2,373 research outputs found

    A self-learning intersection control system for connected and automated vehicles

    Get PDF
    This study proposes a Decentralized Sparse Coordination Learning System (DSCLS) based on Deep Reinforcement Learning (DRL) to control intersections under the Connected and Automated Vehicles (CAVs) environment. In this approach, roadway sections are divided into small areas; vehicles try to reserve their desired area ahead of time, based on having a common desired area with other CAVs; the vehicles would be in an independent or coordinated state. Individual CAVs are set accountable for decision-making at each step in both coordinated and independent states. In the training process, CAVs learn to minimize the overall delay at the intersection. Due to the chain impact of taking random actions in the training course, the trained model can deal with unprecedented volume circumstances, the main challenge in intersection management. Application of the model to a single-lane intersection with no turning movement as a proof-of-concept test reveals noticeable improvements in traffic measures compared to three other intersection control systems. A Spring Mass Damper (SMD) model is developed to control platooning behavior of CAVs. In the SMD model, each vehicle is assumed as a mass, coupled with its preceding vehicle with a spring and a damper. The spring constant and damper coefficient control the interaction between vehicles. Limitations on communication range and the number of vehicles in each platoon are applied in this model, and the SMD model controls intra-platoon and inter-platoon interactions. The simulation result for a regular highway section reveals that the proposed platooning algorithm increases the maximum throughput by 29% and 63% under 50% and 100% market penetration rate of CAVs. A merging section with different volume combinations on the main section and merging section and different market penetration rates of CAVs is also modeled to test inter-platoon spacing performance in accommodating merging vehicles. Noticeable travel time reduction is observed in both mainline and merging lanes and under all volume combinations in 80% and higher MPR of CAVs. For a more reliable assessment of the DSCLS, the model is applied to a more realistic intersection, including three approaching lanes in each direction and turning movements. The proposed algorithm decreases delay by 58%, 19%, and 13% in moderate, high, and extreme volume regimes, improving travel time accordingly. Comparison of safety measures reveals 28% improvement in Post Encroachment Time (PET) in the extreme volume regime and minor improvements in high and moderate volume regimes. Due to the limited acceleration and deceleration rates, the proposed model does not show a better performance in environmental measures, including fuel consumption and CO2 emission, compared to the conventional control systems. However, the DSCLS noticeably outperforms the other pixel-reservation counterpart control system, with limited acceleration and deceleration rates. The application of the model to a corridor of four interactions shows the same trends in traffic, safety, and environmental measures as the single intersection experiment. An automated intersection control system for platooning CAVs is developed by combining the two proposed models, which remarkably improves traffic and safety measures, specifically in extreme volume regimes compared to the regular DSCLS model

    A Grey-Box Approach to Automated Mechanism Design

    Get PDF
    Auctions play an important role in electronic commerce, and have been used to solve problems in distributed computing. Automated approaches to designing effective auction mechanisms are helpful in reducing the burden of traditional game theoretic, analytic approaches and in searching through the large space of possible auction mechanisms. This paper presents an approach to automated mechanism design (AMD) in the domain of double auctions. We describe a novel parametrized space of double auctions, and then introduce an evolutionary search method that searches this space of parameters. The approach evaluates auction mechanisms using the framework of the TAC Market Design Game and relates the performance of the markets in that game to their constituent parts using reinforcement learning. Experiments show that the strongest mechanisms we found using this approach not only win the Market Design Game against known, strong opponents, but also exhibit desirable economic properties when they run in isolation.Comment: 18 pages, 2 figures, 2 tables, and 1 algorithm. Extended abstract to appear in the proceedings of AAMAS'201

    Multi-Agent Reinforcement Learning for Connected and Automated Vehicles Control: Recent Advancements and Future Prospects

    Full text link
    Connected and automated vehicles (CAVs) have emerged as a potential solution to the future challenges of developing safe, efficient, and eco-friendly transportation systems. However, CAV control presents significant challenges, given the complexity of interconnectivity and coordination required among the vehicles. To address this, multi-agent reinforcement learning (MARL), with its notable advancements in addressing complex problems in autonomous driving, robotics, and human-vehicle interaction, has emerged as a promising tool for enhancing the capabilities of CAVs. However, there is a notable absence of current reviews on the state-of-the-art MARL algorithms in the context of CAVs. Therefore, this paper delivers a comprehensive review of the application of MARL techniques within the field of CAV control. The paper begins by introducing MARL, followed by a detailed explanation of its unique advantages in addressing complex mobility and traffic scenarios that involve multiple agents. It then presents a comprehensive survey of MARL applications on the extent of control dimensions for CAVs, covering critical and typical scenarios such as platooning control, lane-changing, and unsignalized intersections. In addition, the paper provides a comprehensive review of the prominent simulation platforms used to create reliable environments for training in MARL. Lastly, the paper examines the current challenges associated with deploying MARL within CAV control and outlines potential solutions that can effectively overcome these issues. Through this review, the study highlights the tremendous potential of MARL to enhance the performance and collaboration of CAV control in terms of safety, travel efficiency, and economy

    Sequential decision making in artificial musical intelligence

    Get PDF
    Over the past 60 years, artificial intelligence has grown from a largely academic field of research to a ubiquitous array of tools and approaches used in everyday technology. Despite its many recent successes and growing prevalence, certain meaningful facets of computational intelligence have not been as thoroughly explored. Such additional facets cover a wide array of complex mental tasks which humans carry out easily, yet are difficult for computers to mimic. A prime example of a domain in which human intelligence thrives, but machine understanding is still fairly limited, is music. Over the last decade, many researchers have applied computational tools to carry out tasks such as genre identification, music summarization, music database querying, and melodic segmentation. While these are all useful algorithmic solutions, we are still a long way from constructing complete music agents, able to mimic (at least partially) the complexity with which humans approach music. One key aspect which hasn't been sufficiently studied is that of sequential decision making in musical intelligence. This thesis strives to answer the following question: Can a sequential decision making perspective guide us in the creation of better music agents, and social agents in general? And if so, how? More specifically, this thesis focuses on two aspects of musical intelligence: music recommendation and human-agent (and more generally agent-agent) interaction in the context of music. The key contributions of this thesis are the design of better music playlist recommendation algorithms; the design of algorithms for tracking user preferences over time; new approaches for modeling people's behavior in situations that involve music; and the design of agents capable of meaningful interaction with humans and other agents in a setting where music plays a roll (either directly or indirectly). Though motivated primarily by music-related tasks, and focusing largely on people's musical preferences, this thesis also establishes that insights from music-specific case studies can also be applicable in other concrete social domains, such as different types of content recommendation. Showing the generality of insights from musical data in other contexts serves as evidence for the utility of music domains as testbeds for the development of general artificial intelligence techniques. Ultimately, this thesis demonstrates the overall usefulness of taking a sequential decision making approach in settings previously unexplored from this perspectiveComputer Science
    • …
    corecore