ---- .67 .75 .31 ----

 ez

Brain Class

TLOC p .02* .42 .05* .08 .02* .00* .00* .01*

ez 0.1 0.3 0.3 0.3 0.3 0.6

NTC p .95 1.00 .05* .12 .14 .07 .00* .13

ez 0.3 0.3

Duplicated

Code

TLOC p .00* .80 1.00 .01* .00* .03* .28 .14

ez 0.3 0.4 0.4 0.2

NTC p .00* 1.00 1.00 .01* .01* .13 1.00 .38

ez 0.2 0.4 0.3

Schizophre

nic Class

TLOC p .27 .63 ---- ---- 1.00 .99 .39 ----

ez

NTC p .51 1.00 ---- ---- 1.00 .75 .78 ----

ez

Data Class

TLOC p .02* ---- 1.00 ---- 1.00 .87 .53 ----

ez 0.2

NTC p .00* ---- 1.00 ---- 1.00 .40 .48 ----

ez 0.2

Data

Clumps

TLOC p .00* ---- ---- .18 0.91 ---- .61 .44

ez 0.2

NTC p .00* ---- ---- .12 1.00 ---- .91 .68

ez 0.3

 144

Table 34 reports the results of the Mann-Whitney U tests and effect size for the

correlations between size metrics and code smell types (RQ7.7). These results

indicate that the Brain Class smell type was more closely associated with unit test

size metrics than other code smell types. The relationship between Brain Class and

TLOC was evident in Barcode4J (with high effect size), JMeter, Commons Lang,

Dependency Finder and MOEA (medium effect size) and in JFreeChart (low effect

size). In contrast, Brain Class is significantly correlated with NTC in only two of the

eight systems (with medium effect size in Dependency Finder and MOEA).

Duplicated Code was found to be significantly associated with TLOC in four

systems: JFreeChart, JabRef and Commons Lang (with medium effect size), and

Dependency Finder (low effect size). Given these results, H7.7 is accepted only for

Brain Class smell type: There is a significant difference in the size of unit tests that

contain Brain Class code smell type in the associated production class and those that do

not contain this smell.

Smells co-occurrence

We now turn our attention to examining the co-occurrence of code and test smell

types (RQ7.8). Table 35 presents all significant correlations between code and test

smell types across all eight studied systems. All of the reported correlations here

are positive in direction. As explained earlier in this section, we employed a

threshold of 5 or more systems to indicate the presence of a significant correlation

between any two investigated variables. However, we also report significant

correlation values that fall below this threshold (i.e., that occur at least in three of

the eight systems) mainly to provide a general view of other potentially important

correlations that appear in all systems (and this approach also applies to Table 36).

Full results of the correlation analysis between test and code smell types for all

eight systems are provided in Appendix E.

 145

 Results of the phi (φ) correlation coefficient analysis between test and code smells Table 35.

(Shading denotes finding significant co-occurrence in 4 or more systems. Red bold is used to

highlight High (H) strength correlations, Blue italic to highlight Medium (M) and Green to

highlight Low (L) correlations)

Test

Smells/

Code

Smells

Assertion-free
General

Fixture
Eager Test Lazy Test

Duplicated

Code

Feature

Envy

(M) JabRef

φ= 0.43, p = 0.00

(L) JFreeChart

φ=0.22 , p =0.00

(L) Commons Lang

φ= 0.22, p = 0.01

(M) JFreeChart

φ=0.35, p= 0.00

(M) JabRef

φ= 0.33, p= 0.01

(M) MOEA

(φ=0.37, p= 0.00

(M) Barcode4J

φ= 0.38, p= 0.03

(H) Barcode4J

φ=0.70, p= 0.00

(M) JMeter

φ=0.33, p= 0.01

(L) JFreeChart

φ=0.14, p= 0.01

Large

Class

(M) JMeter

φ= 0.31, p= 0.01

(M) Commons Lang

φ= 0.31, p= 0.00

(M) MOEA

(φ= 0.35, p= 0.00

(L) JFreeChart

φ=0.27 , p= 0.00

(L) JabRef

φ=0 .28, p=0.04

Brain

Class

(L) JFreeChart

φ=0.21, p= 0.00

(L) Commons Lang

φ= 0.20, p= 0.03

(L) MOEA

φ= 0.28, p= 0.00

(M) JFreeChart

φ=0.41, p= 0.00

(M) JMeter

φ=0.33, p= 0.00

(L) MOEA

φ=0.21, p= 0.00

(M) JFreeChart

φ= 0.34, p= 0.00

 (M) JabRef

φ= 0.38, p= 0.01

(M) Commons Lang

φ= 0.42, p= 0.00

(M) Barcode4J

φ= 0.45, p= 0.01

(L) JMeter

φ= 0.22, p= 0.05

(L) MOEA

φ= 0.20, p= 0.00

(M) JMeter

φ=0.30, p=0.01

(M) MOEA

φ=0.35, p=0.00

(L) JFreeChart

φ=0.16, p=0.00

(M) FindBugs

φ=0.31, p= 0.05

(L) JFreeChart

φ=0.17, p= 0.00

 (L) Commons

Lang

φ=0.22, p= 0.02

(L)

Dependency

Finder

φ=0.20, p= 0.00

Duplicated

Code

(L) Commons

Lang

φ=0.198 , p= 0.03

(L) JFreeChart

φ= 0.24 , p= 0.00

(L) MOEA

φ= 0.22, p= 0.00

(H) JabRef

φ=0.70, p= 0.00

(H) Commons

Lang

φ=0.51, p= 0.00

(M) JFreeChart

φ=0.27, p= 0.00

(L)

Dependency

Finder

φ=0.14, p= 0.04

 146

As shown in Table 35, the Eager Test smell type was found to be significantly

correlated with Brain Class (in six systems) and with Large Class (in five systems).

Eager Test was found to be significantly correlated with Brain Class in JFreeChart,

JabRef, Commons Lang and Barcode4J (medium correlations) and JMeter and

MOEA (a low correlation). A significant correlation between Eager Test and Large

Class is evident in JMeter, Commons Lang and MOEA (medium), and JFreeChart

and JabRef (both low). H7.8, therefore, is also accepted – there is a significant

relationship between the co-occurrence of individual test smell types and individual code

smell types – for the following pairs of test and code smell types: Eager Test and

Brain Class, and Eager Test and Large Class.

There are three other correlations that occur in only four systems but that are

worth noting (Table 35). Particularly, test smell Duplicated Code is significantly

correlated with code smell Duplicated Code. There is a high correlation between

Duplicated Code in production and test code in JabRef and Commons Lang,

medium in JFreeChart and low in Dependency Finder. In addition, a significant

medium correlation between the Eager Test and Feature Envy smell types was

found in JFreeChart, JabRef, MOEA and Barcode4J. Similarly, Brain Class and test

Duplicated Code smell types are shown to be correlated in the JFreeChart,

FindBugs, Common Lang and Dependency Finder systems.

 Results of the phi (φ) correlation coefficient analysis between test smell types Table 36.

(Blue italic to highlight Medium (M) and Green to highlight low (L) correlations)

Test Smells Assertion Roulette General Fixture Eager Test

Duplicated

Code

(M): FindBugs

φ= 0.35, p= 0.03

(L): Commons Lang

φ= 0.20 , p= 0.02

(L): Dependency Finder

φ= 0.15, p= 0.03

(L): MOEA

φ= 0.17, p= 0.02

(L): JFreeChart

φ= 0.18, p= 0.00

(L): JMeter

φ= 0.25, p= 0.03

(L): Commons Lang

φ= 0.18, p= 0.05

(L): JFreeChart

φ= 0.17, p= 0.00

(L): MOEA

φ= 0.17, p= 0.02

(L): Commons Lang

φ= 0.28, p= 0.00

 147

In considering RQ7.9, Table 36 presents the results of the correlation analysis

among test smells. As in Table 35, only significant correlations between test smell

types that are evident in at least three systems are reported. Detailed results of the

correlations between test smell themselves are available in Appendix F. As shown

in Table 36, it is found that there are three different test smell types that co-occur

with the Duplicated Code test smell in the same unit test. There is a significant

relationship, although not strong, between Assertion Roulette and test Duplicated

Code. This relationship was found in four systems. These two smell types had

some tendency to co-occur in a unit test in FindBugs (medium correlation),

Commons Lang, Dependency Finder and MOEA (low correlation). Duplicated Code

also co-occurs (in three systems) with General Fixture (in JFreeChart, JMeter and

Commons Lang) and Eager Test (in JFreeChart, MOEA and Commons Lang).

However, these correlations are all shown to be low.

Based on the results presented above, H7.9 is rejected: we found no evidence that

there is a significant relationship between the co-occurrence of individual test smell types,

as we did not find evidence of any correlation among smells consistently across

five or more systems.

However, it is also worth noting – though as a separate observation that should

not influence the acceptance or rejection of the examined hypothesis – that there

are other potentially interesting correlations among test smell types that occur

only in one or two systems. For example, a high negative correlation between

Assertion-free and Assertion Roulette was found in Barcode4J. Such a finding seems

reasonable as one would expect that there would be a negative correlation

between the two smells given that Assertion Roulette and Assertion-free are opposite

to each other (i.e., Assertion Roulette appears where there are multiple assertion

statements in a test case, whereas Assertion-free occurs when there are no assertion

statements in a test case).

The following section provides a discussion on the abovementioned results.

 148

7.4 Discussion

In the following we discuss our results. We divide the discussion into three parts:

the first part provides a discussion on the bivariate correlations between smell

types and artefact size and complexity (RQ7.1-RQ7.5), followed by an analysis of the

effect of size. The second part presents a discussion on the relationships between

individual smell types and unit test size (RQ7.6 and RQ7.7). The final part provides a

discussion on the co-occurrence of test and code smells (RQ7.8 and RQ7.9).

Relationships between smell types and software artefacts

The findings of this experiment show that an increase in the size of both a

production class and a unit test will likely be mirrored by an increase in the

number of test smell types in that unit test: the size of both production classes and

unit tests was found to be significantly associated with the number of test smell

types. This result is consistent with findings from prior research that showed that

the size of a class generally constitutes a useful indicator of problems or issues in

code (Yamashita and Counsell, 2013). In their system-level analysis Bavota et al.

(2014) also found that the number of test smell types in a system is related to the

size of that system, and other prior research found evidence of a significant

relationship between the size of production classes and their associated unit tests

(Bruntink and van Deursen, 2006). To summarise these particular findings, a large

production class will typically require a large unit test, and a large unit test is

more likely to contain test smells.

It was also observed that the number of test smell types in a unit test increases

when the complexity of the associated production class increases: more complex

classes are likely to have higher numbers of test smell types in their associated unit

tests. Relationships between complexity and unit test size have been found

elsewhere. For instance, complexity-related metrics, such as cohesion, and

Response for a Class (RFC), have been found to be significantly correlated with the

size of unit tests (Bruntink and van Deursen, 2006, Badri et al., 2010, Zhou et al.,

 149

2012). Dynamic coupling is also associated with unit test size, as was

demonstrated in Chapter 5. We therefore find the correlation between class

complexity and the number of test smell types in the associated unit test to be

plausible. Developers may attempt to test complex modules by writing large unit

tests, which therefore increase the chances of introducing smells in the unit test (as

shown in RQ7.1).

It is important at this juncture to reiterate that this research did not investigate the

causation (i.e., direction) of these relationships42. It is therefore not possible to say

if any of the variables considered directly influences the others. However,

causation of a relationship could be identified if testing strategy information were

obtained from a project. For example, if a project was developed following a

traditional test-last approach, then, since production classes are developed first, it

is not possible for the production classes to be influenced by the test code. It may

be possible in some situations to infer that test code was influenced by production

code and its characteristics. However, it is also possible for both production and

test code to reflect other factors, such as the complexity of the problem being

solved. Similarly, in a test-first method (such as Test Driven Development), it is

impossible for production code to influence test code, since test code is developed

first. This limitation applies to all other similar relationships discussed here

(especially for RQ7.3, RQ7.4 and RQ7.5), and is an aspect of analysis that should be

addressed in future research.

That said, it is also important to note that a recent empirical study explained that

the majority of OSS projects and developers follow a test-last approach, i.e., test

code is developed after the production code (Beller et al., 2015). The authors

empirically investigated developers’ testing practices by studying 416 developers

from 460 projects. Their study found that TDD is not widely practiced – in only

12% of the projects that claimed to follow TDD did the developers actually follow

42 See Sections 3.5.1 and 7.5 for more details.

 150

TDD practices (Beller et al., 2015). Moreover, even when developers claim that

they practice TDD, it was found that they do not follow its practices strictly (i.e.,

tests are still being written after production classes are developed). In light of

these findings we could cautiously assert that the direction of the relationships

identified in this chapter are likely to follow a [production class  unit test]

direction.

The effect of size

In this section, we statistically examined the possible confounding effect of size on

the investigated correlations between test and code smell types in RQ7.1 through

RQ7.5. We measured the indirect effect of size (the confounding variable in this

case) on all causal relationships between variables using the Bootstrapping

mediation method. Mediation and confounding effects have been proven to be

statistically equivalent (MacKinnon et al., 2000), and therefore methods of

mediation effect may be used to investigate possible confounding effects (Preacher

and Hayes, 2008). Bootstrapping is a non-parametric approach to effect-size

estimation and hypothesis testing that makes no assumptions about the

distribution of the data or the sampling distribution of the statistic (Preacher and

Hayes, 2004). This method has been shown to be more powerful than other similar

approaches, such as the Sobel test, and therefore has been recommended to be

used over other mediation methods (MacKinnon et al., 2004, Hayes, 2009).

Bootstrapping and other mediation analysis methods are explained in Preacher

and Hayes (2008) and Hayes and Preacher (2014). In this method, we first

‘bootstrap’ the data by taking a large number of samples of size n (where n is the

original sample size) from the data, sampling with replacement, and computing

the indirect effect between variables x and y through the presence of the mediator

variable m in each sample. As explained by Preacher and Hayes (2004, 2008), let’s

say we have 1000 bootstrap samples, the point estimate of variables x and y is

simply the mean of the two variables computed over the 1000 samples, and the

 151

estimated standard error is the standard deviation of the 1000 xy estimates. To

derive a 95% confidence interval, the elements of the vector of 1000 estimates of xy

are sorted from low to high. The Lower Limit (LL) (also known as the lower

boundary) of the confidence interval is defined as the 25th score in this sorted

distribution, and the Upper Limit (UL) (also known as the upper boundary) is

defined as the 976th score in the distribution. If zero (0) falls between the resulting

confidence interval values of LL and UL then it is concluded (with 95%

confidence) that there is no significant mediation (or confounding) effect: that is,

the indirect effect is non-significant.

As explained above, the goal is to examine the confounding effect of size, and

therefore we use our two key size metrics (LOC and TLOC) as mediators. The

procedure was applied to the data obtained from all 8 OSS. As before, we use a

threshold of 5 or more systems to indicate the presence of a confounder (mediator)

between any two investigated variables. For RQ7.1, RQ7.2, RQ7.4 and RQ7.5 we

examined the indirect effect of LOC; for RQ7.3, we considered TLOC as a potential

mediator. Detailed results of this procedure are shown in Appendix G. This

procedure was carried out using the MEDIATE43 SPSS macro. We used a

confidence interval of 95% and employed 5000 bootstrap resamples, as has been

recommended in the literature (Preacher and Hayes, 2008).

The results of the mediation analysis confirm that LOC and TLOC do not appear

to have a significant indirect effect on the relationship between the number of test

smell types and unit test’s size (RQ7.1) or class size (RQ7.3) in seven of the examined

systems. A similar outcome applies to the relationship between the number of

code smell types and unit test size (RQ7.2), as there is no evidence that class size

has an indirect effect on this relationship in five of the eight systems examined.

43 http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html

http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html

 152

 Similarly, the indirect effect of LOC between the number of test smell types and

class complexity (RQ7.4) is not evident in five of the eight systems. The same result

applies to the indirect effect of LOC between the number of test smell types and

code smell types (RQ7.5) – as there is no evidence of a significant indirect effect in

seven of the eight systems.

Based on the findings of our bootstrap mediation analysis, we can state (with

confidence of 95%) that size does not have a significant confounding effect on the

relationships investigated in this chapter.

Relationships between individual smell types and unit tests size

By looking more deeply into the relationships between size and the incidence of

individual smell types, there are specific smell types that are shown to be more

strongly associated with size than others. Among all of the test smells studied,

General Fixture and Duplicated Code are more closely related to the size of the unit

test than other smell types. As the size of the unit test increases (i.e., in terms of

both TLOC and NTC), the possibility of developing General Fixture and Duplicated

Code test smell types also increases (or vice versa). The result regarding General

Fixture is also in line with the findings of Greiler et al. (2013b), which explained

how other test fixture related smells are often correlated with the number of test

cases.

Turning our attention to code smells, Brain Class has been shown to be more

strongly associated with the size of the unit test compared to the other code smell

types examined. One could therefore expect that a class with a Brain Class smell

and/or Duplicated Code will have a larger unit test. Brain Class represents an “excess

of responsibility” of a class, whereas Duplicated Code represents “unnecessary

code” that should be removed. This would indicate that a class with a relatively

higher number of responsibilities is likely to have a larger unit test. Previous work

by Sabane et al. (2013) indicated that classes with smells related to an “excess of

 153

responsibility”, such as Blob Class, require significantly higher numbers of test

cases than other classes.

Smell co-occurrence

A further novel finding of this work is that relating to the co-occurrence of test and

code smells. Based on the preceding analysis it appears that some test and code

smell types are more likely to co-occur. For instance, Eager Test is the smell type

most significantly associated with other code smell types, and particularly Brain

Class and Large Class code smell types. To provide greater context for this

discussion the smells classification and taxonomy developed by Mäntylä et al.

(2003) is used.

The relationship between Eager Test and Brain Class was evident in six of the eight

systems examined. As explained above, Brain Class, which belongs to the

“complexity” group of code smells (Mäntylä et al., 2003), represents an “excess of

responsibility” class. To test a complex class, such as a Brain Class, a unit test might

attempt to test multiple methods of the same class under test, leading to possible

interdependencies between methods within the same class. In doing so, a test

might require the involvement (e.g., invoke) of several other methods that are

related or connected to the target method under test, which can lead to the

introduction of the Eager Test smell (where a test has a method that uses more than

one method of the tested class).

Much the same interpretation can be also drawn for the relationship between

Eager Test and Large Class. A Large Class smell is an indicator that a class has at

least one large method. Such methods can be also linked (connected) with other

methods within the same class. One possible scenario is that, when writing a test

case to test a particular method that is large in size (given the possible

interdependency between the large method and other methods in the same class),

a developer/tester might be required to test multiple methods in the same class at

once. It is also possible that methods within a class are sometimes required to

 154

access parameters or operators that belong to those large methods within the same

class. When attempting to test such methods, a test is required to make use (i.e.,

invoke or retrieve data from) other methods of the same class under test.

The relationship between test and production code duplication (i.e., Duplicated

Code) is another potentially interesting finding, although it was not consistent

among all systems considered (as it appeared in four of the eight systems)44. This

relationship suggests that duplication in code can also be a sign of possible code

duplication in the test code, and vice versa.

The high diffusion of Assertion Roulette leads us to expect that this smell type is

more associated with the size of the unit test than other test smells (i.e., unit tests

with Assertion Roulette are larger compared to unit tests without this smell). The

argument here is that a large unit test has more test cases (given that there is a

positive relationship between the number of test cases and the size of unit tests).

The increase in the number of test cases (i.e., NTC) means that there are more

Assertions in the unit test. We therefore expected that the more Assertions in a

unit test, the higher the probability of introducing Assertion Roulette. However, the

findings of this study show that this is not case for at least half of the studied

systems. On the other hand, one would expect that Assertion Roulette would be

correlated with some of the code smell types that are related to size (such as Large

Class) or other widely distributed code smells, as Assertion Roulette is shown to be

the most common test smell in OSS projects. Again, this is was not the case here as

Assertion Roulette was not found to co-occur with any other code smells.

In studying the co-occurrence of test smell types themselves, there were no

obvious correlations among different individual test smell types. There was no

statistical evidence that any two test smell types co-occurred together in more than

44 As shown in Chapter 7, we use a threshold of five systems or more to confirm significant associations

between any two smells. Any correlations that occurred in fewer than five systems would not be

considered as a significant correlation between the variables.

 155

four systems. The only relationship perhaps worth noting is that between Assertion

Roulette and test Duplicated Code, although this was found in just four of the eight

systems. This overall result indicating a general lack of test smell co-occurrence is

in contrast to the previous analyses of Bavota et al. (2014), which found that most

test smells co-occur with Assertion Roulette. These authors also found that Lazy Test

and Eager Test smells co-occur on several occasions. However, the method these

authors used to examine co-occurrence considers the direction of the relationship

(i.e., the co-occurrence of A and B may be different from the co-occurrence of B

and A). This led to a number of correlations that are not symmetrical. For example,

Assertion Roulette was shown to co-occur with Lazy Test in 83% of the unit tests, but

if we swap these variables (i.e., the co-occurrence of Lazy Test and Assertion

Roulette) the percentage drops to only 3%. In order to avoid such non-symmetrical

outcomes we used an alternative method of analysis (i.e., Phi Correlation Coefficient

Test) that assesses co-occurrence based on the strength of the association (i.e.,

significance level and the degree of association) between all individual pairs of test

smell types.

Threats to the validity to this experiment are presented next.

7.5 Threats to Validity

There are a number of threats to the validity of our work, as acknowledged in the

following. Note that the nature of some of these threats is explained more fully in

Section 3.5.

Possible Confounding Effect of Size

As explained in Section 3.5.1., some of the correlations identified between

variables might be influenced by confounding factors (e.g., A causes X causes B).

These confounding factors might be the reason why some of the discovered

correlations appear. A previous study by El Emam et al. (2001) found that class

size can have a confounding effect on several object oriented metrics (such as some

 156

of the CK metrics suite). Specifically, they found that previously noted

associations between OO metrics and fault-proneness did not exist when size is

taken into account. They therefore suggest that empirical studies should control

for class size when designing fault-prediction models. Such a conclusion was also

shared by Zhou et al. for both fault-proneness (2014) and change-proneness (2009).

Nonetheless, these conclusions are still limited to class fault- and change-

proneness and the set of OO metrics used, and therefore they cannot be

generalised to other factors. On the other hand, Evanco (2003) argued that

introducing class size as an additional independent variable can result in models

that lack internal consistency. No studies have been found to investigate the

confounding effect of size in the context of unit tests and software testability.

Nevertheless, we carefully addressed this issue in more detail in Section 7.4. We

applied a statistical procedure to investigate the possible indirect effect of size in

regard to the discovered relationships in RQ7.1 through RQ7.5. Our analysis

indicates that there is no statistical evidence that size is a confounding variable.

In considering the occurrence of each test and code smell it is important to

highlight that these smells are measured in terms of their presence (or not) in a unit

test or a production class. For example, a unit test can either have Assertion Roulette

or not (one or zero), irrespective the number of times the smell was detected in the

unit test. Similarly, a production class can either have (one) Brain Class smell or

not. This approach applies to our consideration of all test or code smells. None of

the test smell detection rules use size as a direct indicator of the presence of the

smells (as per the test smell descriptions in Table 23). For code smells, the only

smell that might be directly influenced by size is Large Class, as this smell is

identified based on the size of methods within a class45. However, this experiment

did not investigate the correlations between class size and the presence of Large

Class, as this was not the focus of any of the research questions. For all code smells

45 It is measured in terms of LOC of methods within a class.

 157

(including Large Class), the experiment studied the correlation between the

presence of the smells in a production class and the size of the associated unit

tests. However, Large Class was not found to be correlated with any of the unit

tests metrics in any of the studied systems (Table 34). Therefore, and given that

there is no relationship between Large Class and unit test size, we conclude that

size is not a confounding factor for this smell.

We further explored the relationship between all individual smells and unit test

size (see RQ7.6 and RQ7.7) and found that size (and mainly TLOC) has direct effect

only on General Fixture and Duplicated Code test smells (Table 33) and Brain Class

code smell (Table 34). Other test and code smells do not appear to be directly

influenced by size.

Efficacy of Smell Detection Tools

In identifying the code and test smells, the experiment depended heavily on the

available smell detection tools. There is a risk that some smells were not detected

by the tools used or were detected erroneously. To ensure a minimum level of

accuracy tools that have been designed and examined in similar previous

empirical studies were used, and for the detection of some code smells, we used

an industrial quality assessment tool. For the test smell detection (and for most of

the smells), an academic tool that has been successfully used in previous research

was used. To maximize the accuracy of the results we verified the detected smells

manually through a manual inspection process conducted by the author, and we

cross-validated some of our results with those obtained for the same systems

considered in prior research (Bavota et al., 2014) using those authors’ publicly

available data. Details of this cross-validation process are provided in Section

7.2.2.

 158

7.6 Summary

This chapter has reported the investigation of several relationships between and

among test and code smells in eight OSS that contain 1100 unit tests. The

experiment looked into the possible association between the presence of smells (in

unit tests and in production classes) and different software characteristics (i.e., size

and complexity). It also investigated the relationship between code smells in

production classes and test smells in their associated unit tests. The co-occurrence

of code and test smells was also studied. In general, the results indicated a

significant association between several software characteristics and test smells. We

also found a significant association between the presence of code smells and class

testability. In addition, some specific test smells appear to co-occur.

Chapters 5, 6 and 7 presented the results of the three experiments conducted in

this thesis. The following chapter provides a collective discussion of the outcomes

of the review study reported in Chapter 4 and of the three experiments presented

in Chapters 5-7. It then reports the conclusions we draw from the thesis, followed

by a discussion on the possible limitations of this work. We also provide a list of

possible future research directions that can be followed in the light of the

outcomes of this work.

 159

 Conclusions and Chapter 8

Future Work

8.1. Introduction

This thesis reports a multi-part empirical investigation of software testability and

testing quality in open source OO projects. As stated in Chapter 1, the main goal of

the thesis is to provide researchers and practitioners with a comprehensive

understanding of design and source code factors that can affect the testability of a

class. The experiments presented in this thesis have therefore been focused on unit

testing, and have investigated testability not at the system level but at the class

level (referred to here as class testability). Drawing on previous research in the

area, class testability was measured in this work in terms of unit test size (via

metrics for test lines of code (TLOC) and the number of test cases (NTC) in the

unit test).

In particular, this thesis has investigated three aspects of software testability: unit

test distribution and coverage, the relationship between dynamic complexity

attributes of production classes and their testability, and the relationship between

design flaws in both unit tests and their production classes and their class

testability, through the use of the test and code smell concepts. Each of these

aspects has been investigated individually in three separate experiments,

presented in Chapters 5, 6 and 7, respectively.

This chapter summarises the novel elements and contributions of the thesis

(Section 8.2) and presents the conclusions drawn from the results of all three

experiments (Section 8.3). This is followed by a description of the limitations of the

 160

research conducted (Section 8.4) and a statement of potential future research

directions (Section 8.5).

8.2. Summary of Novel Elements and Contributions

The first novel undertaking comprised a systematic mapping study on the nature

and use of dynamic software metrics in software quality (Chapter 4). This study

concluded that the use of dynamic metrics to measure software complexity and

maintainability had been widely discussed in the literature; however the same

level of attention had not been directed to the use of dynamic metrics to measure

other quality attributes such as testability and reusability. An in-depth

consideration of the mapping results found that complexity-related dynamic

metrics, such as those said to measure coupling and cohesion, were the most

widely studied, with coupling being the most often studied single metric type.

Large numbers of these studies had used dynamic coupling metrics to support

software comprehension and/or reengineering. The findings of this mapping

study motivated the use of dynamic coupling metrics in relation to test coverage

and class testability in the development and experiments that followed in

Chapters 5 through 7.

A novel visualisation approach to augment specific data obtained from both static

and dynamic analysis was then proposed and evaluated (Chapter 5). The long-

term goal of such work is to support developers in their understanding of unit test

distribution and the relationships between tests and production code. We

visualised dependencies between classes using data collected based on dynamic

coupling information from five OSS. The work used dependency graphs (similar

to those used in the analysis of complex networks) to identify and depict

dependencies between different classes in the system, and then mapped static unit

test information into these dependency graphs. Besides the visual representation

 161

of the graphs, two graph Centrality metrics were used to further explore the

distribution of unit tests within the OSS investigated.

In the experiment presented in Chapter 6 we sought to identify any relationships

that might exist between two dynamic attributes of a class and its testability. The

two attributes that were examined were Dynamic Coupling and the newly defined

Key Classes. Dynamic metrics were used to measure these attributes due to their

advantages over their static counterparts.

Finally, in Chapter 7, we studied the relationships between and among test smells,

code smells and several software characteristics (such as size and complexity). The

experiment resulted in a novel, in-depth investigation of factors that may impact

the presence of smells in a unit test at class level, from a range of perspectives.

Specifically, we investigated the relationship between different test and code smell

types (individually and collectively) and the following aspects of the software

code: 1) size of the unit test, 2) size and complexity of the associated production

class, 3) the co-occurrence of test and code smells and 4) the co-occurrence of test

smells.

8.3. Conclusions

Several conclusions are drawn from the analyses conducted and reported in

Chapters 5 through 7 of this thesis.

A. Unit test distribution based on dynamic analysis

This thesis has introduced a novel visualisation approach that combines dynamic

information obtained from production code with static test information to explore

the distribution of unit tests in OSS. Based on the five OSS studied, it is observed

that unit test and dynamic coupling information ‘do not match’ in that there is no

significant relationship between dynamic coupling and centrality metrics and unit

test coverage. In other words, unit tests do not appear to be distributed in line

with the systems’ dynamic coupling. Many of the central and tightly coupled

 162

classes do not come with any associated (i.e., direct) unit tests, whereas other

loosely coupled classes, which are not central, appear to received direct unit

testing effort.

Visualisation of the combined static unit test and dynamic coupling data provides

a detailed insight into how unit tests are actually distributed in relation to the

coupling level of each class in the system. The suggested visualisation and its

associated Centrality metrics may help developers and managers to focus and

optimise their test effort through the initial targeting of central system classes.

Furthermore, data gathered from dynamic coupling measurement provides a

comprehensive view of the dependencies of the system in relation to test

information – a view that can be obtained only during software execution. Such

data can be used to complement other test optimisation and prioritisation

techniques to enhance future testing decisions. We believe that such visualisation

techniques could be particularly helpful when developers need to maintain and

reengineer existing testing suites.

B. Class testability and dynamic complexity

The resulting evidence indicates that there is a significant association between

dynamic coupling and class testability. Dynamic coupling metrics, and especially

the Export Coupling (EC) metric, have a significant association with Test LOC. A

less significant association was found between dynamic Import Coupling (IC) and

the Number of Test Cases. These results suggest that the higher the coupling

between classes the larger the unit test required to test the class. Furthermore, Key

Classes are shown to be significantly associated with our test suite metrics in at

least three of the four systems examined. As in relation to coupling, the higher the

number of executions of a class the larger the unit test required to test the class.

The findings of this experiment contribute to the general understanding of the

nature of the relationships between characteristics of production and test code.

The use of dynamic measures provides a level of insight that is not available using

 163

static metrics alone. These relationships should be of help in informing test

maintenance and reengineering tasks.

C. Test and code smells

We conclude that the number of test smell types is associated with the size of the

unit test within which they occur. We found that unit test size is associated with

the presence of code and test smell types. Class testability metrics are correlated

with the number of test smell types in unit tests and also with the number of code

smell types in the associated production class. Also, the size and complexity of a

production class are correlated with the number of test smell types in its

associated unit test.

That said, the distribution of individual smell types in code is not even – we found

that some smell types are more closely associated with the size of the unit test than

other smell types. In particular, the occurrence of the General Fixture and

Duplicated Code smell types is more strongly associated with the size of the unit

test: unit tests with General Fixture or Duplicated Code are larger than unit tests

without those smell types. Similarly, production classes with the Brain Class smell

require larger unit tests than classes without this smell.

In addition to identifying several relationships between size and smells, we found

that there are some test and code smell types that co-occur in production classes

and their associated unit tests: the Eager Test smell mostly co-occurs with Brain

Class and Large Class code smell types.

To summarise, the main conclusions drawn from this thesis are as follows:

 Using a combination of visualisation, dynamic analysis, static analysis and

graph-based metrics it is feasible to identify central classes and to

diagrammatically depict testing coverage information. Experimental results

show that, even in projects with high test coverage, some classes appear to

 164

be left without direct unit testing, even though they play a central role

during a typical execution profile.

 Frequently executed and tightly coupled classes are correlated with the

testability of the class – such classes require larger unit tests and more test

cases. This information could inform estimates of the effort required to test

classes when developing new unit tests or when maintaining and

refactoring existing tests.

 Test and code smells, in general, can have a negative impact on class

testability. Increasing levels of size and complexity in code can have a

negative impact on the presence of test smells. Classes that contain smells

generally require larger unit tests, and are also likely to be associated with

test smells in their associated unit tests. In addition, some particular code

smells can be seen as ‘signs’ for the presence of test smells.

8.4. Limitations

In this thesis we conducted a series of empirical studies to address a number of

questions related to software testability and testing quality.

One of the limitations of this work is that the thesis uses data obtained only from a

limited set of OSS. This might limit the general applicability of the results, as

industrial projects might have different characteristics compared to OSS. For

example, the testing approach and methods used in industrial projects might be

more rigorous and more controlled when compared with OSS. To mitigate this

risk we sought to analyse as many systems as feasible within the scope of the

study and to include projects that were highly mature in spite of their OSS origins.

The studies also used a limited range of test information obtained from the OSS

projects. Information about the testing strategy, development method, developers’

roles in their projects and developers’ experience with unit testing has not been

taken into consideration in this work. This is mainly because such information is

 165

not available in the documentation or source code of the projects’ repositories.

This also means that we had to necessarily limit our analyses to being explanatory,

based on the existence and strength of association, rather than being predictive,

based on causality. We have been able to rely to some extent, however, on other

research that has investigated OSS testing strategies to inform the conclusions

drawn.

The stated goal of the new visualisation approach developed in this thesis is to

support developers in their understanding of unit test distribution. Although the

approach was functionally evaluated over five different OSS, it has not been

empirically assessed for utility with software professionals. As such we are not yet

in a position to say whether it can deliver improved developer comprehension of

unit test distribution. Such an assessment would be possible through a controlled

experiment with practicing software engineers.

8.5. Future Work

Several future research endeavours could be pursued in the area of software

testability based on the findings presented in this thesis.

Given the inherently limited scope of the experimental work conducted in this

research it is important that those experiments be replicated using a wider range

of systems (including industrial, closed-source systems), to enable further

evaluation of the findings and their applicability.

It is important that the visualisation approach be tested by practicing software

developers to enable us to evaluate the usefulness of the proposed approach in

terms of improving program comprehension. This research could be usefully

undertaken through a controlled user study with the assistance of software

developers and maintainers. Future work should also investigate the cause of the

uneven distribution of unit tests, as found in our empirical analysis.

 166

Another research direction would be to investigate whether Dynamic Coupling and

Key Class information can be used to predict the size and structure of unit tests.

Predicting class testability should improve the early estimation and assessment of

the effort needed in testing activities. In principle this could be achieved through

the development of a regression model that uses dynamic metrics data (such as

Execution Frequency and dynamic coupling metrics) to predict the effort needed

to test a class (in terms of unit test design). This work could also be extended to an

investigation of the association between other source code factors and testability

using runtime information. It would also be potentially beneficial to incorporate

information about class testability with other testing information such as test

coverage and test strategy.

More generally it would be interesting to study in depth the causality of the

relationships identified in this work. In terms of informing practice it would be

useful to investigate which specific factors might impact the distribution of test

smells in unit tests. This could be done by including information regarding the

testing strategy used in a project and other indirect testing information into the

mapping, to provide a more comprehensive view of testing activities and their

outcomes. Consideration of a broader set of code and test smells should inform

further understanding of the extent to which the results found here apply beyond

the smells and systems examined. A further natural extension of the explanatory

analyses reported regarding the incidence of smells would be to assess whether

the relationships can inform the development of robust smell prediction models. A

binary (binomial) logistic regression model could be developed to predict the

presence of certain test smells (as dependent variables) based on the presence of

certain code smells in the production code (i.e., using code smells as predictors/

independent variables).

In the process of conducting our work we also found many instances where

developers wrote unit tests that did not include any assertions. Writing a unit test

 167

with no assertion can still give you 100% code coverage46 but this does not reflect

the ‘ground truth’ in terms of testing quality. A further specific extension of the

work reported here would be to investigate the nature of Assertions in unit tests

and to examine why Assertions are sometimes misused by developers in both

open and closed source software.

46 http://martinfowler.com/bliki/AssertionFreeTesting.html

http://martinfowler.com/bliki/AssertionFreeTesting.html

168

References

Abbes, M., Khomh, F., Guéhéneu, Y.-G. & Antoniol, G. 2011. An Empirical Study of the

Impact of Two Antipatterns, Blob and Spaghetti Code, on Program

Comprehension. European Conference on Software Maintenance and

Reengineering (CSMR). IEEE Computer Society.

Abdi, H. E. 2010. Holm's Sequential Bonferroni Procedure. In: Salkind, N. J. (ed.)

Encyclopedia of Research Design. Thousand Oaks, California: SAGE Publications,

Inc.

Adams, B., De Schutter, K., Zaidman, A., Demeyer, S., Tromp, H. & De Meuter, W. 2009.

Using Aspect Orientation in Legacy Environments for Reverse Engineering Using

Dynamic Analysis--an Industrial Experience Report. Journal of Systems and

Software, 82, 668-684.

Aggarwal, K., Singh, Y. & Chhabra, J. 2003. A Dynamic Software Metric and Debugging

Tool. SIGSOFT Software Engineering Notes, 28, 1.

Al Dallal, J. 2013. Object-Oriented Class Maintainability Prediction Using Internal Quality

Attributes. Information and Software Technology, 55, 2028-2048.

Amalfitano, D., Fasolino, A. R., Polcaro, A. & Tramontana, P. 2010. Dynaria: A Tool for

Ajax Web Application Comprehension. International Conference on Program

Comprehension (ICPC). IEEE Computer Society.

Arisholm, E., Briand, L. C. & Foyen, A. 2004. Dynamic Coupling Measurement for

Object-Oriented Software. IEEE Transactions on Software Engineering, 30, 491-

506.

Bache, R. & Mullerburg, M. 1990. Measures of Testability as a Basis for Quality

Assurance. Software Engineering Journal, 5, 86-92.

Badri, L., Badri, M. & Toure, F. 2010. Exploring Empirically the Relationship between

Lack of Cohesion and Testability in Object-Oriented Systems. Advances in

Software Engineering. Springer.

Badri, L., Badri, M. & Toure, F. 2011. An Empirical Analysis of Lack of Cohesion Metrics

for Predicting Testability of Classes. International Journal of Software Engineering

and Its Applications, 5, 69-85.

Ball, T. 1999. The Concept of Dynamic Analysis. SIGSOFT Software Engineering Notes,

24, 216-234.

Basili, V. R., Briand, L. C. & Melo, W. L. 1996. A Validation of Object-Oriented Design

Metrics as Quality Indicators. IEEE Transactions on Software Engineering, 22,

751-761.

Basili, V. R. & Weiss, D. M. 1984. A Methodology for Collecting Valid Software

Engineering Data. IEEE Transactions on Software Engineering, 10, 728-738.

Bavota, G., Qusef, A., Oliveto, R., De Lucia, A. & Binkley, D. 2014. Are Test Smells

Really Harmful? An Empirical Study. Empirical Software Engineering, 1-43.

Beck, K. 1994. Simple Smalltalk Testing: With Patterns. The Smalltalk Report, 4, 16-18.

Beck, K. 2002. Test Driven Development: By Example, ed., Addison-Wesley Publishing

Co., Inc.

Beller, M., Gousios, G., Panichella, A. & Zaidman, A. 2015. When, How, and Why

Developers (Do Not) Test in Their Ides. Joint Meeting of the European Software

Engineering Conference and the Symposium on the Foundations of Software

Engineering (ESEC/FSE). Bergamo, Italy.

 169

Bertolino, A. 2007. Software Testing Research: Achievements, Challenges, Dreams.

Future of Software Engineering (FOSE). IEEE Computer Society.

Bertolino, A. & Strigini, L. 1996. On the Use of Testability Measures for Dependability

Assessment. IEEE Transactions on Software Engineering, 22, 97-108.

Biggerstaff, T. J., Mitbander, B. G. & Webster, D. 1993. The Concept Assignment

Problem in Program Understanding. International Conference on Software

Engineering (ICSE). Baltimore, Maryland, USA: IEEE Computer Society Press.

Binder, R. V. 1994. Design for Testability in Object-Oriented Systems. Communications of

the ACM, 37, 87-101.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. 2006. Complex

Networks: Structure and Dynamics. Physics Reports, 424, 175-308.

Boehm, B., Brown, J., Kaspar, H., Lipow, M., Macleod, G. & Merrit, M. 1978.

Characteristics of Software Quality, ed., North-Holland.

Boehm, B. W. 1981. Software Engineering Economics, ed., Prentice Hall PTR.

Borgatti, S. P. 2005. Centrality and Network Flow. Social Networks, 27, 55-71.

Breugelmans, M. & Van Rompaey, B. 2008. Testq: Exploring Structural and Maintenance

Characteristics of Unit Test Suites. International Workshop on Advanced Software

Development Tools and Techniques. Paphos, Cyprus.

Briand, L. C., Morasca, S. & Basili, V. R. 2002. An Operational Process for Goal-Driven

Definition of Measures. IEEE Transactions on Software Engineering, 28, 1106-

1125.

Brooks, F. P. 1975. The Mythical Man-Month, ed., Addison-Wesley Reading, MA.

Bruntink, M. & Van Deursen, A. 2006. An Empirical Study into Class Testability. Journal

of Systems and Software, 79, 1219-1232.

Burrows, R., Ferrari, F. C., Garcia, A. & Taïani, F. 2010. An Empirical Evaluation of

Coupling Metrics on Aspect-Oriented Programs. International Workshop on

Emerging Trends in Software Metrics (WETSoM). Cape Town, South Africa:

ACM.

Burrows, R., TaïAni, F., Garcia, A. & Ferrari, F. C. 2011. Reasoning About Faults in

Aspect-Oriented Programs: A Metrics-Based Evaluation. International Conference

on Program Comprehension (ICPC). Kingston, Ontario, Canada.

Cai, Y. 2008. Assessing the Effectiveness of Software Modularization Techniques through

the Dynamics of Software Evolution. Workshop on Assessment of COntemporary

Modularization Techniques. Orlando, US.

Cazzola, W. & Marchetto, A. 2008. Aop-Hiddenmetrics: Separation, Extensibility and

Adaptability in Sw Measurement. Journal of Object Technology, 7, 53–68.

Chaumun, M. A., Kabaili, H., Keller, R. K., Lustman, F. & Saint-Denis, G. 2000. Design

Properties and Object-Oriented Software Changeability. European Conference on

Software Maintenance and Reengineering (CSMR). IEEE Computer Society.

Cheon, Y. & Leavens, G. 2002. A Simple and Practical Approach to Unit Testing: The Jml

and Junit Way. European Conference on Object-Oriented Programming (ECOOP).

Malaga, Spain: Springer.

Chhabra, J. K. & Gupta, V. 2010. A Survey of Dynamic Software Metrics. Journal of

Computer Science and Technology, 25, 1016-1029.

Chidamber, S. R. & Kemerer, C. F. 1994. A Metrics Suite for Object Oriented Design.

IEEE Transactions on Software Engineering 20, 476-493.

Cho, E. S., Kim, C. J., Kim, S. D. & Rhew, S. Y. 1998. Static and Dynamic Metrics for

Effective Object Clustering. Asia Pacific Software Engineering Conference

(APSEC). IEEE Computer Society.

 170

Cleland-Huang, J., Chang, C. K., Hosung, K. & Balakrishnan, A. 2001. Requirements-

Based Dynamic Metrics in Object-Oriented Systems. International Symposium on

Requirements Engineering (RE). Toronto, Canada.

Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences, 2nd ed., L.

Erlbaum Associates.

Coolican, H. 2014. Research Methods and Statistics in Psychology, 6th ed., New York,

Psychology Press.

Corbi, T. A. 1989. Program Understanding: Challenge for the 1990s. IBM Systems Journal,

28, 294-306.

Cornelissen, B., Van Deursen, A., Moonen, L. & Zaidman, A. 2007. Visualizing Testsuites

to Aid in Software Understanding. European Conference on Software Maintenance

and Reengineering (CSMR). IEEE Computer Society.

Cornelissen, B., Zaidman, A. & Van Deursen, A. 2011. A Controlled Experiment for

Program Comprehension through Trace Visualization. IEEE Transactions on

Software Engineering, 37, 341-355.

Cornelissen, B., Zaidman, A., Van Deursen, A., Moonen, L. & Koschke, R. 2009. A

Systematic Survey of Program Comprehension through Dynamic Analysis. IEEE

Transactions on Software Engineering, 35, 684-702.

D'ambros, M., Bacchelli, A. & Lanza, M. 2010. On the Impact of Design Flaws on

Software Defects. International Conference on Quality Software (ICQS). IEEE

Computer Society.

Daniel, W. W. 2000. Applied Nonparametric Statistics, ed., Duxbury.

Dufour, B., Driesen, K., Hendren, L. & Verbrugge, C. 2003a. Dynamic Metrics for Java.

Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA). Anaheim, California, USA: ACM.

Dufour, B., Goard, C., Hendren, L., Moor, O. D., Sittampalam, G. & Verbrugge, C. 2004.

Measuring the Dynamic Behaviour of Aspectj Programs. Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA).

Vancouver, BC, Canada: ACM.

Dufour, B., Hendren, L. & Verbrugge, C. 2003b. *J: A Tool for Dynamic Analysis of Java

Programs. Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA). Anaheim, CA, USA: ACM.

Easterbrook, S., Singer, J., Storey, M.-A. & Damian, D. 2008. Selecting Empirical

Methods for Software Engineering Research. In: Shull, F., Singer, J. & Sjøberg, D.

I. K. (eds.) Guide to Advanced Empirical Software Engineering. Springer London.

El Emam, K., Benlarbi, S., Goel, N. & Rai, S. N. 2001. The Confounding Effect of Class

Size on the Validity of Object-Oriented Metrics. IEEE Transactions on Software

Engineering, 27, 630-650.

Elberzhager, F., Rosbach, A., Münch, J. & Eschbach, R. 2012. Reducing Test Effort: A

Systematic Mapping Study on Existing Approaches. Information and Software

Technology, 54, 1092-1106.

Ernst, M. D. 2003. Static and Dynamic Analysis: Synergy and Duality. Workshop on

Dynamic Analysis (WODA). Portland, US: ACM.

Evanco, W. M. 2003. Comments on "the Confounding Effect of Class Size on the Validity

of Object-Oriented Metrics". IEEE Transactions on Software Engineering, 29, 670-

672.

Fenton, N. E. & Pfleeger, S. L. 1998. Software Metrics: A Rigorous and Practical

Approach, ed., Boston, MA, USA, PWS Publishing Co.

Fowler, M., Beck, K., Brant, J., Opdyke, W. & Roberts, D. 1999. Refactoring: Improving

the Design of Existing Code, ed., Addison-Wesley Publishing Co., Inc.

 171

Freedman, R. S. 1991. Testability of Software Components. IEEE Transactions on

Software Engineering, 17, 553-564.

Freeman, L. C. 1978. Centrality in Social Networks: Conceptual Clarification. Social

Networks, 1, 215-239.

Fritz, C. O., Morris, P. E. & Richler, J. J. 2012. Effect Size Estimates: Current Use,

Calculations, and Interpretation. Journal of Experimental Psychology: General,

141, 2-18.

Gani, H., Ryan, C. & Rossi, P. 2006. Runtime Metrics Collection for Middleware

Supported Adaptation of Mobile Applications. Workshop on Adaptive and

Reflective Middleware. Melbourne, Australia: ACM.

Gao, J. Z., Jacob, H.-S. & Wu, Y. 2003. Testing and Quality Assurance for Component-

Based Software, ed., Norwood, MA, USA, Artech House Publishers.

Grady, R. B. & Caswell, D. L. 1987. Software Metrics: Establishing a Company-Wide

Program, ed., Prentice-Hall, Inc.

Graham, S. L., Kessler, P. B. & Mckusick, M. K. 1982. Gprof: A Call Graph Execution

Profiler. SIGPLAN Symposium on Compiler construction. ACM.

Greiler, M., Van Deursen, A. & Storey, M.-A. 2013a. Automated Detection of Test Fixture

Strategies and Smells. International Conference on Software Testing, Verification

and Validation (ICST). IEEE Computer Society.

Greiler, M., Zaidman, A., Van Deursen, A. & Storey, M.-A. 2013b. Strategies for

Avoiding Test Fixture Smells During Software Evolution. Working Conference on

Mining Software Repositories (MSR). San Francisco, CA, USA: IEEE Press.

Gunnalan, R., Shereshevsky, M. & Ammar, H. H. 2005. Pseudo Dynamic Metrics

[Software Metrics]. International Conference on Computer Systems and

Applications (AICCSA). IEEE Computer Society.

Gupta, N. & Rao, P. 2001. Program Execution-Based Module Cohesion Measurement.

International Conference on Automated Software Engineering (ASE). IEEE

Computer Society.

Gupta, V. & Chhabra, J. K. 2011. Dynamic Cohesion Measures for Object-Oriented

Software. Journal of Systems Architecture, 57, 452-462.

Hall, T., Zhang, M., Bowes, D. & Sun, Y. 2014. Some Code Smells Have a Significant but

Small Effect on Faults. ACM Transactions on Software Engineering and

Methodology, 23, 1-39.

Hamou-Lhadj, A. & Lethbridge, T. C. 2010. Understanding the Complexity Embedded in

Large Routine Call Traces with a Focus on Program Comprehension Tasks. IET

Software, 4, 161-177.

Harrison, R., Counsell, S. J. & Nithi, R. V. 1998. An Evaluation of the Mood Set of

Object-Oriented Software Metrics. IEEE Transactions on Software Engineering 24,

491-496.

Harrold, M. J. 2000. Testing: A Roadmap. Future of Software Engineering (FOSE).

Limerick, Ireland: ACM.

Hassoun, Y., Counsell, S. & Johnson, R. 2005. Dynamic Coupling Metric: Proof of

Concept. IEE Proceedings -Software, 152, 273-279.

Hauptmann, B., Junker, M., Eder, S., Juergens, E. & Vaas, R. 2012. Can Clone Detection

Support Test Comprehension? International Conference on Program

Comprehension (ICPC).

Hayes, A. F. 2009. Beyond Baron and Kenny: Statistical Mediation Analysis in the New

Millennium. Communication Monographs, 76, 408-420.

 172

Hayes, A. F. & Preacher, K. J. 2014. Statistical Mediation Analysis with a Multicategorical

Independent Variable. British Journal of Mathematical and Statistical Psychology,

67, 451-470.

IEEE. 1990. IEEE Standard Glossary of Software Engineering Terminology. IEEE Std

610.12-1990.

ISO. 2001. Software Engineering - Product Quality-Part 1. International Organization for

Standardization Geneva.

Jerding, D. & Rugaber, S. 2000. Using Visualization for Architectural Localization and

Extraction. Science of Computer Programming, 36, 267-284.

Jungmayr, S. 1999. Reviewing Software Artifacts for Testability. EuroSTAR. Barcelona,

Spain.

Kan, S. H. 2002. Metrics and Models in Software Quality Engineering, 2nd ed., Boston,

USA, Addison-Wesley.

Khomh, F., Penta, M., Guéhéneuc, Y.-G. & Antoniol, G. 2012. An Exploratory Study of

the Impact of Antipatterns on Class Change- and Fault-Proneness. Empirical

Software Engineering, 17, 243-275.

Khurana, P. & Kaur, P. J. 2009. Dynamic Metrics at Design Level. International Journal

of Information Technology and Knowledge Management, 2, 449-454.

Kitchenham, B., Brereton, P., Turner, M., Niazi, M., Linkman, S., Pretorius, R. & Budgen,

D. 2010. Refining the Systematic Literature Review Process—Two Participant-

Observer Case Studies. Empirical Software Engineering, 15, 618-653.

Kitchenham, B. & Charters, S. 2007. Guidelines for Performing Systematic Literature

Reviews in Software Engineering. Keele University and University of Durham.

Kitchenham, B. A., Budgen, D. & Pearl Brereton, O. 2011. Using Mapping Studies as the

Basis for Further Research – a Participant-Observer Case Study. Information and

Software Technology, 53, 638-651.

Ko, A. J., Myers, B. A., Coblenz, M. J. & Aung, H. H. 2006. An Exploratory Study of

How Developers Seek, Relate, and Collect Relevant Information During Software

Maintenance Tasks. IEEE Transactions on Software Engineering, 32, 971-987.

Kochhar, P. S., Bissyande, T. F., Lo, D. & Lingxiao, J. 2013. An Empirical Study of

Adoption of Software Testing in Open Source Projects. International Conference

on Quality Software (ICQS).

Lange, D. B. & Nakamura, Y. 1997. Object-Oriented Program Tracing and Visualization.

Computer, 30, 63-70.

Lanza, M. & Marinescu, R. 2006. Object-Oriented Metrics in Practice, ed., Springer.

Leung, H. K. N., Ligo, L. & Qu, Y. 2007. Automated Support of Software Quality

Improvement. International Journal of Quality & Reliability Management, 24, 230-

243.

Lo, B. W. N. & Shi, H. 1998. A Preliminary Testability Model for Object-Oriented

Software. International Conference on Software Engineering: Education &

Practice. IEEE Computer Society.

MacDonell, S., Shepperd, M., Kitchenham, B. & Mendes, E. 2010. How Reliable Are

Systematic Reviews in Empirical Software Engineering? IEEE Transactions on

Software Engineering 36, 676-687.

Mackinnon, D., Krull, J. & Lockwood, C. 2000. Equivalence of the Mediation,

Confounding and Suppression Effect. Prevention Science, 1, 173-181.

Mackinnon, D. P., Lockwood, C. M. & Williams, J. 2004. Confidence Limits for the

Indirect Effect: Distribution of the Product and Resampling Methods. Multivariate

behavioral research, 39, 99-128.

 173

Maletic, J. I., Marcus, A. & Collard, M. L. 2002. A Task Oriented View of Software

Visualization. International Workshop on Visualizing Software for Understanding

and Analysis (VISSOFT). IEEE Computer Society.

Mäntylä, M. & Lassenius, C. 2006. Subjective Evaluation of Software Evolvability Using

Code Smells: An Empirical Study. Empirical Software Engineering, 11, 395-431.

Mäntylä, M., Vanhanen, J. & Lassenius, C. 2003. A Taxonomy and an Initial Empirical

Study of Bad Smells in Code. International Conference on Software Maintenance

(ICSE). IEEE Computer Society.

Marinescu, R. 2004. Detection Strategies: Metrics-Based Rules for Detecting Design

Flaws. International Conference on Software Maintenance (ICSM). IEEE

Computer Society.

Mathur, R., Keen, K. J. & Etzkorn, L. H. 2010. Towards an Object-Oriented Complexity

Metric at the Runtime Boundary Based on Decision Points in Code. Annual

Southeast Regional Conference. Oxford, Mississippi: ACM.

Mayrhauser, A. V. & Vans, A. M. 1995. Program Comprehension During Software

Maintenance and Evolution. Computer, 28, 44-55.

Mccabe, T. J. 1976. A Complexity Measure. IEEE Transactions on Software Engineering,

SE-2, 308-320.

Mcmanus, J. & Wood-Harper, T. 2007. Software Engineering: A Quality Management

Perspective. The TQM Magazine, 19, 315 - 327.

Mendes, E., Mosley, N. & Counsell, S. 2005. Investigating Web Size Metrics for Early

Web Cost Estimation. Journal of Systems and Software, 77, 157-172.

Meszaros, G. 2006. Xunit Test Patterns: Refactoring Test Code, ed., Prentice Hall PTR.

Mitchell, A. & Power, J. F. 2004. Run-Time Cohesion Metrics: An Empirical

Investigation. International Conference on Software Engineering Research and

Practice (SERP). Las Vegas, USA.

Mitchell, Á. & Power, J. F. 2006. A Study of the Influence of Coverage on the

Relationship between Static and Dynamic Coupling Metrics. Science of Computer

Programming, 59, 4-25.

Moha, N., Gueheneuc, Y.-G., Duchien, L. & Meur, A.-F. L. 2010. Decor: A Method for

the Specification and Detection of Code and Design Smells. IEEE Transactions on

Software Engineering, 36, 20-36.

Moret, P., Binder, W., Heydarnoori, A. & Ansaloni, D. 2010. Tool Demonstration:

Effective Runtime Exploration of the Inter-Procedural Control Flow in Java

Applications. International Conference on the Principles and Practice of

Programming in Java (PPPJ). Vienna, Austria: ACM.

Mouchawrab, S., Briand, L. C. & Labiche, Y. 2005. A Measurement Framework for

Object-Oriented Software Testability. Information and Software Technology, 47,

979-997.

Munson, J. C. & Hall, G. A. 1996. Estimating Test Effectiveness with Dynamic

Complexity Measurement. Empirical Software Engineering, 1, 279-305.

Munson, J. C. & Khoshgoftaar, T. M. 1992. Measuring Dynamic Program Complexity.

IEEE Software, 9, 48-55.

Myers, G. J., Sandler, C. & Badgett, T. 2011. The Art of Software Testing, ed., Wiley

Publishing.

Narasimhan, V. L. & Hendradjaya, B. 2007. Some Theoretical Considerations for a Suite

of Metrics for the Integration of Software Components. Information Sciences, 177,

844-864.

 174

Nunamaker, J. F., Chen, M. & Purdin, T. D. M. 1990. Systems Development in

Information Systems Research. Journal of Management Information Systems, 7,

89-106.

Offutt, J., Abdurazik, A. & Schach, S. 2008. Quantitatively Measuring Object-Oriented

Couplings. Software Quality Journal, 16, 489-512.

Osterweil, L. 1996. Strategic Directions in Software Quality. ACM Computing Surveys, 28,

738-750.

Pacione, M. J., Roper, M. & Wood, M. 2003. A Comparative Evaluation of Dynamic

Visualisation Tools. Working Conference on Reverse Engineering. Victoria,

Canada.

Patzke, T., Becker, M., Steffens, M., Sierszecki, K., Savolainen, J. E. & Fogdal, T. 2012.

Identifying Improvement Potential in Evolving Product Line Infrastructures: 3 Case

Studies. International Software Product Line Conference (SPLC). Salvador, Brazil:

ACM.

Pauw, W. D., Lorenz, D., Vlissides, J. & Wegman, M. 1998. Execution Patterns in Object-

Oriented Visualization. USENIX Conference on Object-Oriented Technologies and

Systems (COOTS). Santa Fe, New Mexico: USENIX Association.

Petersen, K., Feldt, R., Mujtaba, S. & Mattsson, M. 2008. Systematic Mapping Studies in

Software Engineering. International Conference on Evaluation and Assessment in

Software Engineering (EASE). Bari, Italy.

Petersen, K., Vakkalanka, S. & Kuzniarz, L. 2015. Guidelines for Conducting Systematic

Mapping Studies in Software Engineering: An Update. Information and Software

Technology, 64, 1-18.

Pirzadeh, H., Agarwal, A. & Hamou-Lhadj, A. 2010. An Approach for Detecting

Execution Phases of a System for the Purpose of Program Comprehension. ACIS

International Conference on Software Engineering Research, Management and

Applications. Montreal, Canada: IEEE Computer Society.

Preacher, K. & Hayes, A. 2004. Spss and Sas Procedures for Estimating Indirect Effects in

Simple Mediation Models. Behavior Research Methods, Instruments, &

Computers, 36, 717-731.

Preacher, K. & Hayes, A. 2008. Asymptotic and Resampling Strategies for Assessing and

Comparing Indirect Effects in Multiple Mediator Models. Behavior Research

Methods, 40, 879-891.

Putnam, L. H. 1978. A General Empirical Solution to the Macro Software Sizing and

Estimating Problem. IEEE Trans. Softw. Eng., 4, 345-361.

Qusef, A., Bavota, G., Oliveto, R., De Lucia, A. & Binkley, D. 2014. Recovering Test-to-

Code Traceability Using Slicing and Textual Analysis. Journal of Systems and

Software, 88, 147-168.

Razali, N. M. & Wah, Y. B. 2011. Power Comparisons of Shapiro-Wilk, Kolmogorov-

Smirnov, Lilliefors and Anderson-Darling Tests. Journal of Statistical Modeling

and Analytics, 2, 21-33.

Reichhart, S., Gîrba, T. & Ducasse, S. 2007. Rule-Based Assessment of Test Quality.

Journal of Object Technology, 6, 231-251.

Richner, T. & Ducasse, S. 1999. Recovering High-Level Views of Object-Oriented

Applications from Static and Dynamic Information. International Conference on

Software Maintenance (ICSM). Oxford, England, UK: IEEE Computer Society.

Riva, C. & Rodriguez, J. V. 2002. Combining Static and Dynamic Views for Architecture

Reconstruction. European Conference on Software Maintenance and

Reengineering (CSMR). Budapest, Hungary: IEEE Computer Society.

 175

Rothlisberger, D. 2010. Exploiting Dynamic Information in Ides Eases Software

Maintenance. Workshop on Program Comprehension through Dynamic Analysis

(PCODA). Massachusetts, USA.

Rothlisberger, D., Harry, M., Villazon, A., Ansaloni, D., Binder, W., Nierstrasz, O. &

Moret, P. 2009. Augmenting Static Source Views in Ides with Dynamic Metrics.

International Conference on Software Maintenance (ICSM). Edmonton, Alberta,

Canada.

Royston, P. 1992. Approximating the Shapiro-Wilk W-Test for Non-Normality. Statistics

and Computing, 2, 117-119.

Runeson, P. & Andrews, A. 2003. Detection or Isolation of Defects? An Experimental

Comparison of Unit Testing and Code Inspection. International Symposium on

Software Reliability Engineering (ISSRE). IEEE Computer Society.

Sabane, A., Penta, M. D., Antoniol, G. & Gueheneuc, Y.-G. 2013. A Study on the Relation

between Antipatterns and the Cost of Class Unit Testing. European Conference on

Software Maintenance and Reengineering (CSMR). IEEE Computer Society.

Safari-Sharifabadi, E. & Constantinides, C. 2008. Dynamic Analysis of Ada Programs for

Comprehension and Quality Measurement. ACM SIGAda Ada Letters, 28, 15-38.

Sarimbekov, A., Sewe, A., Kell, S., Zheng, Y., Binder, W., Bulej, L. & Ansaloni, D. 2013.

A Comprehensive Toolchain for Workload Characterization across Jvm Languages.

Workshop on Program Analysis for Software Tools and Engineering (PASTE).

Seattle, Washington: ACM.

Scotto, M., Sillitti, A., Succi, G. & Vernazza, T. 2006. A Non-Invasive Approach to

Product Metrics Collection. Journal of Systems Architecture, 52, 668-675.

Shtern, M., Smit, M., Simmons, B. & Litoiu, M. 2014. A Runtime Cloud Efficiency

Software Quality Metric. International Conference on Software Engineering

(ICSE), New ideas and Emerging Results (NIER) track. Hyderabad, India: ACM.

Singer, J., Lethbridge, T., Vinson, N. & Anquetil, N. 1997. An Examination of Software

Engineering Work Practices. Conference of the Centre for Advanced Studies on

Collaborative Research (CASCON). Toronto, Ontario, Canada: IBM Press.

Sjoberg, D. I., Yamashita, A., Anda, B. C. D., Mockus, A. & Dyba, T. 2013. Quantifying

the Effect of Code Smells on Maintenance Effort. IEEE Transactions on Software

Engineering, 39, 1144-1156.

Solingen, R. V. & Berghout, E. 1999. The Goal/Question/Metrics Method: A Practical

Guide for Quality Improvement of Software Development, ed., New York McGraw-

Hill

Sommerville, I. 2006. Software Engineering, 8th ed., Boston, MA, USA, Addison-Wesley.

Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M., Mcdermid,

J. & Paige, R. 2012. Large-Scale Complex It Systems. Communications of the

ACM, 55, 71-77.

Stockman, S. G., Todd, A. R. & Robinson, G. A. 1990. A Framework for Software Quality

Measurement. IEEE Journal on Selected Areas in Communications, 8, 224-233.

Stroulia, E. & Systä, T. 2002. Dynamic Analysis for Reverse Engineering and Program

Understanding. ACM SIGAPP Applied Computing Review, 10, 8-17.

Systä, T., Koskimies, K. & Müller, H. 2001. Shimba—an Environment for Reverse

Engineering Java Software Systems. Software—Practice & Experience, 31, 371-

394.

Tahir, A., Ahmad, R. & Kasirun, Z. M. 2010. Maintainability Dynamic Metrics Data

Collection Based on Aspect-Oriented Technology. Malaysian Journal of Computer

Science, 23, 177-194.

 176

Tahvildar, L. & Kontogiannis, K. 2004. Improving Design Quality Using Meta-Pattern

Transformations: A Metric-Based Approach. Journal of Software Maintenance and

Evolution: Research and Practice, 16, 331-361.

Thode, H. C. 2002. Testing for Normality, ed., New York, Marcel Dekker.

Traon, Y. L. & Robach, C. 1995. From Hardware to Software Testability. International

Test Conference (ITC) - Driving Down the Cost of Test. IEEE Computer Society.

Travassos, G., Shull, F., Fredericks, M. & Basili, V. R. 1999. Detecting Defects in Object-

Oriented Designs: Using Reading Techniques to Increase Software Quality.

Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA). Denver, Colorado, USA: ACM.

Tsantalis, N. & Chatzigeorgiou, A. 2009. Identification of Move Method Refactoring

Opportunities. IEEE Transactions on Software Engineering, 35, 347-367.

Van Deursen, A., Moonen, L. M. F., Bergh, A. & Kok, G. 2001. Refactoring Test Code.

International Conference on XP and Flexible Processes in Software Engineering

(XP). Sardinia, Italy.

Van Rompaey, B., Bois, B. D., Demeyer, S. & Rieger, M. 2007. On the Detection of Test

Smells: A Metrics-Based Approach for General Fixture and Eager Test. IEEE

Transactions on Software Engineering, 33, 800-817.

Van Rompaey, B. & Demeyer, S. 2008. Exploring the Composition of Unit Test Suites.

International Conference on Automated Software Engineering - ASE Workshops

Van Rompaey, B. & Demeyer, S. 2009. Establishing Traceability Links between Unit Test

Cases and Units under Test. Proceedings of the 2009 European Conference on

Software Maintenance and Reengineering. Kaiserslautern, Germany: IEEE

Computer Society.

Voas, J. 1992. Dynamic Testing Complexity Metric. Software Quality Journal, 1, 101-114.

Wieringa, R., Maiden, N., Mead, N. & Rolland, C. 2006. Requirements Engineering Paper

Classification and Evaluation Criteria: A Proposal and a Discussion. Requirements

Engineering, 11, 102-107.

Wohlin, C., Höst, M. & Henningsson, K. 2006. Empirical Research Methods in Web and

Software Engineering. In: Mendes, E. & Mosley, N. (eds.) Web Engineering.

Springer Berlin Heidelberg.

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B. & Wessln, A. 2012.

Experimentation in Software Engineering, ed., Springer Publishing Company,

Incorporated.

Yacoub, S., Ammar, H. & Robinson, T. 1999. Dynamic Metrics for Object Oriented

Designs. International Software Metrics Symposium (METRICS). Boca Raton, FL,

USA.

Yacoub, S. M. & Ammar, H. H. 2002. A Methodology for Architecture-Level Reliability

Risk Analysis. IEEE Transactions on Software Engineering, 28, 529-547.

Yamashita, A. 2014. Assessing the Capability of Code Smells to Explain Maintenance

Problems: An Empirical Study Combining Quantitative and Qualitative Data.

Empirical Software Engineering, 19, 1111-1143.

Yamashita, A. & Counsell, S. 2013. Code Smells as System-Level Indicators of

Maintainability: An Empirical Study. Journal of Systems and Software, 86, 2639-

2653.

Yamashita, A. & Moonen, L. 2013. To What Extent Can Maintenance Problems Be

Predicted by Code Smell Detection? – an Empirical Study. Information and

Software Technology, 55, 2223-2242.

 177

Yuying, W., Qingshan, L., Ping, C. & Chunde, R. 2005. Dynamic Fan-in and Fan-out

Metrics for Program Comprehension. Workshop on Program Comprehension

through Dynamic Analysis (PCODA). Pennsylvania, USA.

Zaidman, A. & Demeyer, S. 2008. Automatic Identification of Key Classes in a Software

System Using Webmining Techniques. Journal of Software Maintenance and

Evolution: Research and Practice 20, 387-417.

Zaidman, A., Rompaey, B., Van Deursen, A. & Demeyer, S. 2011. Studying the Co-

Evolution of Production and Test Code in Open Source and Industrial Developer

Test Processes through Repository Mining. Empirical Software Engineering, 16,

325-364.

Zhang, M., Hall, T. & Baddoo, N. 2011. Code Bad Smells: A Review of Current

Knowledge. Journal of Software Maintenance and Evolution: Research and

Practice, 23, 179-202.

Zhao, L. & Elbaum, S. 2000. A Survey on Quality Related Activities in Open Source.

SIGSOFT Softw. Eng. Notes, 25, 54-57.

Zhou, Y., Leung, H., Song, Q., Zhao, J., Lu, H., Chen, L. & Xu, B. 2012. An in-Depth

Investigation into the Relationships between Structural Metrics and Unit Testability

in Object-Oriented Systems. Science China Information Sciences, 55, 2800-2815.

Zhou, Y., Leung, H. & Xu, B. 2009. Examining the Potentially Confounding Effect of

Class Size on the Associations between Object-Oriented Metrics and Change-

Proneness. IEEE Transactions on Software Engineering, 35, 607-623.

Zhou, Y., Xu, B., Leung, H. & Chen, L. 2014. An in-Depth Study of the Potentially

Confounding Effect of Class Size in Fault Prediction. ACM Transactions on

Software Engineering and Methodology, 23, 1-51.

 178

Appendices

Appendix A: List of Articles Found in the Pilot Study

47 Author’s previous work.

No. Paper Type Year

[M1]
(Gunnalan, et al., 2005) Conference

2005

[M2]
(Tahir and Ahmad, 2010) 47 Conference

2010

[M3]
(Kavitha and Shanmugam, 2008) Conference

2008

[M4]
(Rothlisberger et al., 2009) Conference

2009

[M5]
(Allier et al., ,2010) Conference

2010

[M6]
(Cleland-Huang et al., ,2001) Conference

2001

[M7]
(Zaidman et al., 2006) Conference

2006

[M8]
(Hassoun et al., 2004) Conference

2004

[M9]
(Gokhale and Mullen,2005) Conference

2005

[M10]
(Hassoun et al., 2005) Journal

2005

[M11]
(Arisholm,2002) Conference

2002

[M12]
(Yacoub and Ammar,2002) Journal

2002

[M13]
(Rothlisberger et al.,2009) Conference

2009

[M14]
(Binder et al., 2007) Conference

2007

[M15]
(Choi and Lee,2007) Conference

2007

[M16]
(Maisikeli and Mitropoulos,2010) Conference

2010

[M17]
(Rilling and Klemola,2003) Conference

2003

[M18]
(Juefeng et al., 2006) Conference

2006

[M19]
(Wu and Xu,2009) Conference

2009

[M20]
(Alalfi et al., ,2010) Conference

2010

[M21]
(Juan et al., 2009) Conference

2009

[M22]
(Beszedes et al., 2007) Conference

2007

 179

[M1] Gunnalan, R., M. Shereshevsky, and H.H. Ammar, Pseudo dynamic metrics [software metrics],

in Proceedings of the ACS/IEEE 2005 International Conference on Computer Systems and

Applications. 2005, IEEE Computer Society. p. 117-vii.

[M2] Tahir, A. and R. Ahmad. An AOP-based approach for collecting software maintainability

dynamic metrics. 2010.

[M3] Kavitha, A. and A. Shanmugam. Dynamic coupling measurement of object oriented software

using trace events. in Applied Machine Intelligence and Informatics, 2008. SAMI 2008. 6th

International Symposium on. 2008.

[M4] Rothlisberger, D., et al. Augmenting static source views in IDEs with dynamic metrics. in IEEE

International Conference on Software Maintenance, 2009 (ICSM 2009). 2009.

[M5] Allier, S., et al., Deriving Coupling Metrics from Call Graphs, in Proceedings of the 2010 10th

IEEE Working Conference on Source Code Analysis and Manipulation. 2010, IEEE Computer

Society. p. 43-52.

[M6] Cleland-Huang, J., et al., Requirements-Based Dynamic Metrics In Object-Oriented Systems, in

Proceedings of the Fifth IEEE International Symposium on Requirements Engineering. 2001, IEEE

Computer Society. p. 212.

[M7] Zaidman, A., B.D. Bois, and S. Demeyer, How Webmining and Coupling Metrics Improve Early

Program Comprehension, in Proceedings of the 14th IEEE International Conference on Program

Comprehension. 2006, IEEE Computer Society. p. 74-78.

[M8] Hassoun, Y., R. Johnson, and S. Counsell, A Dynamic Runtime Coupling Metric for Meta-Level

Architectures, in Proceedings of the Eighth Euromicro Working Conference on Software

Maintenance and Reengineering (CSMR'04). 2004, IEEE Computer Society. p. 339.

[M9] Gokhale, S.S. and R.E. Mullen, Dynamic Code Coverage Metrics: A Lognormal Perspective, in

Proceedings of the 11th IEEE International Software Metrics Symposium. 2005, IEEE Computer

Society. p. 33.

[M10] Hassoun, Y., S. Counsell, and R. Johnson, Dynamic coupling metric: proof of concept. IEE

Proceedings -Software, 2005. 152(6): p. 273-279.

[M11] Arisholm, E., Dynamic Coupling Measures for Object-Oriented Software, in Proceedings of the

8th International Symposium on Software Metrics. 2002, IEEE Computer Society. p. 33.

[M12] Yacoub, S.M. and H.H. Ammar, A Methodology for Architecture-Level Reliability Risk Analysis.

IEEE Trans. Softw. Eng., 2002. 28(6): p. 529-547.

[M13] Rothlisberger, D., et al. Senseo: Enriching Eclipse's static source views with dynamic metrics. in

Software Maintenance, 2009. ICSM 2009. IEEE International Conference on. 2009.

[M14] Binder, W., J. Hulaas, and P. Moret, Reengineering Standard Java Runtime Systems through

Dynamic Bytecode Instrumentation, in Proceedings of the Seventh IEEE International Working

Conference on Source Code Analysis and Manipulation. 2007, IEEE Computer Society. p. 91-

100.

[M15] Choi, M. and J. Lee, A Dynamic Coupling for Reusable and Efficient Software System, in

Proceedings of the 5th ACIS International Conference on Software Engineering Research,

Management \& Applications. 2007, IEEE Computer Society. p. 720-726.

[M16] Maisikeli, S.G. and F.J. Mitropoulos. Aspect mining using Self-Organizing Maps with method

level dynamic software metrics as input vectors. in 2nd International Conference on Software

Technology and Engineering 2010.

 180

[M17] Rilling, J. and T. Klemola, Identifying Comprehension Bottlenecks Using Program Slicing and

Cognitive Complexity Metrics, in Proceedings of the 11th IEEE International Workshop on

Program Comprehension. 2003, IEEE Computer Society. p. 115.

[M18] Juefeng, L., et al. Improved Iterative Object-Oriented Reengineering Process based on Dynamic

Coupling Measures. in IEEE International Conference on Systems, Man and Cybernetics. 2006.

[M19] Wu, J. and B. Xu, A Method to Support Web Evolution by Modeling Static Structure and

Dynamic Behavior, in Proceedings of the 2009 International Conference on Computer Engineering

and Technology - Volume 02. 2009, IEEE Computer Society. p. 458-462.

[M20] Alalfi, M.H., J.R. Cordy, and T.R. Dean. Automating Coverage Metrics for Dynamic Web

Applications. in 14th European Conference on Software Maintenance and Reengineering 2010.

[M21] Juan, Z., et al. A Dynamic Metrics Method for Test Case Reuse Based on Bayesian Network. in

International Conference on Computational Intelligence and Software Engineering (CiSE). 2009.

[M22] Beszedes, A., et al., The Dynamic Function Coupling Metric and Its Use in Software Evolution,

in Proceedings of the 11th European Conference on Software Maintenance and Reengineering.

2007, IEEE Computer Society. p. 103-112.

 181

Appendix B: Articles Characterisation Based on Dynamic

Metrics Types

 Metrics/ Topics

C
o

u
p

lin
g

C
o

h
esio

n

C
o

d
e co

v
erag

e

C
o

m
p

lexity

m
etrics

C
o

d
e execu

tio
n

(i.e. u
n

ite,

fu
n

ctio
n

s)

M
em

o
ry

 U
sag

e

S
iz

e/ S
tru

ctu
re

M
eth

o
d

/ co
d

e

in
v

o
catio

n
s

P
o

ly
m

o
rp

h
ism

C
o

n
cu

rren
cy

Other

Topics/

Metrics

[1] √

[2] √ √ Modularity

[3] √

[4] √ √

[5] Inter-

processor

Communicatio

n Volume

(ICV)

[6] √

[7] √ √

[8] The Most

Frequently

Executed

Module

(MFEM)

Metric

[9] [10] [11] √ √ √ √

[12-14] √

[15] √ √

[16] √

[17] √ √

[18] √ √

[19] √ √

[20] √ √

[21] √

[22] √

[23] √

[24] √

[25] √

[26]

 182

C
o

u
p

lin
g

C
o

h
esio

n

C
o

d
e co

v
erag

e

C
o

m
p

lexity
 m

etrics

C
o

d
e execu

tio
n

 (i.e.

u
n

ite, fu
n

ctio
n

s)

M
em

o
ry

 U
sag

e

S
iz

e/ S
tru

ctu
re

M
eth

o
d

/ co
d

e

in
v

o
catio

n
s

P
o

ly
m

o
rp

h
ism

C
o

n
cu

rren
cy

Other

Topics/

Metrics

[27] √

[28] [29] √ √

[30] √

[31] Components

Development:

Number of

Cycle, Active

Component,

Average

Number of

Active

Components

[32] √ √ √ √ √ √

[33] √ √

[34] √

[35]

[36] √ √ Modularity

[37] √

[38] √

[39] √

[40] √

[41] √ √ √

[42] √

[43] √ √

[44] √ √ Method

Signature,

Method

Spread

[45] √

[46] √ √ Number of

Methods

Allocated

[47] √ √ √ Number of

Created

Objects

[48] 48 √

[49] √

[50] √ √ Code Churn

48 Author’s previous work.

 183

C
o

u
p

lin
g

C
o

h
esio

n

C
o

d
e co

v
erag

e

C
o

m
p

lexity
 m

etrics

C
o

d
e execu

tio
n

 (i.e.

u
n

ite, fu
n

ctio
n

s)

M
em

o
ry

 U
sag

e

S
iz

e/ S
tru

ctu
re

M
eth

o
d

/ co
d

e

in
v

o
catio

n
s

P
o

ly
m

o
rp

h
ism

C
o

n
cu

rren
cy

Other

Topics/

Metrics

[51] √

[52]

 √ √
 Method

Invocation and

Execution Time,

Network Usage,

Processor Usage

[53] √ √

[54] √ √ √

[55] √

[56] Cloud

Efficiency

[57] √

[58] √

[59] √ √

[60] √ √

[61]

[62] √ √

[1] Voas, J., Dynamic testing complexity metric. Software Quality Journal, 1992. 1(2): p. 101-114.

[2] Cho, E.S., et al., Static and dynamic metrics for effective object clustering, in Proceedings of

the Fifth Asia Pacific Software Engineering Conference. 1998, IEEE Computer Society. p. 78.

[3] Richner, T. and S. Ducasse, Recovering high-level views of object-oriented applications from

static and dynamic information, in IEEE International Conference on Software Maintenance.

1999, IEEE Computer Society: Oxford, England, UK. p. 13.

[4] Yacoub, S.M., H.H. Ammar, and T. Robinson, Dynamic metrics for object oriented designs,

in International Symposium on Software Metrics. 1999, IEEE Computer Society. p. 50.

[5] Cleland-Huang, J., et al., Requirements-based dynamic metrics in object-oriented systems, in

International Symposium on Requirements Engineering. 2001, IEEE Computer Society. p.

212.

[6] Gupta, N. and P. Rao. Program Execution-Based Module Cohesion Measurement. in

International Conference on Automated Software Engineering. 2001. IEEE Computer

Society.

[7] Yacoub, S.M. and H.H. Ammar, A Methodology for Architecture-Level Reliability Risk

Analysis. IEEE Transaction on Software Engineering, 2002. 28(6): p. 529-547.

 184

[8] Aggarwal, K.K., Y. Singh, and J.K. Chhabra, A dynamic software metric and debugging tool.

SIGSOFT Software Engineering Notes, 2003. 28(2): p. 1.

[9] Dufour, B., et al., Dynamic metrics for java, in ACM SIGPLAN Conference on Object-

Oriented Programing, Systems, Languages, and Applications. 2003, ACM: Anaheim,

California, USA. p. 149-168.

[10] Dufour, B., L. Hendren, and C. Verbrugge, *J: a tool for dynamic analysis of Java programs,

in Companion of the 18th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications. 2003, ACM: Anaheim, CA, USA. p. 306-

307.

[11] Dufour, B., L. Hendren, and C. Verbrugge, Problems in Objectively Quantifying Benchmarks

using Dynamic Metrics. 2003, Sable Research Group, School of Computer Science ,McGill

University. p. 8.

[12] Mitchell, A. and J.F. Power, Run-time Coupling Metrics for the Analysis of Java Programs -

preliminary results from the SPEC and Grande suites. 2003, Department of Computer

Science, National University of Ireland.

[13] Mitchell, A. and J.F. Power, Using object-level run-time metrics to study coupling between

objects, in ACM Symposium on Applied Computing. 2005, ACM: Santa Fe, New Mexico. p.

1456-1462.

[14] Mitchell, Á. and J.F. Power, An empirical investigation into the dimensions of run-time

coupling in Java programs, in International Symposium on Principles and Practice of

Programming in Java. 2004, Trinity College Dublin: Las Vegas, Nevada. p. 9-14.

[15] Mitchell, A. and J.F. Power, Toward a definition of run-time object-oriented metrics, in

Workshop on Quantitative Approaches in Object-Oriented Software Engineering. 2003:

Darmstadt, Germany.

[16] Arisholm, E., L.C. Briand, and A. Foyen, Dynamic Coupling Measurement for Object-

Oriented Software. IEEE Transactions on Software Engineering, 2004. 30(8): p. 491-506.

[17] Dufour, B., et al., Measuring the dynamic behaviour of AspectJ programs, in Proceedings of

the 19th annual ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications. 2004, ACM: Vancouver, BC, Canada. p. 150-169.

[18] Mitchell, A. and J.F. Power, An approach to quantifying the run-time behaviour of Java GUI

applications, in Winter International Synposium on Information and Communication

Technologies. 2004, Trinity College Dublin: Cancun, Mexico. p. 1-6.

[19] Mitchell, Á. and J.F. Power, A study of the influence of coverage on the relationship between

static and dynamic coupling metrics. Science of Computer Programming, 2006. 59(1-2): p. 4-

25.

[20] Mitchell, A. and J.F. Power, An approach to quantifying the run-time behaviour of Java GUI

applications, in Proceedings of the winter international synposium on Information and

communication technologies. 2004, Trinity College Dublin: Cancun, Mexico. p. 1-6.

[21] Mitchell, A. and J.F. Power, Run-Time Cohesion Metrics: An Empirical Investigation, in

International Conference on Software Engineering Research and Practice. 2004: Las Vegas,

USA.

[22] Zaidman, A. and S. Demeyer, Analyzing large event traces with the help of coupling metrics,

in International Workshop on Object-Oriented Reengineering. 2004: Antwerp, Belgium.

 185

[23] Gunnalan, R., M. Shereshevsky, and H.H. Ammar, Pseudo dynamic metrics [software

metrics], in International Conference on Computer Systems and Applications. 2005, IEEE

Computer Society. p. 117-vii.

[24] Hassoun, Y., S. Counsell, and R. Johnson, Dynamic coupling metric: proof of concept. IEE

Proceedings -Software, 2005. 152(6): p. 273-279.

[25] Mendes, E., N. Mosley, and S. Counsell, Investigating Web size metrics for early Web cost

estimation. Journal Systems and Software, 2005. 77(2): p. 157-172.

[26] Yuying, W., et al., Dynamic Fan-in and Fan-out Metrics for Program Comprehension, in

International Workshop on Program Comprehension through Dynamic Analysis. 2005:

Pittsburgh, Pennsylvania, USA.

[27] Beszedes, A., et al., The Dynamic Function Coupling Metric and Its Use in Software

Evolution, in European Conference on Software Maintenance and Reengineering. 2007, IEEE

Computer Society. p. 103-112.

[28] Binder, W., J. Hulaas, and P. Moret, Reengineering Standard Java Runtime Systems through

Dynamic Bytecode Instrumentation, in International Working Conference on Source Code

Analysis and Manipulation. 2007, IEEE Computer Society. p. 91-100.

[29] Binder, W., et al. Towards a domain-specific aspect language for dynamic program analysis.

in Annual Workshop on Domain-Specific Aspect Languages. 2011.

[30] Choi, K.H.T. and E. Tempero, Dynamic measurement of polymorphism, in Australasian

Conference on Computer Science. 2007, Australian Computer Society, Inc.: Ballarat, Victoria,

Australia. p. 211-220.

[31] Narasimhan, V.L. and B. Hendradjaya, Some theoretical considerations for a suite of metrics

for the integration of software components. Information Sciences, 2007. 177(3): p. 844-864.

[32] Cazzola, W. and A. Marchetto, AOP-HiddenMetrics: Separation, Extensibility and

Adaptability in SW Measurement. Journal of Object Technology, 2008. 7(2): p. 53–68.

[33] Keen, K.J., R. Mathur, and L. Etzkorn, Towards a measure of software intelligence

employing a runtime complexity metric, in International Conference on Software

Engineering and Applications. 2009: Cambridge, MA, USA.

[34] Zaidman, A. and S. Demeyer, Automatic identification of key classes in a software system

using webmining techniques. Journal of Software Maintenance and Evolution: Research and

Practice 2008. 20(6): p. 387-417.

[35] Gupta, V. and J.K. Chhabra, Measurement of dynamic metrics using dynamic analysis of

programs, in WSEAS International Conference on Applied Computing Conference. 2008,

World Scientific and Engineering Academy and Society (WSEAS): Istanbul, Turkey. p. 81-86.

[36] Safari-Sharifabadi, E. and C. Constantinides, Dynamic analysis of Ada programs for

comprehension and quality measurement, in SIGAda Annual International Conference.

2008, ACM: Portland, OR, USA. p. 15-38.

[37] Sandhu, P.S. and G. Singh, Dynamic Metrics for Polymorphism in Object Oriented Systems.

World Academy of Science, Engineering and Technology, 2008. 39(67).

[38] Adams, B., et al., Using aspect orientation in legacy environments for reverse engineering

using dynamic analysis-An industrial experience report. Journal of Systems and Software,

2009. 82(4): p. 668-684.

[39] Khurana, P. and P.J. Kaur, Dynamic Metrics at design Level. International Journal of

Information Technology and Knowledge Management, 2009. 2(2): p. 449-454.

 186

[40] Quynh, P.T. and H.Q. Thang, Dynamic Coupling Metrics for Service-Oriented Software.

International Journal of Computer Science and Engineering, 2009. 3(1): p. 6.

[41] Rothlisberger, D., et al. Augmenting static source views in IDEs with dynamic metrics. in

International Conference on Software Maintenance. 2009.

[42] Allier, S., et al., Deriving Coupling Metrics from Call Graphs, in International Working

Conference on Source Code Analysis and Manipulation. 2010, IEEE Computer Society. p. 43-

52.

[43] Amalfitano, D., et al., DynaRIA: A Tool for Ajax Web Application Comprehension, in

International Conference on Program Comprehension. 2010, IEEE Computer Society. p. 46-

47.

[44] Maisikeli, S.G. and F.J. Mitropoulos. Aspect mining using Self-Organizing Maps with

method level dynamic software metrics as input vectors. in International Conference on

Software Technology and Engineering. 2010.

[45] Mathur, R., K.J. Keen, and L.H. Etzkorn, Towards an object-oriented complexity metric at the

runtime boundary based on decision points in code, in Annual Southeast Regional

Conference. 2010, ACM: Oxford, Mississippi. p. 1-5.

[46] Moret, P., et al., Tool demonstration: effective runtime exploration of the inter-procedural

control flow in Java applications, in International Conference on the Principles and Practice

of Programming in Java. 2010, ACM: Vienna, Austria. p. 162-165.

[47] Röthlisberger, D., Exploiting Dynamic Information in IDEs Eases Software Maintenance, in

International Workshop on Program Comprehension through Dynamic Analysis. 2010:

Massachusetts, USA.

[48] Tahir, A., R. Ahmad, and Z.M. Kasirun, Maintainability dynamic metrics data collection

based on aspect-oriented technology. Malaysian Journal of Computer Science, 2010. 23(3): p.

177-194.

[49] Babu, S. and R.M.S. Parvathi, Design dynamic coupling measurement of distributed object

oriented software using trace events. Journal of Computer Science, 2011. 7(5): p. 770-778.

[50] Burrows, R., et al. Reasoning about Faults in Aspect-Oriented Programs: A Metrics-Based

Evaluation. in International Conference on Program Comprehension. 2011.

[51] Gupta, V. and J.K. Chhabra, Dynamic cohesion measures for object-oriented software.

Journal of Systems Architecture, 2011. 57(4): p. 452-462.

[52] Gani, H., C. Ryan, and P. Rossi, Runtime metrics collection for middleware supported

adaptation of mobile applications, in Workshop on Adaptive and Reflective Middleware.

2006, ACM: Melbourne, Australia. p. 2.

[53] Tosi, D. and A. Tahir, A Survey on How Well-Known Open Source Software Projects Are

Tested, in Software and Data Technologies, J. Cordeiro, M. Virvou, and B. Shishkov, Editors.

2013, Springer Berlin Heidelberg. p. 42-57.

[54] Tahir, A., S.G. MacDonell, and J. Buchan, Understanding class-level testability through

dynamic analysis, in International Conference on Evaluation of Novel Approaches to

Software Engineering (ENASE). 2014: Lisbon, Portugal. p. 38-47.

[55] G. Bavota, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and A. D. Lucia, An empirical

study on the developers’ perception of software coupling, in Proceedings of the 2013

International Conference on Software Engineering. 2013, IEEE Press: San Francisco, CA,

USA. p. 692-701.

 187

[56] Shtern, M., et al., A runtime cloud efficiency software quality metric, in Companion

Proceedings of the 36th International Conference on Software Engineering. 2014, ACM:

Hyderabad, India. p. 416-419.

[57] Andras, P., et al. A measure to assess the behavior of method stereotypes in object-oriented

software. in 2013 4th International Workshop on Emerging Trends in Software Metrics

(WETSoM). 2013.

[58] Mathur, R., K.J. Keen, and L.H. Etzkorn, Towards a measure of object oriented runtime

cohesion based on number of instance variable accesses, in Proceedings of the 49th Annual

Southeast Regional Conference. 2011, ACM: Kennesaw, Georgia. p. 255-257.

[59] Dugerdil, P. and M. Niculescu. Visualizing Software Structure Understandability. in

Software Engineering Conference (ASWEC), 2014 23rd Australian. 2014.

[60] Sarimbekov, A., et al., A comprehensive toolchain for workload characterization across JVM

languages, in Proceedings of the 11th ACM SIGPLAN-SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering. 2013, ACM: Seattle, Washington. p. 9-16.

[61] Lavazza, L., et al., On the definition of dynamic software measures, in Proceedings of the

ACM-IEEE international symposium on Empirical software engineering and measurement.

2012, ACM: Lund, Sweden. p. 39-48.

[62] Sarimbekov, A., et al., Complete and Platform-Independent Calling Context Profiling for the

Java Virtual Machine. Electronic Notes in Theoretical Computer Science, 2011. 279(1): p. 61-

74.

 188

Appendix C: Centrality Metrics Values

Appendix Table I: Centrality metrics values for FindBugs

DC: Degree Centrality, BC: Betweeness Centrality

Class DC BC
Unit
test

Class DC BC
Unit
test

AbstractBugReporter 11 1697 No detect.LazyInit 29 732 No

analysis.AnnotatedObject 1 0 No detect.LoadOfKnownNullValue 10 205 No

analysis.AnnotationValue 8 31 No
detect.LostLoggerDueToWeakR
eference 3 2 No

analysis.ClassData 4 54 No detect.MethodReturnCheck 10 182 No

analysis.ClassInfo 16 389 No
detect.MethodReturnValueStr
eamFactory 5 18 No

analysis.ClassNameAndSuperclassInfo 1 0 No detect.Methods 1 0 No

analysis.EnumValue 1 0 No
detect.MultithreadedInstanceA
ccess 1 0 No

analysis.FieldInfo 10 92 No detect.MutableStaticFields 10 83 No

analysis.MethodInfo 40 4531 No detect.Naming 12 112 No

AnalysisCacheToRepositoryAdapter 4 10 No
detect.NoteAnnotationRetenti
on 4 105 No

AnalysisLocal 5 75 No
detect.NoteCheckReturnValue
Annotations 2 0 No

Analyze 9 790 No
detect.NoteDirectlyRelevantTy
peQualifiers 6 676 No

AppVersion 2 2 No detect.NoteJCIPAnnotation 2 0 No

asm.ClassNodeAnalysisEngine 1 0 No
detect.NoteNonnullReturnValu
es 1 0 No

asm.ClassNodeDetector 3 163 No
detect.NoteSuppressedWarnin
gs 3 5 No

asm.ClassReaderAnalysisEngine 2 7 No
detect.NoteUnconditionalPara
mDerefs 1 0 No

asm.EngineRegistrar 1 0 No detect.NumberConstructor 7 18 No

asm.FBClassReader 2 0 No
detect.OverridingEqualsNotSy
mmetrical 9 341 No

ba.AbstractBlockOrder 1 0 No detect.PreferZeroLengthArrays 3 5 No

ba.AbstractClassMember 1 0 No
detect.QuestionableBooleanAs
signment 2 3 No

ba.AbstractDataflow 1 0 No

detect.ReadOfInstanceFieldIn
MethodInvokedByConstructorI
nSuperclass

14 833 No

ba.AbstractDataflowAnalysis 3 20 No
detect.ReadReturnShouldBeCh
ecked 4 14 No

ba.AbstractDominatorsAnalysis 3 638 No detect.RedundantInterfaces 3 7 No

ba.AbstractFrameModelingVisitor 1 0 No detect.ReflectiveClasses 4 4 No

ba.AbstractMethod 4 11 No detect.RepeatedConditionals 5 15 No

ba.AnalysisContext 105 18297 No
detect.RuntimeExceptionCaptu
re 18 196 No

ba.AnnotationDatabase 8 111 No detect.SerializableIdiom 18 575 No

ba.AnnotationRetentionDatabase 2 2 No detect.StartInConstructor 5 19 No

ba.AssertionMethods 4 1 No detect.StaticCalendarDetector 14 771 No

ba.BasicAbstractDataflowAnalysis 4 640 No
detect.StaticFieldLoadStreamF
actory 2 0 No

ba.BasicBlock 28 1534 No detect.Stream 13 443 No

ba.BetterCFGBuilder2 11 1603 No detect.StreamEquivalenceClass 3 0 No

ba.BlockOrder 1 0 No detect.StreamEscape 2 0 No

 189

Class DC BC
Unit
test

Class DC BC
Unit
test

ba.BytecodeScanner 3 8 No detect.StreamFactory 1 0 No

ba.CFG 51 6137 No
detect.StreamFrameModelingV
isitor 5 63 No

ba.CFGBuilder 1 0 No detect.StreamResourceTracker 6 648 No

ba.CFGBuilderFactory 1 0 No detect.StringConcatenation 4 33 No

ba.ch.Subtypes2 3 15 No detect.SuperfluousInstanceOf 3 92 No

ba.CheckReturnAnnotationDatabase 3 25 No detect.SwitchFallthrough 10 155 No

ba.ClassContext 86 17231 No
detect.SynchronizationOnShar
edBuiltinConstant 7 20 No

ba.ClassMember 1 0 No
detect.SynchronizeAndNullChe
ckField 1 0 No

ba.ClassNotFoundExceptionParser 5 14 No
detect.UncallableMethodOfAn
onymousClass 10 95 No

ba.ClassSummary 4 2 No detect.UnreadFields 30 299 No

ba.Dataflow 15 2685 No detect.UnreadFieldsData 6 3 No

ba.DataflowAnalysis 1 0 No detect.URLProblems 2 1 No

ba.DataflowValueChooser 1 0 No detect.VarArgsProblems 2 3 No

ba.Debug 1 0 No detect.VolatileUsage 7 44 No

ba.DefaultNullnessAnnotations 4 19 No detect.WaitInLoop 2 3 No

ba.DepthFirstSearch 4 639 No detect.WrongMapIterator 7 40 No

ba.DominatorsAnalysis 2 5 No detect.XMLFactoryBypass 2 4 No

ba.Edge 20 1297 No Detector 1 0 No

ba.EdgeChooser 1 0 No Detector2 2 22 No

ba.EqualsKindSummary 2 0 No DetectorFactory 15 230 No

ba.ExceptionHandlerMap 2 0 No DetectorFactoryChooser 1 0 No

ba.FieldSummary 20 814 No DetectorFactoryCollection 25
377

0 Yes

ba.Frame 6 1440 No DetectorToDetector2Adapter 4 641 No

ba.FrameDataflowAnalysis 4 61 No engine.asm.EngineRegistrar 1 0 No

ba.Hierarchy 42 4998 No engine.bcel.EngineRegistrar 1 0 No

ba.Hierarchy2 27 1321 No
engine.ClassDataAnalysisEngin
e 6 339 No

ba.IncompatibleTypes 14 105 No engine.ClassInfoAnalysisEngine 5 202 No

ba.InnerClassAccess 4 31 No
engine.ClassNameAndSupercla
ssInfoAnalysisEngine 1 0 No

ba.InnerClassAccessMap 5 20 No engine.ClassParser 3 0 No

ba.INullnessAnnotationDatabase 9 39 No engine.ClassParserInterface 2 8 No

ba.JavaClassAndMethod 10 251 No engine.ClassParserUsingASM 3 0 No

ba.JavaClassAndMethodChooser 2 0 No engine.EngineRegistrar 2 404 No

ba.JCIPAnnotationDatabase 2 3 No engine.SelfMethodCalls 5 477 No

ba.LiveLocalStoreAnalysis 3 1 No
EqualsOperandShouldHaveClas
sCompatibleWithThis 10 122 No

ba.LiveLocalStoreDataflow 2 638 No ErrorCountingBugReporter 2 15 No

ba.Location 48 5088 No FieldAnnotation 21
112

8 No

ba.LockAnalysis 6 55 No filter.AndMatcher 2 6 No

ba.LockChecker 10 757 No filter.BugMatcher 10
149

0 No

ba.LockDataflow 6 648 No filter.CompoundMatcher 3 100 No

ba.LockSet 11 112 No filter.Filter 6 244 No

ba.MethodBytecodeSet 1 0 No filter.Matcher 6 192 No

ba.MethodUnprofitableException 4 20 No filter.StringSetMatch 1 0 No

ba.MissingClassException 1 0 No FilterBugReporter 3 194 No

ba.NullnessAnnotationDatabase 3 1 No FindBugs 17 350 No

ba.ObjectTypeFactory 13 494 No FindBugs2 44 141 No

 190

Class DC BC
Unit
test

Class DC BC
Unit
test

ba.OpcodeStackScanner 3 6 No FindBugsAnalysisFeatures 7 117 No

ba.Path 6 772 No FindBugsDisplayFeatures 3 61 No

ba.PathVisitor 1 0 No FindBugsMessageFormat 7 63 No

ba.PostDominatorsAnalysis 2 5 No FindBugsProgress 1 0 No

ba.PruneInfeasibleExceptionEdges 6 88 No Footprint 1 0 No

ba.PruneUnconditionalExceptionThro
werEdges 13 211 No

formatStringChecker.Formatte
r 1 0 No

ba.PutfieldScanner 1 0 No generic.GenericObjectType 8 28 Yes

ba.RepositoryLookupFailureCallback 9 176 No
generic.GenericSignatureParse
r 4 3 Yes

ba.ResourceTracker 2 1 No generic.GenericUtilities 8 46 Yes

ba.ResourceValue 4 10 No
graph.AbstractDepthFirstSearc
h 3 956 No

ba.ResourceValueAnalysis 10 1594 No graph.AbstractEdge 2 0 No

ba.ResourceValueFrame 6 84 No graph.AbstractGraph 2 0 No

ba.ResourceValueFrameModelingVisit
or 3 1 No graph.AbstractVertex 2 0 No

ba.ReverseDepthFirstSearch 2 638 No graph.DepthFirstSearch 2 317 No

ba.SignatureConverter 9 96 No graph.Graph 2 1 No

ba.SignatureParser 15 300 Yes graph.GraphEdge 3 254 No

ba.SourceFile 1 0 No graph.GraphVertex 1 0 No

ba.SourceFinder 5 107 No
graph.ReverseDepthFirstSearc
h 2 318 No

ba.SourceInfoMap 4 27 No gui.AnnotatedString 3 140 No

ba.Target 1 0 No gui2.AboutDialog 2 0 No

ba.TargetEnumeratingVisitor 1 0 No gui2.AnalyzingDialog 6 783 No

ba.TestCaseDetector 6 4 No gui2.BugAspects 6 143 No

ba.UnresolvedXField 4 9 No gui2.BugLeafNode 10 406 No

ba.UnresolvedXMethod 4 9 No gui2.BugLoader 11 577 No

ba.URLClassPath 1 0 No gui2.BugRenderer 2 0 No

ba.XClas 1 0 No gui2.BugSaver 2 9 No

ba.XClass 41 1591 No gui2.BugSet 15
103

3 No

ba.Xclass 2 1 No gui2.BugTreeModel 12 785 No

ba.XFactory 67 7563 No gui2.CheckBoxList 1 0 No

ba.Xfactory 4 43 No gui2.CloudCommentsPane 10 130 No

ba.XField 28 847 No
gui2.CloudCommentsPaneSwin
g 1 0 No

ba.XMethod 57 3663 No gui2.CommentsArea 5 643 No

ba.Xmethod 3 4 No gui2.Debug 5 33 No

ba.XMethodParameter 2 1 No gui2.Driver 20
454

7 No

bcel.AnalysisFactory 1 0 No gui2.FBDialog 1 0 No

bcel.AssertionMethodsFactory 1 0 No gui2.FBFileChooser 4 120 No

bcel.BCELUtil 11 184 No gui2.FBFrame 1 0 No

bcel.bcelUtil 1 0 No gui2.FilterActivity 4 640 No

bcel.CFGDetector 4 6 No gui2.FilterFactory 4 25 Yes

bcel.CFGFactory 15 2121 No gui2.FilterFromBugPicker 3 8 No

bcel.ClassContextClassAnalysisEngine 2 0 No gui2.FilterMatcher 3 638 No

bcel.ConstantDataflowFactory 1 0 No gui2.FindBugsFileFilter 2 0 No

bcel.ConstantPoolGenFactory 1 0 No gui2.FindBugsLayoutManager 3 1 No

bcel.DepthFirstSearchFactory 1 0 No
gui2.FindBugsLayoutManagerF
actory 1 0 No

bcel.DominatorsAnalysisFactory 1 0 No gui2.GUI2CommandLine 1 0 No

bcel.EngineRegistrar 2 2 No gui2.GUISaveState 15 168 No

 191

Class DC BC
Unit
test

Class DC BC
Unit
test

bcel.IsNullValueDataflowFactory 3 6 No gui2.GuiUtil 1 0 No

bcel.JavaClassAnalysisEngine 4 92 No gui2.MainFrame 39 888 No

bcel.LiveLocalStoreDataflowFactory 1 0 No
gui2.MainFrameComponentFa
ctory 15 125 No

bcel.LoadedFieldSetFactory 4 127 No gui2.MainFrameHelper 5 11 No

bcel.LockCheckerFactory 1 0 No
gui2.MainFrameLoadSaveHelp
er 7 483 No

bcel.LockDataflowFactory 1 0 No gui2.MainFrameMenu 16 372 No

bcel.MethodFactory 3 13 No gui2.MainFrameTree 12 197 No

bcel.MethodGenFactory 4 14 No gui2.NewFilterFromBug 4 719 No

bcel.NonExceptionPostdominatorsAnal
ysisFactory 1 0 No gui2.NewProjectWizard 9 277 No

bcel.ObligationDataflowFactory 7 697 No gui2.PluginUpdateDialog 3 18 No

bcel.OpcodeStackDetector 2 0 No gui2.PreferencesFrame 13 774 No

bcel.PreorderDetector 1 0 No gui2.ProjectSettings 2 0 No

bcel.ReturnPathTypeDataflowFactory 1 0 No gui2.RecentMenu 5 67 No

bcel.ReverseDepthFirstSearchFactory 1 0 No gui2.SaveType 4 300 Yes

bcel.TypeDataflowFactory 3 2 No gui2.Sortables 14 290 No

bcel.UnconditionalValueDerefDataflow
Factory 3 19 No gui2.SortableStringComparator 2 0 No

bcel.UnpackedBytecodeCallback 2 638 No gui2.SorterDialog 4 7 No

bcel.UnpackedCode 1 0 No gui2.SorterTableColumnModel 6 7 No

bcel.UsagesRequiringNonNullValuesFa
ctory 2 4 No gui2.SourceCodeDisplay 10 271 No

bcel.ValueNumberDataflowFactory 3 6 No gui2.SplashFrame 1 0 No

bcp.Binding 3 0 No gui2.SplitLayout 4 1 No

bcp.BindingSet 3 0 No gui2.StackedFilterMatcher 1 0 No

bcp.ByteCodePattern 3 7 No gui2.ViewFilter 9 497 No

bcp.ByteCodePatternMatch 2 0 No gui2.WideComboBox 1 0 No

bcp.FieldAccess 4 14 No I18N 13 106 No

bcp.FieldVariable 2 9 No IClassScreener 1 0 No

bcp.IfNull 3 12 No IFindBugsEngine 2 2 No

bcp.Load 3 16 No IGuiCallback 1 0 No

bcp.LocalVariable 1 0 No
impl.AbstractScannableCodeBa
se 2 638 No

bcp.OneVariableInstruction 1 0 No
impl.AbstractScannableCodeBa
seEntry 1 0 No

bcp.PatternElement 9 1810 No impl.AnalysisCache 10 348 No

bcp.PatternElementMatch 3 2 No impl.ClassFactory 2 638 No

bcp.PatternMatcher 8 462 No impl.ClassPathBuilder 17 554 No

bcp.Store 3 16 No impl.ClassPathImpl 1 0 No

bcp.Variable 1 0 No
impl.FilesystemCodeBaseLocat
o 1 0 No

bcp.Wild 1 0 No
impl.FilesystemCodeBaseLocat
or 1 0 No

BugAccumulator 52 3247 No impl.ZipCodeBaseFactory 4 128 No

BugAnnotation 6 24 No impl.ZipFileCodeBaseEntry 1 0 No

BugAnnotationUtil 7 45 No
indbugs.DetectorFactoryCollec
tion 1 0 No

BugAnnotationWithSourceLines 4 13 No IntAnnotation 5 17 Yes

BugCategory 3 5 No
interproc.MethodPropertyData
base 3 0 No

BugCode 2 0 No interproc.ParameterProperty 5 2 Yes

 192

Class DC BC
Unit

test
Class DC BC

Unit

test

BugCollection 14 1026 No interproc.PropertyDatabase 2 9 No

BugCollectionBugReporter 4 646 No io.IO 4 112 Yes

BugInstance 131 33803 No JavaVersion 3 18 No

BugPattern 7 69 No
jsr305.AbstractMethodAnnotat
ionAccumulator 1 0 No

BugProperty 3 1 Yes jsr305.Analysis 5 75 No

BugRanke 1 0 No
jsr305.DirectlyRelevantTypeQu
alifiersDatabase 1 0 No

BugRanker 17 1990 No
jsr305.FindBugsDefaultAnnotat
ions 1 0 No

BugReporter 62 6727 No
jsr305.JSR305NullnessAnnotati
ons 1 0 No

BugReporterObserver 1 0 No
jsr305.ParameterAnnotationAc
cumulator 1 0 No

ByteCodePatternDetector 3 1275 No
jsr305.ParameterAnnotationLo
okupResult 1 0 No

BytecodeScanningDetector 4 23 No
jsr305.ReturnTypeAnnotationA
ccumulator 1 0 No

CallGraph 4 1 No
jsr305.ReturnTypeAnnotationL
ookupResult 2 0 No

CallGraphEdge 2 0 No
jsr305.TypeQualifierAnnotatio
n 7 707 No

CallGraphNode 3 0 No
jsr305.TypeQualifierAnnotatio
nLookupResult 1 0 No

CallSite 3 1 No
jsr305.TypeQualifierApplicatio
ns 29 382 No

ch.ClassVertex 3 11 No jsr305.TypeQualifierResolver 8 34 No

ch.InheritanceEdge 1 0 No jsr305.TypeQualifierValue 17 594 No

ch.InheritanceGraph 2 0 No L10N 16 276 No

ch.InheritanceGraphVisitor 1 0 No LaunchAppropriateUI 1 0 No

ch.OverriddenMethodsVisitor 3 1 No LocalVariableAnnotation 23 144 No

ch.Subtypes2 46 4154 No log.Profiler 15 139 No

charsets.UTF8 5 775 No log.YourKitController 1 0 No

CheckBcel 1 0 No Lookup 7 91 No

ClassAnnotation 14 375 No MethodAnnotation 28 120 No

classfile.ClassDescriptor 55 5983 No npe.DerefFinder 21 838 No

classfile.DescriptorFactory 37 3392 No npe.IsNullConditionDecision 3 10 No

classfile.FieldDescriptor 6 23 No npe.IsNullValue 16 238 Yes

classfile.FieldOrMethodDescriptor 4 1 No npe.IsNullValueAnalysis 18 827 No

classfile.Global 57 5487 No
npe.IsNullValueAnalysisFeature
s 1 0 No

classfile.IAnalysisCache 70 11231 No npe.IsNullValueDataflow 11 126 No

classfile.IAnalysisEngine 1 0 No npe.IsNullValueFrame 14 177 No

classfile.IClassAnalysisEngine 4 1023 No
npe.IsNullValueFrameModelin
gVisitor 17 546 No

classfile.IClassFactory 2 24 No
npe.LocationWhereValueBeco
mesNull 3 4 No

classfile.IClassObserver 1 0 No
npe.NullDerefAndRedundantC
omparisonCollector 1 0 No

classfile.IClassPath 3 45 No
npe.NullDerefAndRedundantC
omparisonFinder 27 317 No

classfile.IClassPathBuilder 1 0 No
npe.NullValueUnconditionalDe
ref 3 0 No

classfile.IClassPathBuilderProgress 1 0 No
npe.ParameterNullnessPropert
yDatabase 5 12 No

 193

Class DC BC
Unit

test
Class DC BC

Unit

test

classfile.ICodeBase 3 662 No
npe.PointerUsageRequiringNo
nNullValue 2 0 No

classfile.ICodeBaseEntry 2 4 No npe.RedundantBranch 1 0 No

classfile.ICodeBaseIterator 1 0 No npe.ReturnPathType 2 25 Yes

classfile.ICodeBaseLocator 1 0 No npe.ReturnPathTypeAnalysis 3 20 No

classfile.IDatabaseFactory 1 0 No npe.ReturnPathTypeDataflow 2 638 No

classfile.IErrorLogger 3 10 No
npe.ReturnValueNullnessPrope
rtyDatabase 2 0 No

classfile.IMethodAnalysisEngine 2 260 No
npe.TypeQualifierNullnessAnn
otationDatabase 16 469 No

classfile.impl.ClassFactory 1 0 No
npe.UsagesRequiringNonNullV
alues 8 58 No

classfile.IScannableCodeBase 1 0 No obl.InstructionActionCache 14 127 No

classfile.MethodDescriptor 18 1778 No obl.MatchMethodEntry 2 1 No

classfile.MissingClassException 5 43 No obl.Obligation 4 13 No

classfile.ReflectionDatabaseFactory 1 0 No obl.ObligationAnalysis 19 313 No

classfile.ResourceNotFoundException 3 0 No obl.ObligationDataflow 1 0 No

cloud.Cloud 8 92 No obl.ObligationFactory 15 912 No

cloud.CloudFactory 7 158 No obl.ObligationPolicyDatabase 8 665 No

cloud.CloudPlugin 2 2 No
obl.ObligationPolicyDatabaseA
ction 4 645 No

cloud.CloudPluginBuilder 2 8 No
obl.ObligationPolicyDatabaseA
ctionType 1 0 No

cloud.CloudPlugincloud.CloudPlugi 1 0 No
obl.ObligationPolicyDatabaseE
ntry 1 0 No

cloud.DoNothingCloud 5 330 No obl.ObligationSet 5 40 No

ComponentPlugin 2 0 No obl.State 4 2 No

config.AnalysisFeatureSetting 2 0 No obl.StateSet 5 8 No

config.ProjectFilterSettings 1 0 Yes OpcodeStack 55 825 Yes

config.UserPreferences 6 652 Yes PackageMemberAnnotation 8 219 No

constant.Constant 4 294 No PackageStats 4 0 No

constant.ConstantAnalysis 4 166 No plan.AnalysisPass 3 8 No

constant.ConstantDataflow 3 638 No plan.ConstraintEdge 1 0 No

constant.ConstantFrame 4 294 No plan.ConstraintGraph 1 0 No

constant.ConstantFrameModelingVisit
or 3 0 No plan.DetectorFactorySelector 1 0 No

DeepSubtypeAnalysis 10 907 No plan.DetectorNode 1 0 No

DelegatingBugReporter 1 0 No
plan.DetectorOrderingConstrai
nt 2 22 No

deref.UnconditionalValueDerefAnalysi
s 33 2852 No plan.ExecutionPlan 12 728 No

deref.UnconditionalValueDerefDataflo
w 4 20 No

plan.ReportingDetectorFactory
Selector 1 0 No

deref.UnconditionalValueDerefSet 8 64 No
plan.SingleDetectorFactorySele
ctor 1 0 No

detect.AppendingToAnObjectOutputSt
ream 1 0 No Plugin 15 155 No

detect.AtomicityProblem 2 0 No PluginLoader 18 311 No

detect.BadlyOverriddenAdapter 1 0 No ProgramPoint 6 17 No

detect.BadResultSetAccess 2 0 No Project 23 297 No

detect.BadSyntaxForRegularExpression 1 0 No ProjectPackagePrefixes 3 21 No

detect.BadUseOfReturnValue 2 0 No ProjectStats 14 159 No

detect.BooleanReturnNull 5 50 No PropertyBundle 1 0 No

 194

Class DC BC
Unit

test
Class DC BC

Unit

test

detect.BuildNonNullAnnotationDataba
se 1 0 No props.WarningProperty 1 0 No

detect.BuildNonnullReturnDatabase 11 464 No props.WarningPropertySet 7 658 No

detect.BuildObligationPolicyDatabase 12 508 No ResourceCollection 3 16 No

detect.BuildUnconditionalParamDeref
Database 20 1532 No ResourceTrackingDetecto 11 963 No

detect.CalledMethods 4 3 No SAXBugCollectionHandler 12 105 Yes

detect.CheckImmutableAnnotation 3 66 No SelfCalls 7 308 No

detect.CheckRelaxingNullnessAnnotati
on 4 6 No SortedBugCollection 16 215 No

detect.CheckTypeQualifiers 4 16 No SourceLineAnnotation 58 648 No

detect.CloneIdiom 10 94 No
sourceViewer.HighlightInforma
tion 2 23 No

detect.ComparatorIdiom 6 75 No sourceViewer.JavaScanner 1 0 No

detect.ConfusedInheritance 3 7 No
sourceViewer.JavaSourceDocu
ment 6 130 No

detect.ConfusionBetweenInheritedAnd
OuterMethod 4 2 No

sourceViewer.NavigableTextPa
ne 2 1 No

detect.CrossSiteScripting 2 1 No
sourceviewer.NumberedEditor
Kit 1 0 No

detect.DefaultEncodingDetector 5 7 No
sourceViewer.NumberedParag
raphView 2 33 No

detect.DoInsideDoPrivileged 4 10 No StringAnnotation 5 107 No

detect.DontCatchIllegalMonitorStateEx
ception 2 0 No SuppressionMatcher 2 0 No

detect.DontIgnoreResultOfPutIfAbsent 12 448 No SwitchHandler 7 186 No

detect.DroppedException 8 78 No SystemPropertie 1 0 No

detect.DumbMethodInvocations 8 1562 No SystemProperties 118 508 No

detect.DumbMethods 22 1588 No TextUIBugReporter 1 0 No

detect.DuplicateBranches 7 230 No type.BottomType 2 4 No

detect.ExplicitSerialization 9 81 No type.DoubleExtraType 1 0 No

detect.FieldItemSummary 10 21 No type.ExceptionObjectType 3 1 No

detect.FinalizerNullsFields 1 0 No type.ExceptionSet 7 175 No

detect.FindBadCast2 26 1574 No type.ExceptionSetFactory 3 1 No

detect.FindBadForLoop 1 0 No type.FieldStoreTypeDatabase 1 0 No

detect.FindBugsSummaryStats 4 28 No type.LongExtraType 1 0 No

detect.FindDeadLocalStores 20 1381 No type.NullType 6 5 No

detect.FindDoubleCheck 3 6 No type.StandardTypeMerger 10 413 No

detect.FindFieldSelfAssignment 1 0 No type.TopType 5 11 No

detect.FindFinalizeInvocations 3 73 No type.TypeAnalysis 26 285 No

detect.FindFloatEquality 5 13 No type.TypeDataflow 21 339 No

detect.FindHEmismatch 13 478 No type.TypeFrame 21 195 No

detect.FindInconsistentSync2 31 4327 No
type.TypeFrameModelingVisito
r 28 221 Yes

detect.FindJSR166LockMonitorenter 11 249 No type.TypeMerger 2 1 No

detect.FindLocalSelfAssignment2 5 16 No TypeAnnotation 11 221 No

detect.FindMaskedFields 12 300 No ui2.FilterListener 1 0 No

detect.FindMismatchedWaitOrNotify 10 219 No updates.PluginUpdateListener 1 0 No

detect.FindNakedNotify 2 3 No updates.UpdateCheckCallback 1 0 No

detect.FindNonShortCircuit 3 1 No updates.UpdateChecker 10 152 Yes

detect.FindNullDeref 49 7590 No util.Bag 1 0 No

detect.FindNullDerefsInvolvingNonSho
rtCircuitEvaluation 11 238 No util.ClassName 36 323 Yes

 195

Class DC BC
Unit
test

Class DC BC
Unit
test

detect.FindOpenStream 17 3125 No util.ClassPathUtil 2 20 No

detect.FindPuzzlers 15 212 No util.DualKeyHashMap 6 81 No

detect.FindRefComparison 27 1869 No util.EditDistance 2 0 No

detect.FindReturnRef 7 20 No util.JavaWebStart 2 14 No

detect.FindRunInvocations 3 8 No util.LaunchBrowser 1 0 No

detect.FindSelfComparison 10 313 No util.MapCache 4 88 No

detect.FindSelfComparison2 13 388 No util.MultiMap 4 31 No

detect.FindSleepWithLockHeld 8 284 No util.SplitCamelCaseIdentifier 2 1 Yes

detect.FindSpinLoop 2 13 No util.StringMatcher 1 0 No

detect.FindSqlInjection 12 1783 Yes util.Strings 4 9 Yes

detect.FindTwoLockWait 7 154 No util.SubtypeTypeMatcher 4 85 No

detect.FindUncalledPrivateMethods 4 10 No util.TopologicalSort 6 46 No

detect.FindUnconditionalWait 2 3 No util.TypeMatcher 1 0 No

detect.FindUninitializedGet 11 151 No util.Util 26 396 No

detect.FindUnrelatedTypesInGenericC
ontainer 33 2446 No Version 4 79 No

detect.FindUnreleasedLock 6 808 No visitclass.AnnotationVisitor 2 7 No

detect.FindUnsatisfiedObligation 5 49 No visitclass.DismantleBytecode 15 209 Yes

detect.FindUnsyncGet 3 4 No visitclass.LVTHelper 2 8 No

detect.FindUselessControlFlow 2 0 No visitclass.PreorderVisito 1 0 No

detect.FindUseOfNonSerializableValue 11 344 No visitclass.PreorderVisitor 23 104 Yes

detect.FormatStringChecker 5 648 No visitclass.Util 5 10 No

detect.FunctionsThatMightBeMistaken
ForProcedure 10 436 No vna.AvailableLoad 4 0 No

detect.HugeSharedStringConstants 1 0 No vna.LoadedFieldSet 2 2 No

detect.IDivResultCastToDouble 5 27 No vna.MergeTree 6 137 No

detect.IncompatMask 2 3 Yes vna.ValueNumber 29 143 No

detect.InconsistentAnnotations 9 711 No vna.ValueNumberAnalysis 18 613 No

detect.InefficientToArray 5 18 No
vna.ValueNumberAnalysisFeat
ures 1 0 No

detect.InfiniteLoop 1 0 No vna.ValueNumberCache 2 35 No

detect.InfiniteRecursiveLoop 6 34 No vna.ValueNumberDataflow 23 283 No

detect.InheritanceUnsafeGetResource 4 24 No vna.ValueNumberFactory 7 8 No

detect.InitializationChain 1 0 No vna.ValueNumberFrame 36 211 No

detect.InitializeNonnullFieldsInConstru
ctor 4 5 No

vna.ValueNumberFrameModeli
ngVisitor 10 665 No

detect.InstanceFieldLoadStreamFactor
y 4 11 No vna.ValueNumberSourceInfo 14 311 No

detect.InstantiateStaticClass 6 19 No xml.OutputStreamXMLOutput 3 27 No

detect.IntCast2LongAsInstant 4 9 No xml.XMLAttributeList 14 791 No

detect.InvalidJUnitTest 5 6 No xml.XMLOutput 15 879 No

detect.IOStreamFactory 5 18 No xml.XMLOutputUtil 3 0 No

detect.IteratorIdioms 6 58 No xml.XMLUtil 2 6 No

Appendix Table II: Centrality metrics values for JabRef

Class DC BC
Unit
Test

Class DC BC
Unit
Test

autocompleter.AbstractAutoComplete
r 4 25 Yes

jabref.autocompleter.NameFiel
dAutoCompleter 1 0 No

autocompleter.AutoCompleterFactory 1 0 No jabref.BaseAction 1 0 No

autocompleter.CrossrefAutoCompleter 1 0 No jabref.BasePanel 57 368 No

 196

Class DC BC
Unit
test

Class DC BC
Unit
test

autocompleter.DefaultAutoCompleter 1 0 No jabref.BibtexDatabase 25 168 Yes

autocompleter.EntireFieldAutoComple
ter 1 0 No jabref.BibtexEntry 52

577
3 Yes

autocompleter.NameFieldAutoComple
ter 2 11 No jabref.BibtexEntryType 22 143 No

collab.Change 2 75 No jabref.BibtexFields 13 915 No

collab.ChangeDisplayDialog 1 0 No jabref.BrowseAction 1 0 No

collab.ChangeScanner 11 491 No jabref.CallBack 6 10 No

collab.EntryChange 3 35 No
jabref.CrossRefEntryComparato
r 1 0 No

collab.FileUpdateMonitor 4 1 No jabref.DatabaseChangeEvent 3 281 No

collab.FileUpdatePanel 2 6 No jabref.DatabaseChangeListener 1 0 No

collab.MetaDataChange 2 0 No jabref.DuplicateCheck 3 8 Yes

core.generated._JabRefPlugin 1 0 No jabref.EntryComparator 3 104 No

core.JabRefPlugin 1 0 No jabref.EntryEditor 19 182 No

date.DatePickerButton 1 0 No jabref.EntryEditorPrefsTab 2 0 No

EntryEditorTabList 1 0 No jabref.EntryEditorTab 10 422 No

export.AutoSaveManager 8 33 No jabref.EntryEditorTabList 1 0 No

export.CustomExportDialog 4 3 No jabref.EntrySorter 3 283 No

export.CustomExportList 4 1 No jabref.EntryTypeDialog 4 12 No

export.ExportCustomizationDialog 5 17 No jabref.ExternalTab 6 127 No

export.ExportFileFilter 1 0 No jabref.FieldComparator 5 431 No

export.ExportFormats 16 1215 No jabref.FieldEditor 4 559 No

export.FieldFormatter 1 0 No jabref.FieldEditorFocusListene 1 0 No

export.FileActions 12 386 No jabref.FieldNameLabel 1 0 No

export.IExportFormat 2 280 No jabref.FieldTextArea 3 289 No

export.LatexFieldFormatter 5 25 No jabref.FieldTextField 4 6 No

export.ModsExportFormat 3 10 No jabref.FieldTextMenu 1 0 No

export.MSBibExportFormat 1 0 No jabref.FileHistory 4 0 No

export.MySQLExport 2 39 No jabref.FileTab 3 0 No

export.OOCalcDatabase 7 694 No jabref.FindUnlinkedFilesDialog 4 31 No

export.OpenDocumentRepresentation 7 694 No jabref.FontSelectorDialog 1 0 No

export.OpenDocumentSpreadsheetCre
ator 1 0 No jabref.GeneralRenderer 4 5 No

export.OpenOfficeDocumentCreator 1 0 No jabref.GeneralTab 3 0 No

export.PluginBasedExportFormat 2 0 No jabref.GlobalFocusListener 1 0 No

export.PostgreSQLExport 2 39 No jabref.Globals 110 118 No

export.SaveAllAction 4 0 No jabref.gui.FileListEditor 1 0 No

export.SaveDatabaseAction 16 326 No jabref.GUIGlobals 37
116

1 No

export.SaveSession 8 520 No jabref.IdComparator 1 0 No

export.VerifyingWriter 3 1 No jabref.ImportSettingsTab 2 0 No

exporter.DBExporter 10 691 No jabref.IncrementalSearcher 2 11 No

exporter.MySQLExporter 1 0 No jabref.JabRef 14 203 No

exporter.PostgreSQLExporter 1 0 No jabref.JabRefFrame 51 311 No

external.AutoSetExternalFileForEntries 10 142 No jabref.JabRefPreferences 98 967 No

external.DownloadExternalFile 2 0 No
jabref.JTextAreaWithHighlighti
ng 2 0 No

external.ExternalFileMenuItem 3 3 No jabref.MarkEntriesAction 9 52 No

external.ExternalFilePanel 4 47 No jabref.MergeDialog 4 280 No

external.ExternalFileType 9 260 No
jabref.MergeDialog_ok_actionA
dapter 1 0 No

external.ExternalFileTypeEditor 2 2 No jabref.MetaData 20 566 No

 197

Class DC BC
Unit
Test

Class DC BC
Unit
Test

external.FileLinksUpgradeWarning 2 24 No jabref.MnemonicAwareAction 1 0 No

external.PushToApplication 3 1 No jabref.NameFormatterTab 4 2 No

external.PushToApplicationAction 7 207 No jabref.OpenFileFilter 1 0 No

external.PushToApplicationButton 8 94 No jabref.PrefsDialog3 4 280 No

external.PushToEmacs 2 0 No jabref.PrefsTab 1 0 No

external.PushToLatexEditor 2 0 No jabref.PreviewPanel 7 77 No

external.PushToLyx 4 1 No jabref.PreviewPrefsTab 4 8 No

external.PushToTeXstudio 3 0 No jabref.RightClickMenu 17 667 No

external.PushToVim 2 0 No jabref.SearchManager2 15 114 No

external.PushToWinEdt 3 0 No jabref.SearchRule 1 0 No

external.SynchronizeFileField 1 0 No jabref.SearchRuleSet 2 280 No

external.WriteXMPAction 9 227 No jabref.SearchTextListener 1 0 Yes

external.WriteXMPEntryEditorAction 2 0 No jabref.SidePane 2 0 No

format.AuthorAbbreviator 2 280 No jabref.SidePaneComponent 2 1 No

format.AuthorFirstFirst 1 0 Yes jabref.SidePaneManager 7 109 No

format.AuthorLastFirst 1 0 No jabref.SplashScreen 1 0 No

format.AuthorLastFirstAbbrCommas 1 0 Yes jabref.TabLabelPattern 4 35 No

format.AuthorLastFirstAbbreviator 1 0 Yes jabref.TableColumnsTab 3 0 No

format.Authors 3 239 No jabref.TablePrefsTab 3 24 No

format.CreateDocBookAuthors 2 280 No jabref.TransferableBibtexEntry 1 0 No

format.CreateDocBookEditors 1 0 No jabref.Util 52 550 Yes

format.DOICheck 1 0 Yes jabref.Worker 6 10 No

format.DOIStrip 1 0 No jabref.XmpPrefsTab 2 0 No

format.FileLink 4 11 No journals.AbbreviateAction 4 8 No

format.GetOpenOfficeType 2 1 No journals.JournalAbbreviations 8 110 No

format.IfPlural 1 0 No journals.ManageJournalsAction 3 3 No

format.RemoveBrackets 2 1 No journals.ManageJournalsPanel 7 20 No

format.RemoveLatexCommands 1 0 No journals.UnabbreviateAction 4 8 No

format.RemoveWhitespace 2 1 No label.HandleDuplicateWarnings 3 40 No

format.ResolvePDF 2 0 Yes label.LabelMaker 2 0 No

format.RisAuthors 1 0 No labelPattern.LabelPattern 5 9 No

format.RisKeywords 1 0 No labelPattern.LabelPatternPanel 4 21 No

format.WrapContent 1 0 No labelPattern.LabelPatternUtil 10 685 Yes

format.WrapFileLinks 4 927 No
labelPattern.ResolveDuplicateL
abelDialog 5 14 No

format.XMLChars 1 0 No
labelPattern.SearchFixDuplicate
Labels 7 114 No

groups.AbstractGroup 4 4 No
layout.AbstractParamLayoutFor
matter 5 840 No

groups.AllEntriesGroup 1 0 No layout.format.Replace 1 0 No

groups.GroupSelector 8 96 No layout.Layout 5 17 Yes

groups.GroupsPrefsTab 2 0 No layout.LayoutEntry 13 112 Yes

groups.GroupsTree 4 11 No layout.LayoutFormatter 1 0 No

groups.GroupTreeCellRenderer 6 99 No layout.LayoutHelper 12 779 No

groups.GroupTreeNode 7 20 No layout.ParamLayoutFormatter 1 0 No

gui.AutoCompleteListener 4 35 No layout.WSITools 2 49 No

gui.CleanUpAction 4 0 No mods.MODSDatabase 3 28 No

gui.ColorSetupPanel 3 0 No mods.MODSEntry 5 235 No

gui.DatabasePropertiesDialog 4 4 No mods.PageNumbers 2 1 No

gui.DragDropPopupPane 2 0 No mods.PersonName 4 72 No

gui.FileDialogs 6 561 No msbib.MSBibDatabase 3 28 No

gui.FileListEditor 8 156 No msbib.MSBibEntry 5 235 No

gui.FileListEntry 6 15 No oo.OpenOfficePanel 8 106 No

gui.FileListEntryEditor 8 78 No plugin.ManagePluginsDialog 4 45 No

gui.FileListTableModel 10 210 No plugin.PluginCore 8 378 No

gui.GlazedEntrySorter 1 0 No plugin.PluginInstaller 7 98 No

 198

Class DC BC
Unit
Test

Class DC BC
Unit
Test

gui.IsMarkedComparator 1 0 No plugin.PluginInstallerAction 2 0 No

gui.MainTable 12 154 No ritopt.BooleanOption 1 0 No

gui.MainTableFormat 13 1316 No ritopt.Option 1 0 No

gui.MainTableSelectionListener 12 200 No ritopt.OptionModule 2 280 No

gui.PreventDraggingJTableHeader 1 0 No ritopt.Options 2 558 No

gui.SortTabsAction 1 0 No ritopt.StringOption 1 0 No

help.HelpAction 5 10 No search.BasicSearch 2 280 Yes

help.HelpContent 2 0 No search.SearchExpression 2 29 No

help.HelpDialog 5 44 No search.SearchExpressionLexer 1 0 No

importer.DbImportAction 8 1180 No search.SearchExpressionParser 3 7 No

importer.DBImporter 1 0 No search.SearchMatcher 1 0 No

importer.MySQLImporter 3 15 No sf.jabref.EntryEditor 1 0 No

imports.ACMPortalFetcher 1 0 No specialfields.Priority 3 1 No

imports.ADSFetcher 1 0 No specialfields.Quality 5 12 No

imports.AppendDatabaseAction 12 479 No specialfields.Rank 7 46 No

imports.BibtexParser 8 211 Yes specialfields.RankCompact 3 0 No

imports.CheckForNewEntryTypesActio
n 1 0 No specialfields.Relevance 5 12 No

imports.CustomImportList 3 85 No specialfields.SpecialField 3 2 No

imports.EntryFetcher 1 0 No specialfields.SpecialFieldAction 5 23 No

imports.EntryFromFileCreator 2 0 No
specialfields.SpecialFieldDataba
seChangeListener 3 279 No

imports.EntryFromFileCreatorManager 4 76 Yes
specialfields.SpecialFieldMenuA
ction 3 0 No

imports.EntryFromPDFCreator 1 0 Yes specialfields.SpecialFieldsUtils 7 211 No

imports.FieldContentParser 1 0 No
specialfields.SpecialFieldUpdat
eListener 1 0 No

imports.GeneralFetcher 4 280 Yes specialfields.SpecialFieldValue 8 53 No

imports.IEEEXploreFetcher 1 0 No sql.DBConnectDialog 4 11 No

imports.ImportFormat 1 0 No
sql.DBExporterAndImporterFac
tory 6 641 No

imports.ImportFormatReader 5 284 No sql.DBImporterExporter 2 4 No

imports.ImportFormats 1 0 No sql.DBStrings 6 295 No

imports.INSPIREFetcher 1 0 No sql.SQLUtil 6 106 No

imports.OAI2Fetcher 1 0 Yes undo.CountingUndoManager 9 14 No

imports.OpenDatabaseAction 16 473 No undo.NamedCompound 1 0 No

imports.ParserResult 7 291 No undo.UndoableFieldChange 1 0 No

imports.PdfXmpImporter 1 0 No undo.UndoableInsertEntry 3 0 No

imports.PostOpenAction 1 0 No util.CaseChangeMenu 2 280 No

imports.SPIRESFetcher 1 0 No util.CaseChanger 1 0 Yes

jabref.AbstractWorker 3 3 No util.ErrorConsole 2 0 No

jabref.AdvancedTab 4 8 No util.TBuildInfo 1 0 No

jabref.AppearancePrefsTab 3 0 No util.TXMLReader 1 0 No

jabref.AuthorList 16 2921 Yes util.Util 1 0 Yes

Appendix Table III: Centrality metrics values for Dependency Finder

Class DC BC
Unit
test

Class DC BC
Unit
test

dependency.Node 60 1816 Yes impl.FieldRef_info 3 19 No

dependency.Printer 53 2033 No impl.Integer_info 3 180 No

dependency.VisitorBase 52 1283 No impl.Method_info 3 10 Yes

dependency.RegularExpressionSelectio
nCriteria 50 2500 Yes impl.Signature_attribute 3 9 Yes

dependency.TextPrinter 48 924 Yes impl.String_info 3 11 No

classreader.Visitor 45 4105 No classreader.Annotation 2 7 No

dependency.FeatureNode 40 478 Yes classreader.AttributeType 2 0 No

 199

Class DC BC
Unit
Test

Class DC BC
Unit
Test

dependency.Visitor 38 386 No classreader.Class_info 2 7 No

impl.ConstantPool 35 1658 No classreader.ClassfileScanner 2 0 Yes

dependency.ClassNode 34 1243 Yes classreader.ConstantPoolEntry 2 0 No

classreader.VisitorBase 31 2911 Yes classreader.ExceptionHandler 2 7 No

dependency.TraversalStrategy 30 127 No
classreader.LoadListenerVisitor
Adapter 2 1 Yes

dependency.MetricsGatherer 29 778 Yes
classreader.LocalVariableTable
_attribute 2 0 No

gui.StatusLine 29 918 Yes
classreader.TransientClassfileLo
ader 2 180 Yes

dependency.NodeFactory 27 214 Yes
commandline.CommandLineSw
itch 2 0 No

dependency.CodeDependencyCollecto
r 25 180 Yes

commandline.ParameterStrate
gy 2 0 No

dependency.GraphSummarizer 25 137 Yes commandline.Printer 2 180 No

dependency.SelectionCriteria 25 75 No
commandline.SingleValueSwitc
h 2 2 Yes

classreader.ClassfileLoaderEventSourc
e 24 355 Yes commandline.ToggleSwitch 2 2 Yes

dependency.GraphCopier 22 57 Yes
dependency.ClosureLayerSelect
or 2 5 No

gui.DependencyFinder 22 2673 No dependency.TransitiveClosure 2 11 Yes

classreader.ZipClassfileLoader 21 32 Yes gui.ClosureQueryAction 2 0 No

dependency.PackageNode 20 23 Yes gui.DependencyQueryAction 2 0 No

classreader.DirectoryClassfileLoader 19 26 Yes gui.MetricsQueryAction 2 0 No

dependency.ClosureStartSelector 17 41 Yes gui.MetricsTableModel 2 180 No

impl.Feature_info 17 46 No
gui.NewDependencyGraphActi
on 2 0 No

classreader.Monitor 15 86 Yes
impl.AnnotationDefault_attribu
te 2 72 Yes

impl.Class_info 15 146 Yes impl.ArrayElementValue 2 72 Yes

impl.Classfile 15 236 Yes
impl.BooleanConstantElementV
alue 2 0 Yes

impl.Code_attribute 15 121 yes impl.ElementValueType 2 180 No

classreader.JarClassfileLoader 14 5 Yes impl.InnerClasses_attribute 2 0 Yes

impl.Instruction 14 209 Yes
impl.IntegerConstantElementV
alue 2 0 Yes

impl.UTF8_info 14 142 No
impl.LocalVariableTable_attribu
te 2 0 Yes

gui.StatusLineUpdater 13 110 No
impl.LocalVariableTypeTable_at
tribute 2 0 Yes

classreader.ClassfileLoader 12 24 Yes
impl.StringConstantElementVal
ue 2 4 Yes

classreader.ClassfileLoaderDecorator 12 3 No
classreader.AnnotationDefault_
attribute 1 0 No

dependency.SelectiveTraversalStrateg
y 12 0 Yes classreader.ArrayElementValue 1 0 No

dependency.XMLPrinter 12 241 Yes classreader.ClassElementValue 1 0 No

impl.LocalVariable 12 167 Yes classreader.ClassfileFactory 1 0 No

impl.NameAndType_info 11 56 No classreader.Code_attribute 1 0 No

impl.MethodRef_info 10 124 No classreader.ElementValue 1 0 No

classreader.DirectoryExplorer 9 2 Yes classreader.ElementValuePair 1 0 No

dependency.ClosureSelector 9 23 No classreader.ElementValueType 1 0 No

dependency.ClosureStopSelector 9 31 Yes classreader.EnumElementValue 1 0 No

dependency.DecoratorTraversalStrate
gy 9 0 No

classreader.Exceptions_attribut
e 1 0 No

dependencyfinder.VerboseListenerBas
e 9 97 No classreader.FieldRef_info 1 0 No

impl.ExceptionHandler 9 36 No classreader.InnerClass 1 0 No

 200

Class DC BC
Unit
Test

Class DC BC
Unit
Test

impl.Exceptions_attribute 9 54 Yes
classreader.InnerClasses_attrib
ute 1 0 No

impl.LineNumber 9 50 No
classreader.InterfaceMethodRe
f_info 1 0 No

impl.SourceFile_attribute 9 54 Yes classreader.LineNumber 1 0 No

text.Hex 9 3 Yes
classreader.LineNumberTable_
attribute 1 0 No

classreader.LoadEvent 8 302 No classreader.LoadListene 1 0 No

impl.AttributeFactory 8 187 Yes classreader.LocalVariable 1 0 No

impl.AttributeType 8 91 No classreader.LocalVariableType 1 0 No

impl.FeatureRef_info 8 0 No
classreader.LocalVariableTypeT
able_attribute 1 0 Yes

classreader.ClassNameHelper 7 403 Yes classreader.MethodRef_info 1 0 No

dependency.MetricsReport 7 5 No
classreader.ModifiedOnlyDispa
tcher 1 0 Yes

impl.LocalVariableType 7 90 No classreader.NameAndType_info 1 0 No

classreader.DescriptorHelper 6 25 Yes classreader.Parameter 1 0 No

commandline.CommandLine 6 1734 Yes
classreader.RuntimeAnnotation
s_attribute 1 0 No

dependency.TransitiveClosureEngine 6 15 Yes
classreader.RuntimeParameter
Annotations_attribute 1 0 No

gui.DependencyExtractAction 6 104 No
commandline.NullParameterStr
ategy 1 0 Yes

gui.RefreshDependencyGraphAction 6 94 No
dependency.DecoratorTraversa
lStrateg 1 0 No

gui.VerboseListener 6 7 No
dependencyfinder.gui.StatusLin
eUpdater 1 0 No

impl.ConstantValue_attribute 6 95 Yes dependencyfinder.Version 1 0 No

impl.InnerClass 6 53 No gui.AboutAction 1 0 No

classreader.Classfile 5 76 No gui.AdvancedQueryPanelAction 1 0 No

classreader.Method_info 5 9 No gui.DependencyExtractActio 1 0 No

classreader.DescriptorIterator 4 24 No gui.DependencyFinde 1 0 No

classreader.LoadListenerBase 4 26 No
gui.RefreshDependencyGraphA
ctio 1 0 No

commandline.CommandLineUsage 4 534 Yes gui.SimpleQueryPanelAction 1 0 No

commandline.Visitor 4 356 No gui.StatusLineUpdate 1 0 No

gui.AllQueriesAction 4 4 No impl.Code_attribut 1 0 No

impl.Annotation 4 4 Yes impl.ConstantElementValue 1 0 No

impl.ClassElementValue 4 80 Yes impl.Custom_attribute 1 0 Yes

impl.ElementValueFactory 4 361 Yes impl.Deprecated_attribute 1 0 Yes

impl.ElementValuePair 4 446 Yes impl.EnclosingMethod_attribut 1 0 No

impl.EnumElementValue 4 80 Yes impl.Field_info 1 0 No

classreader.Attribute_info 3 2 No impl.Float_info 1 0 No

classreader.ClassfileLoaderAction 3 0 No impl.InterfaceMethodRef_info 1 0 Yes

classreader.ClassfileLoaderDispatcher 3 180 No impl.LineNumberTable_attribute 1 0 Yes

classreader.Field_info 3 9 No impl.Long_info 1 0 No

classreader.GroupData 3 2 No
impl.LongConstantElementValu
e 1 0 Yes

classreader.Instruction 3 15 Yes impl.Parameter 1 0 Yes

classreader.UTF8_info 3 3 No
impl.RuntimeInvisibleAnnotatio
ns_attribute 1 0 Yes

commandline.VisitorBase 3 1 No
impl.RuntimeVisibleAnnotation
s_attribut 1 0 No

dependency.CodeDependencyCollecto 3 1308 No
impl.RuntimeVisibleParameter
Annotations_attribute 1 0 Yes

gui.SaveFileAction 3 0 No impl.Signature_attribut 1 0 No

impl.CodeIterator 3 0 No impl.Synthetic_attribute 1 0 Yes

impl.EnclosingMethod_attribute 3 0 Yes text.PrinterBuffer 1 0 Yes

 text.RegularExpressionParser 1 0 yes

 201

Appendix Table IV: Centrality metrics values for MOEA

Class DC BC
Unit
Test

Class DC BC
Unit
Test

AbstractAlgorithm 4 9 No NormalizedIndicator 1 0 No

AbstractEvolutionaryAlgorithm 2 12 Yes Normalizer 5 158 Yes

Accumulator 22 847 Yes NSGAII 6 40 Yes

ActionFactory 16 65 No ObjectiveComparator 2 0 Yes

AdaptiveMultimethodVariationCollect
or 1 0 Yes OperatorFactory 6 101 Yes

AdaptiveTimeContinuation 2 1 Yes PaintHelper 5 3 No

AdaptiveTimeContinuationCollector 3 132 Yes ParetoObjectiveComparator 15 64 Yes

AdditiveEpsilonIndicator 6 17 Yes PeriodicAction 1 0 Yes

AggregateConstraintComparator 23 107 Yes PM 9 24 Yes

Algorithm 6 159 Yes Population 24 251 Yes

AlgorithmFactory 1 0 No PopulationIO 6 151 Yes

AlgorithmProvider 1 0 No PopulationSizeCollector 5 173 Yes

Analyzer 2 0 Yes PRNG 13 157 Yes

ApproximationSetCollector 5 52 Yes Problem 15 224 No

ApproximationSetPlot 9 25 No ProblemBuilder 2 16 Yes

ApproximationSetViewer 6 17 No ProblemFactory 4 175 No

AttachPoint 9 200 No ProblemProvider 1 0 No

CEC2009 21 70 Yes Problems 11 862 No

CF10 3 5 No PropertiesProblems 1 0 Yes

CF2 3 5 No RandomInitialization 7 33 Yes

CF3 3 5 No RandomSearch 2 12 No

CF4 3 5 No RankComparator 1 0 Yes

CF5 3 5 No RealVariable 11 23 Yes

CF6 3 5 No ResultKey 6 8 No

CF7 5 11 No ResultPlot 9 46 No

CF8 3 5 No RotatedProblem 8 173 Yes

CF9 3 5 No RotatedProblems 3 20 Yes

ChainedComparator 11 24 Yes RotationMatrixBuilder 2 5 Yes

Collector 3 4 Yes SBX 9 26 No

CompoundVariation 4 9 Yes Selection 2 0 No

Contribution 2 146 Yes Settings 4 160 Yes

Controller 35 1234 No ShapeFunctions 2 74 No

ControllerEvent 21 244 No Shapes 3 360 No

ControllerListener 8 21 No Solution 86 572 Yes

CrowdingComparator 2 0 Yes SortedListModel 5 5 No

DiagnosticTool 25 544 No Spacing 3 0 Yes

DifferentialEvolution 7 30 Yes StandardAlgorithms 6 97 No

DifferentialEvolutionSelection 5 4 Yes StandardProblems 1 0 Yes

DominanceComparator 13 26 No StatisticalResultsViewer 2 1 No

DTLZ 4 11 No TournamentSelection 6 8 Yes

DTLZ1 2 0 Yes TransFunctions 2 73 No

DTLZ2 3 0 Yes Transitions 2 214 No

DTLZ3 3 0 Yes TypedProperties 3 4 Yes

DTLZ4 2 0 Yes UF1 3 5 No

DTLZ7 2 0 Yes UF10 3 5 No

ElapsedTimeCollector 3 21 Yes UF11 4 6 Yes

EncodingUtils 48 1084 Yes UF12 5 27 Yes

EpsilonBoxDominanceArchive 16 309 Yes UF2 3 5 No

EpsilonBoxDominanceComparato 1 0 Yes UF3 3 5 No

EpsilonBoxDominanceComparator 10 12 Yes UF4 3 5 No

EpsilonBoxEvolutionaryAlgorithm 1 0 No UF5 3 5 No

EpsilonBoxObjectiveComparator 21 Yes UF6 3 5 No

EpsilonHelper 4 13 Yes UF7 4 8 No

EpsilonMOEA 10 169 Yes UF8 3 5 No

 202

Class DC BC
Unit
Test

Class DC BC
Unit
Test

EpsilonProgressCollector 4 150 Yes UF9 3 5 No

EvolutionaryAlgorithm 2 14 No Variable 6 1 No

FastNondominatedSorting 5 7 Yes Variation 6 11 No

FrameworkFunctions 1 0 No Vector 1 0 Yes

GDE3 7 11 Yes WFG 3 105 Yes

GenerationalDistance 2 0 Yes WFG1 3 103 No

Hypervolume 4 81 Yes WFG2 3 103 No

Indicator 1 0 No WFG3 3 103 No

IndicatorCollector 7 265 Yes WFG4 3 103 No

IndicatorUtils 9 111 Yes WFG5 3 103 No

Initialization 3 3 No WFG6 3 103 No

InstrumentedAlgorithm 4 29 No WFG7 3 103 No

Instrumenter 5 32 Yes WFG8 3 103 No

InvertedGenerationalDistance 2 0 Yes WFG9 3 103 No

LinePlot 17 142 No ZDT 1 0 Yes

Localization 13 58 Yes ZDT1 2 0 No

LZ 2 0 Yes ZDT2 2 0 No

Misc 2 3 No ZDT3 2 0 No

MOEAD 7 167 Yes ZDT4 2 0 No

NondominatedPopulation 36 1404 Yes ZDT5 1 0 No

NondominatedSortingPopulation 3 3 Yes ZDT6 2 0 No

 203

Appendix D: Relationships between Dynamic Metrics and

Class Testability Metrics

Appendix Figure I. Scatter lot of the relationship between EC and TLOC in JabRef

Appendix Figure II. Scatter plot of the relationship between EC and TLOC in MOEA

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

TL
O

C

EC

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100

TL
O

C

EC

 204

Appendix Figure III. Scatter plot of the relationship between EC and NTC in JabRef

Appendix Figure IV. Scatter plot of the relationship between IC and TLOC in

Dependency Finder

Appendix Figure V. Scatter plot of the relationship between IC and NTC in
Dependency Finder

0

5

10

15

20

25

30

0 10 20 30 40 50 60

N
TC

EC

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40

TL
O

C

IC

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40

N
TC

IC

 205

Appendix Figure VI. Scatter plot of the relationship between EF and TLOC in

FindBugs

Appendix Figure VII. Scatter plot of the relationship between EF and NTC in JabRef

Appendix Figure VIII. Scatter plot of the relationship between EF and TLOC in
Dependency Finder

0

50

100

150

200

250

0 200000000 400000000 600000000 800000000

TL
O

C

EF

0

5

10

15

20

25

30

0 200000 400000 600000 800000 1000000 1200000

N
TC

EF

0

10

20

30

40

50

60

70

0 50000000 100000000 150000000 200000000

N
TC

EF

 206

Appendix E: Results of the Correlations between Test and

Code Smells

Appendix Table V: Phi correlation test results for JFreeChart

Smells

Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Feature Envy

φ 0.22 0.06 0.04 ------- ------- 0.38 0.35 0.14 0.21

p 0.00* 0.27 0.46 ------- ------- 0.00* 0.00* 0.03* 0.00*

Large Class

φ 0.03 0.04 -0.06 ------- ------- -0.09 0.27 0.18 0.11

p 0.54 0.51 0.30 ------- ------- 0.08 0.00* 0.00* 0.04*

Type

Checking

φ 0.13 0.02 0.17 ------- ------- -0.04 0.13 -0.02 0.14

p 0.01* 0.68 0.00* ------- ------- 0.51 0.02* 0.72 0.01*

Brain Class

φ 0.21 0.09 -0.06 ------- ------- 0.41 0.34 0.16 0.17

p 0.00* 0.10 0.25 ------- ------- 0.00* 0.00* 0.00* 0.00*

Duplicated

Code

φ 0.05 -0.01 -0.09 ------- ------- -0.08 0.24 0.12 0.27

p 0.39 0.87 0.10 ------- ------- 0.11 0.00* 0.02* 0.00*

Schizophrenic

Class

φ 0.18 0.02 -0.01 ------- ------- -0.03 -0.03 0.18 0.04

p 0.00* 0.75 0.82 ------- ------- 0.61 0.58 0.00* 0.43

Data Class

φ -0.03 -0.16 -0.02 ------- ------- -0.05 0.01 0.19 -0.08

p 0.61 0.00* 0.68 ------- ------- 0.35 0.93 0.00* 0.16

Data Clumps

φ -0.07 0.08 -0.06 ------- ------- -0.13 0.33 0.17 0.05

p 0.18 0.12 0.27 ------- ------- 0.02* 0.00* 0.00* 0.38

 207

Appendix Table VI: Phi correlation test results for FindBugs

Smells
 Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Feature Envy

φ -0.07 0.07 -0.09 0.33 ------- 0.03 ------- ------- 0.18

p 0.67 0.68 0.60 0.04* ------- 0.86 ------- ------- 0.28

Large Class

φ 0.22 0.10 -0.13 -0.22 ------- 0.04 ------- ------- 0.26

p 0.17 0.54 0.44 0.17 ------- 0.80 ------- ------- 0.11

Type

Checking

φ 0.22 -0.05 0.14 0.13 ------- 0.20 ------- ------- 0.26

p 0.17 0.78 0.39 0.42 ------- 0.22 ------- ------- 0.11

Brain Class

φ 0.19 0.14 0.24 0.02 ------- 0.04 ------- ------- 0.31

p 0.24 0.39 0.15 0.90 ------- 0.80 ------- ------- 0.05*

Duplicated

Code

φ 0.26 -0.15 0.13 -0.08 ------- 0.13 ------- ------- 0.28

p 0.11 0.36 0.43 0.64 ------- 0.44 ------- ------- 0.09

Schizophrenic

Class

φ -0.04 -0.18 -0.05 -0.09 ------- -0.11 ------- ------- -0.06

p 0.81 0.26 0.77 0.60 ------- 0.52 ------- ------- 0.69

Data Class

φ ------- ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- ------- -------

Data Clumps

φ ------- ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- ------- -------

 208

Appendix Table VII: Phi correlation test results for JMeter

Smells
 Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Feature Envy

φ 0.11 0.01 -0.03 -0.01 0.25 0.23 0.37 0.08 0.04

p 0.11 0.91 0.65 0.94 0.00* 0.00* 0.00* 0.27 0.61

Large Class

φ 0.10 -0.05 -0.03 0.14 0.23 0.16 0.35 0.07 0.15

p 0.16 0.53 0.63 0.05* 0.00* 0.03* 0.00* 0.32 0.03*

Type

Checking

φ 0.08 0.03 -0.02 0.22 -0.03 0.27 0.18 -0.03 0.05

p 0.27 0.65 0.76 0.00* 0.70 0.00* 0.01* 0.66 0.48

Brain Class

φ 0.28 0.08 0.10 0.07 -0.05 0.21 0.20 0.35 0.01

p 0.00* 0.29 0.16 0.31 0.47 0.00* 0.00* 0.00* 0.90

Duplicated

Code

φ 0.00 0.15 -0.06 0.02 0.03 0.05 0.22 0.00 0.12

p 0.97 0.03* 0.42 0.84 0.72 0.49 0.00* 0.98 0.08

Schizophrenic

Class

φ -0.03 -0.01 -0.01 -0.05 -0.02 -0.05 0.24 -0.02 0.09

p 0.72 0.87 0.86 0.53 0.83 0.49 0.00* 0.80 0.22

Data Class

φ -0.03 -0.23 -0.02 0.06 -0.02 -0.06 0.20 -0.02 0.13

p 0.68 0.00* 0.84 0.40 0.80 0.42 0.01* 0.77 0.08

Data Clumps

φ -0.03 -0.10 -0.01 0.08 -0.02 -0.05 0.10 -0.02 0.00

p 0.72 0.15 0.86 0.24 0.83 0.49 0.16 0.80 1.00

 209

Appendix Table VIII: Phi correlation test results for JabRef

Smells Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Feature Envy

φ 0.43 -0.49 -0.04 -0.06 -0.02 -0.06 0.33 -0.03 -0.09

p 0.00* 0.00* 0.75 0.63 0.89 0.66 0.01* 0.85 0.50

Large Class

φ -0.09 0.08 -0.09 0.23 -0.04 0.07 0.28 -0.05 -0.09

p 0.51 0.56 0.51 0.09 0.78 0.63 0.04* 0.69 0.39

Type

Checking

φ ------- ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- ------- -------

Brain Class

φ 0.03 -0.07 0.20 0.17 -0.06 0.07 0.38 -0.09 0.24

p 0.82 0.63 0.13 0.20 0.66 0.60 0.01* 0.52 0.08

Duplicated

Code

φ -0.06 0.18 0.35 -0.09 212.00 0.04 0.08 -0.12 0.70

p 0.64 0.18 0.01* 0.48 0.12 0.76 0.57 0.36 0.00*

Schizophrenic

Class

φ ------- ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- ------- -------

Data Class

φ ------- ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- ------- -------

Data Clumps

φ -0.61 0.05 -0.06 0.16 -0.03 0.18 0.20 -0.04 0.08

p 0.65 0.69 0.65 0.24 0.85 0.19 0.15 0.78 0.55

 210

Appendix Table IX: Phi correlation test results for Commons Lang

Smells Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Feature Envy

φ 0.22 0.09 0.14 -0.03 -0.02 -0.05 0.33 -0.03 0.06

p 0.01* 0.33 0.13 0.77 0.86 0.58 0.00* 0.77 0.51

Large Class

φ -0.14 0.17 0.06 0.16 0.07 0.04 0.31 0.16 0.46

p 0.13 0.06 0.52 0.09 0.45 0.65 0.00* 0.09 0.00*

Type

Checking

φ 0.07 0.09 0.14 -0.03 -0.02 0.14 -0.05 -0.03 -0.08

p 0.41 0.33 0.13 0.77 0.86 0.12 0.58 0.77 0.36

Brain Class

φ 0.20 0.25 0.17 -0.03 0.07 -0.01 0.42 0.06 0.22

p 0.03 0.00* 0.06 0.73 0.45 0.88 0.00* 0.49 0.02

Duplicated

Code

φ -0.16 0.13 -0.03 -0.05 0.05 0.09 0.20 0.12 0.51

p 0.08 0.13 0.79 0.55 0.59 0.29 0.03* 0.18 0.00*

Schizophrenic

Class

φ 0.16 0.06 0.10 -0.02 -0.01 0.23 -0.04 -0.02 -0.06

p 0.08 0.50 0.28 0.84 0.90 0.01* 0.70 0.84 0.52

Data Class

φ 0.03 0.11 0.06 -0.03 -0.02 0.10 -0.06 -0.03 0.02

p 0.74 0.24 0.49 0.72 0.82 0.29 0.50 0.72 0.87

Data Clumps

φ -0.07 -0.05 0.01 -0.03 -0.02 -0.05 -0.05 -0.03 0.06

p 0.41 0.57 0.93 0.77 0.86 0.58 0.58 0.77 0.51

 211

Appendix Table X: Phi correlation test results for Dependency Finder

Smells Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Feature Envy φ 0.04 0.09 0.00 -0.08 0.16 0.14 -0.08 ------- 0.17

p 0.55 0.18 1.00 0.26 0.02* 0.04* 0.24 ------- 0.01*

Large Class φ 0.00 0.14 -0.03 -0.03 0.14 -0.07 -0.08 ------- 0.15

p 0.99 0.04 0.68 0.63 0.04 0.27 0.26 ------- 0.12

Type

Checking

φ -0.05 0.09 -0.04 0.02 -0.06 0.11 -0.07 ------- 0.15

p 0.50 0.19 0.57 0.80 0.41 0.11 0.32 ------- 0.02*

Brain Class φ -0.02 0.14 0.01 -0.06 0.02 0.14 -0.07 ------- 0.20

p 0.74 0.03* 0.87 0.35 0.81 0.04* 0.31 ------- 0.00*

Duplicated

Code

φ -0.06 0.07 -0.04 -0.01 -0.06 0.08 0.02 ------- 0.14

p 0.35 0.32 0.57 0.85 0.41 0.23 0.78 ------- 0.04*

Schizophrenic

Class

φ -0.05 -0.11 0.09 -0.07 0.37 -0.12 -0.07 ------- 0.04

p 0.50 0.09 0.18 0.33 0.58 0.09 0.32 ------- 0.56

Data Class φ 0.23 0.07 0.13 0.25 0.07 0.07 0.24 ------- 0.10

p 0.00* 0.29 0.06 0.00* 0.31 0.33 0.00* ------- 0.13

Data Clumps φ ------- ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- ------- -------

 212

Appendix Table XI: Phi correlation test results for MOEA

Smells Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Feature Envy φ 0.11 0.01 -0.03 -0.01 0.25 0.23 0.37 0.08 0.04

p 0.11 0.91 0.65 0.94 0.00* 0.00* 0.00* 0.27 0.61

Large Class φ 0.10 -0.05 -0.03 0.14 0.23 0.16 0.35 0.07 0.15

p 0.16 0.53 0.63 0.05* 0.00* 0.03* 0.00* 0.32 0.03*

Type

Checking

φ 0.08 0.03 -0.02 0.22 -0.03 0.27 0.18 -0.03 0.05

p 0.27 0.65 0.76 0.00* 0.70 0.00* 0.01* 0.66 0.48

Brain Class φ 0.28 0.08 0.10 0.07 -0.05 0.21 0.20 0.35 0.01

p 0.00* 0.29 0.16 0.31 0.47 0.00* 0.00* 0.00* 0.90

Duplicated

Code

φ 0.00 0.15 -0.06 0.02 0.03 0.05 0.22 0.00 0.12

p 0.97 0.03* 0.42 0.84 0.72 0.49 0.00* 0.98 0.08

Schizophrenic

Class

φ -0.03 -0.01 -0.01 -0.05 -0.02 -0.05 0.24 -0.02 0.09

p 0.72 0.87 0.86 0.53 0.83 0.49 0.00* 0.80 0.22

Data Class φ -0.03 -0.23 -0.02 0.06 -0.02 -0.06 0.20 -0.02 0.13

p 0.68 0.00* 0.84 0.40 0.80 0.42 0.01* 0.77 0.08

Data Clumps φ -0.03 -0.10 -0.01 0.08 -0.02 -0.05 0.10 -0.02 0.00

p 0.72 0.15 0.86 0.24 0.83 0.49 0.16 0.80 1.00

 213

Appendix Table XII: Phi correlation test results for Barcode4J

Smells
 Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Feature Envy

φ -0.10 0.13 -0.01 ------- -0.07 ------- 0.38 0.70 -0.14

p .57 0.47 0.96 ------- 0.70 ------- 0.03 0.00* 0.43

Large Class

φ 0.06 0.03 0.15 ------- -0.13 ------- 0.19 0.37 0.32

p .76 0.85 0.41 ------- 0.47 ------- 0.30 0.04* 0.07

Type

Checking

φ ------- ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- ------- -------

Brain Class

φ 0.02 0.27 0.06 ------- 0.17 ------- 0.45 0.34 0.26

p 0.90 0.14 0.74 ------- 0.34 ------- 0.01* 0.06 0.15

Duplicated

Code

φ -0.37 0.15 0.42 ------- 0.01 ------- 0.30 0.19 0.25

p 0.04 0.41 0.02* ------- 0.96 ------- 0.10 0.29 0.17

Schizophrenic

Class

φ ------- ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- ------- -------

Data Class

φ ------- ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- ------- -------

Data Clumps

φ -0.07 -0.37 -0.19 ------- -0.05 ------- -0.13 -0.03 -0.10

p 0.70 0.04 0.29 ------- 0.79 ------- 0.48 0.85 0.58

 214

Appendix F: Results of the Correlations between Test Smells

Appendix Table XIII: Results of the φ correlation coefficient analysis between test

smells in JFreeChart

Smells
 Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Assertion-

free

φ -0.69 -0.02 ------- ------- 0.35 0.07 0.09 0.17

p 0.19 0.69 ------- ------- 0.00* 0.17 0.09 0.00*

Assertion

Roulette

φ -0.69 0.02 ------- ------- 0.05 -0.05 -0.07 0.41

p 0.19 0.65 ------- ------- 0.31 0.36 0.19 0.44

Sensitive

Equality

φ -0.02 0.02 ------- ------- -0.04 0.43 -0.02 0.06

p 0.69 0.65 ------- ------- 0.47 -0.02 0.69 0.26

Mystery

Test

φ ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- -------

Indirect

Test

φ ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- -------

General

Fixture

φ 0.35 0.05 -0.04 ------- ------- 0.06 -0.05 0.18

p 0.00* 0.31 0.47 ------- ------- 0.77 0.38 0.00*

Eager Test

φ 0.07 -0.05 -0.04 ------- ------- 0.06 -0.05 0.17

p 0.17 0.36 0.43 ------- ------- 0.77 0.33 0.00*

Lazy Test

φ 0.09 -0.07 -0.02 ------- ------- -0.05 -0.05 -0.05

p 0.09 0.19 0.69 ------- ------- 0.38 0.33 0.33

Duplicated

Code

φ 0.17 0.41 0.06 ------- ------- 0.18 0.17 -0.05

p 0.00* 0.44 0.26 ------- ------- 0.00* 0.00* 0.33

 215

Appendix Table XIV: Results of the φ correlation coefficient analysis between test

smells in FindBugs

Smells
 Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Assertion-

free

φ 0.20 0.37 -0.12 0.20 0.12 0.37 0.47 0.26

p 0.20 0.02 0.45 0.22 0.50 0.02* 0.00* 0.11

Assertion

Roulette

φ 0.20 0.07 -0.19 -0.27 -0.36 0.07 -0.03 0.36

p 0.20 0.68 0.24 0.09 0.03* 0.68 0.88 0.02*

Sensitive

Equality

φ 0.37 0.07 0.09 0.12 0.03 0.27 0.37 -0.11

p 0.02 0.68 0.59 0.45 0.86 0.09 0.02* 0.48

Mystery

Test

φ -0.12 -0.19 0.09 0.35 0.10 -0.15 0.17 0.18

p 0.45 0.24 0.59 0.03* 0.55 0.35 0.30 0.26

Indirect

Test

φ 0.20 -0.27 0.12 0.35 0.11 -0.07 0.47 0.26

p 0.22 0.09 0.45 0.03* 0.50 0.67 0.00* 0.11

General

Fixture

φ 0.12 -0.36 0.03 0.10 0.11 0.24 0.11 0.27

p 0.50 0.03* 0.86 0.55 0.50 0.13 0.50 0.10

Eager Test

φ 0.37 0.07 0.27 -0.15 -0.07 0.24 -0.07 0.17

p 0.02* 0.68 0.09 0.35 0.67 0.13 0.67 0.28

Lazy Test

φ 0.47 -0.03 0.37 0.17 0.47 0.11 -0.07 -0.09

p 0.00* 0.88 0.02* 0.30 0.00* 0.50 0.67 0.57

Duplicated

Code

φ 0.26 0.36 -0.11 0.18 0.26 0.27 0.17 -0.09

p 0.11 0.02* 0.48 0.26 0.11 0.10 0.28 0.57

 216

Appendix Table XV: Results of the φ correlation coefficient analysis between test

smells in JMeter

Smells
 Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Assertion-

free

φ -0.08 0.19 -0.08 0.13 0.21 -0.24 0.14 0.13

p 0.49 0.10 0.48 0.07 0.07 0.04* 0.24 0.26

Assertion

Roulette

φ -0.08 0.12 0.02 0.14 0.21 0.18 -0.06 0.12

p 0.49 0.32 0.90 0.23 0.07 0.12 0.61 0.31

Sensitive

Equality

φ 0.19 0.12 0.20 0.08 0.05 -0.01 0.04 0.10

p 0.10 0.32 0.09 048 0.65 0.96 0.74 0.38

Mystery

Test

φ -0.08 0.02 0.20 0.06 -0.11 -0.13 -0.08 0.07

p 0.48 0.90 0.09 0.64 0.32 0.25 0.51 0.56

Indirect

Test

φ 0.13 0.14 0.08 0.06 -0.02 -0.00 0.33 0.25

p 0.07 0.23 048 0.64 0.90 0.98 0.00* 0.03*

General

Fixture

φ 0.21 0.21 0.05 -0.11 -0.02 0.22 -0.03 0.25

p 0.07 0.07 0.65 0.32 0.90 0.06 0.81 0.03*

Eager Test

φ -0.24 0.18 -0.01 -0.13 -0.00 0.22 -0.10 0.07

p 0.04* 0.12 0.96 0.25 0.98 0.06 0.39 0.57

Lazy Test

φ 0.14 -0.06 0.04 -0.08 0.33 -0.03 -0.10 0.02

p 0.24 0.61 0.74 0.51 0.00* 0.81 0.39 0.89

Duplicated

Code

φ 0.13 0.12 0.10 0.07 0.25 0.25 0.07 0.02

p 0.26 0.31 0.38 0.56 0.03* 0.03* 0.57 0.89

 217

Appendix Table XVI: Results of the φ correlation coefficient analysis between test

smells in JabRef

Smells
 Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Assertion-

free

φ -0.16 0.12 -0.15 -0.04 -0.14 0.41 -0.06 -0.08

p 0.25 0.37 0.27 0.75 0.30 0.00* 0.65 0.58

Assertion

Roulette

φ -0.16 0.09 -0.05 0.04 -0.07 -0.08 0.05 0.19

p 0.25 0.51 0.71 0.78 0.63 0.54 0.69 0.17

Sensitive

Equality

φ 0.12 0.09 0.02 -0.04 0.20 0.05 -0.06 0.34

p 0.37 0.51 0.91 0.75 0.13 0.72 0.65 0.01*

Mystery

Test

φ -0.15 -0.05 0.02 -0.06 0.43 0.34 0.16 -0.01

p 0.27 0.71 0.91 0.63 0.00* 0.01* 0.24 0.95

Indirect

Test

φ -0.04 0.04 -0.04 -0.06 -0.06 -0.06 -0.03 -0.09

p 0.75 0.78 0.75 0.63 0.66 0.68 0.85 0.50

General

Fixture

φ -0.14 -0.07 0.20 0.43 -0.06 -0.04 -0.09 -0.08

p 0.30 0.63 0.13 0.00* 0.66 0.75 0.52 0.54

Eager Test

φ 0.41 -0.08 0.05 0.34 -0.06 -0.04 0.20 0.17

p 0.00* 0.54 0.72 0.01* 0.68 0.75 0.15 0.21

Lazy Test

φ -0.06 0.05 -0.06 0.16 -0.03 -0.09 0.20 -0.13

p 0.65 0.69 0.65 0.24 0.85 0.52 0.15 0.34

Duplicated

Code

φ -0.08 0.19 0.34 -0.01 -0.09 -0.08 0.17 -0.13

p 0.58 0.17 0.01* 0.95 0.50 0.54 0.21 0.34

 218

Appendix Table XVII: Results of the φ correlation coefficient analysis between test

smells in Apache Commons Lang

Smells
 Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Assertion-

free

φ 0.11 -0.09 -0.02 0.07 0.17 0.09 -0.02 0.00

p 0.22 0.30 0.79 0.41 0.06 0.33 0.79 1.00

Assertion

Roulette

φ 0.11 0.18 0.14 -0.05 0.00 0.11 -0.03 -0.07

p 0.22 0.04 0.122 0.57 0.99 0.24 0.76 0.47

Sensitive

Equality

φ -0.09 0.18 -0.07 -0.12 0.03 0.03 -0.03 -0.07

p 0.30 0.04 0.47 0.18 0.78 0.78 0.76 0.47

Mystery

Test

φ -0.02 0.14 0.05 -0.03 -0.08 0.04 -0.04 0.05

p 0.79 0.122 0.55 0.77 0.38 0.63 0.64 0.58

Indirect

Test

φ 0.07 -0.05 -0.12 -0.03 0.14 0.14 -0.03 0.20

p 0.41 0.57 0.18 0.77 0.12 0.12 0.77 0.03*

General

Fixture

φ 0.17 0.00 0.03 -0.08 0.14 0.07 -0.08 0.18

p 0.06 0.99 0.78 0.38 0.12 0.46 0.38 0.05*

Eager Test

φ 0.09 0.11 0.03 0.04 0.14 0.07 0.29 0.28

p 0.33 0.24 0.78 0.63 0.12 0.46 0.00* 0.00*

Lazy Test

φ -0.02 -0.13 -0.03 -0.04 -0.03 -0.08 0.29 0.05

p 0.79 0.16 0.76 0.64 0.77 0.38 0.00* 0.58

Duplicated

Code

φ 0.00 0.20 -0.07 0.05 0.20 0.18 0.28 0.05

p 1.00 0.02* 0.47 0.58 0.03* 0.05* 0.00* 0.58

 219

Appendix Table XVIII: Results of the φ correlation coefficient analysis between test

smells in Dependency Finder

Smells
 Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Assertion-

free

φ -0.21 0.02 0.06 -0.03 0.01 0.16 ------- -0.03

p 0.00* 0.76 0.42 0.66 0.85 0.02* ------- 0.66

Assertion

Roulette

φ -0.21 -0.03 -0.05 0.18 0.18 0.15 ------- 0.15

p 0.00* 0.65 0.42 0.01* 0.01* 0.03* ------- 0.03

Sensitive

Equality

φ 0.02 -0.03 -0.03 -0.08 0.02 0.09 ------- 0.03

p 0.76 0.65 0.68 0.26 0.81 0.18 ------- 0.63

Mystery

Test

φ 0.06 -0.05 -0.03 -0.09 -0.13 0.00 ------- 0.13

p 0.42 0.42 0.68 0.21 0.06 0.98 ------- 0.05

Indirect

Test

φ -0.03 0.18 -0.08 -0.09 -0.01 0.00 ------- 0.11

p 0.66 0.01* 0.26 0.21 0.93 1.00 ------- 0.11

General

Fixture

φ 0.01 0.12 0.02 -0.13 -0.01 -0.03 ------- 0.09

p 0.85 0.08 0.81 0.06 0.93 0.62 ------- 0.19

Eager Test

φ 0.16 0.15 0.09 0.00 0.00 -0.03 ------- -0.04

p 0.02* 0.03* 0.18 0.98 1.00 0.62 ------- 0.52

Lazy Test

φ ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- -------

Duplicated

Code

φ -0.03 0.15 0.03 0.13 0.11 0.09 -0.04 -------

p 0.66 0.03 0.63 0.05 0.11 0.19 0.52 -------

 220

Appendix Table XIX: Results of the φ correlation coefficient analysis between test

smells in MOEA

Smells
 Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Assertion-

free

φ -0.04 -0.02 0.09 -0.03 -0.03 0.02 0.15 -0.09

p 0.59 0.77 0.23 0.72 0.72 0.78 0.03* 0.20

Assertion

Roulette

φ -0.04 0.07 0.02 -0.01 -0.01 -0.06 0.01 0.17

p 0.59 0.36 0.75 0.87 0.87 0.42 0.86 0.02*

Sensitive

Equality

φ -0.02 0.07 -0.04 -0.01 0.11 -0.03 -0.02 -0.07

p 0.77 0.36 0.61 0.86 0.13 0.64 0.84 0.31

Mystery

Test

φ 0.09 0.02 -0.04 0.21 0.22 0.04 -0.02 0.09

p 0.23 0.75 0.61 0.00* 0.00* 0.55 0.80 0.22

Indirect

Test

φ -0.03 -0.01 -0.01 0.21 0.19 -0.04 -0.02 0.09

p 0.72 0.87 0.86 0.00* 0.01* 0.57 0.80 0.22

General

Fixture

φ -0.01 0.19 0.11 0.22 0.19 0.07 0.15 0.12

p 0.92 0.01* 0.13 0.00* 0.01* 0.33 0.03* 0.08

Eager Test

φ 0.02 -0.06 -0.03 0.04 -0.04 0.07 -0.05 0.17

p 0.78 0.42 0.64 0.55 0.57 0.33 0.51 0.02*

Lazy Test

φ 0.15 0.01 -0.02 -0.05 -0.02 0.15 -0.05 -0.03

p 0.03* 0.86 0.84 0.46 0.80 0.03* 0.51 0.72

Duplicated

Code

φ -0.09 0.17 -0.07 0.14 0.09 0.12 0.17 -0.03

p 0.20 0.02* 0.31 0.04* 0.22 0.08 0.02* 0.72

 221

Appendix Table XX: Results of the φ correlation coefficient analysis between test

smells in Barcode4J

Smells
 Assertion-

free

Assertion

Roulette

Sensitive

Equality

Mystery

Test

Indirect

Test

General

Fixture

Eager

Test

Lazy

Test

Duplicated

Code

Assertion-

free

φ -0.54 0.18 ------- -0.10 ------- -0.06 -0.07 -0.21

p 0.00* 0.32 ------- 0.57 ------- 0.74 0.70 0.25

Assertion

Roulette

φ -0.54 0.18 ------- 0.13 ------- 0.34 0.09 0.27

p 0.00* 0.32 ------- 0.47 ------- 0.06 0.62 0.14

Sensitive

Equality

φ 0.18 0.18 ------- -0.01 ------- 0.25 0.18 0.21

p 0.32 0.32 ------- 0.96 ------- 0.16 0.33 0.23

Mystery

Test

φ ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- -------

Indirect

Test

φ -0.10 0.13 -0.01 ------- ------- 0.10 -0.05 0.17

p 0.57 0.47 0.96 ------- ------- 0.58 0.79 0.34

General

Fixture

φ ------- ------- ------- ------- ------- ------- ------- -------

p ------- ------- ------- ------- ------- ------- ------- -------

Eager Test

φ -0.06 0.34 0.25 ------- 0.10 ------- 0.27 0.12

p 0.74 0.06 0.16 ------- 0.58 ------- 0.14 0.50

Lazy Test

φ -0.07 0.09 0.18 ------- -0.05 ------- 0.27 -0.10

p 0.70 0.62 0.33 ------- 0.79 ------- 0.14 0.58

Duplicated

Code

φ -0.21 0.27 0.21 ------- 0.17 ------- 0.12 -0.10

p 0.25 0.14 0.23 ------- 0.34 ------- 0.50 0.58

 222

Appendix G: Size effect analysis using Bootstrapping

Appendix Table XXI: Results of the confounding effect of LOC on the relationship

between the number of test smell types and TLOC

DV: Number of test smell types, IV: TLOC, M: LOC

System Effect SE(Boot) LLCI ULCI
Significant indirect effect

(possibility of mediation)

JFreeChart 0.001 0.000 0.001 0.002 Yes

FindBugs 0.000 0.001 -0.003 0.001 No

JMeter 0.000 0.000 -0.001 0.001 No

Commons Lang 0.000 0.000 0.000 0.000 No

JabRef 0.000 0.001 -0.003 0.002 No

Dependency

Finder
0.000 0.000 0.000 0.000 No

MOEA 0.001 0.001 0.000 0.002 No

Barcode4J 0.000 0.004 -0.012 0.005 No

DV= Dependent Variable IV: Independent Variable

Appendix Table XXII: Results of the confounding effect of LOC on the relationship

between TLOC and the number of code smell types

DV: TLOC IV: Number of code smell types, M: LOC

System Effect SE(Boot) LLCI ULCI
Significant indirect effect

(possibility of mediation)

JFreeChart 22.334 10.545 2.144 43.846 Yes

FindBugs -6.156 8.693 -17.795 16.267 No

JMeter 22.162 26.264 -14.289 88.513 No

Commons Lang 99.104 57.205 9.070 237.513 Yes

JabRef 32.069 58.349 -70.273 161.197 No

Dependency

Finder
29.986 19.866 -0.360 75.814 No

MOEA 14.532 6.747 2.781 29.688 Yes

Barcode4J 20.001 12.170 -14.658 43.749 No

 223

Appendix Table XXIII: Results of the confounding effect of TLOC on the relationship

between the number of test smell types and LOC

DV: Number of test smell types, IV: LOC, M: TLOC

System Effect SE(Boot) LLCI ULCI
Significant indirect effect

(possibility of mediation)

JFreeChart 0.000 0.000 -0.001 0.000 No

FindBugs 0.000 0.002 -0.002 0.004 No

JMeter 0.002 0.002 0.000 0.007 No

Commons Lang 0.000 0.001 -0.001 0.002 No

JabRef 0.003 0.003 -0.003 0.009 No

Dependency

Finder
0.000 0.000 0.000 0.001 No

MOEA 0.001 0.001 0.000 0.004 No

Barcode4J 0.008 0.005 0.001 0.019 Yes

Appendix Table XXIV: Results of the confounding effect of LOC on the relationship

between the number of test smell types and CC

DV: Number of test smell types, IV: CC, M: LOC

System Effect SE(Boot) LLCI ULCI
Significant indirect effect

(possibility of mediation)

JFreeChart 0.033 0.026 0.006 0.093 Yes

FindBugs -0.023 0.061 -0.176 0.091 No

JMeter 0.010 0.028 -0.025 0.107 No

Commons Lang 0.063 0.030 0.023 0.151 Yes

JabRef 0.006 0.013 -0.005 0.036 No

Dependency

Finder
0.014 0.011 -0.002 0.043 No

MOEA 0.046 0.023 0.014 0.093 Yes

Barcode4J 0.057 0.082 -0.161 0.335 No

 224

Appendix Table XXV: Results of the confounding effect of LOC on the relationship

between the number of test smell types and the number of code smell types

DV: Number of test smell types, IV: Number of code smell, M: LOC

System Effect SE(Boot) LLCI ULCI
Significant indirect effect

(possibility of mediation)

JFreeChart 0.117 0.034 0.056 0.188 Yes

FindBugs -0.243 0.120 -0.458 0.032 No

JMeter 0.025 0.114 -0.191 0.250 No

Commons Lang -0.182 0.089 -0.351 0.003 No

JabRef 0.215 0.298 -0.321 0.821 No

Dependency

Finder
0.039 0.053 -0.067 0.136 No

MOEA 0.026 0.067 -0.091 0.174 No

Barcode4J 0.018 0.346 -0.575 0.765 No

