139 research outputs found

    Anti-DreamBooth: Protecting users from personalized text-to-image synthesis

    Full text link
    Text-to-image diffusion models are nothing but a revolution, allowing anyone, even without design skills, to create realistic images from simple text inputs. With powerful personalization tools like DreamBooth, they can generate images of a specific person just by learning from his/her few reference images. However, when misused, such a powerful and convenient tool can produce fake news or disturbing content targeting any individual victim, posing a severe negative social impact. In this paper, we explore a defense system called Anti-DreamBooth against such malicious use of DreamBooth. The system aims to add subtle noise perturbation to each user's image before publishing in order to disrupt the generation quality of any DreamBooth model trained on these perturbed images. We investigate a wide range of algorithms for perturbation optimization and extensively evaluate them on two facial datasets over various text-to-image model versions. Despite the complicated formulation of DreamBooth and Diffusion-based text-to-image models, our methods effectively defend users from the malicious use of those models. Their effectiveness withstands even adverse conditions, such as model or prompt/term mismatching between training and testing. Our code will be available at \href{https://github.com/VinAIResearch/Anti-DreamBooth.git}{https://github.com/VinAIResearch/Anti-DreamBooth.git}.Comment: Project page: https://anti-dreambooth.github.io

    AVA: Inconspicuous Attribute Variation-based Adversarial Attack bypassing DeepFake Detection

    Full text link
    While DeepFake applications are becoming popular in recent years, their abuses pose a serious privacy threat. Unfortunately, most related detection algorithms to mitigate the abuse issues are inherently vulnerable to adversarial attacks because they are built atop DNN-based classification models, and the literature has demonstrated that they could be bypassed by introducing pixel-level perturbations. Though corresponding mitigation has been proposed, we have identified a new attribute-variation-based adversarial attack (AVA) that perturbs the latent space via a combination of Gaussian prior and semantic discriminator to bypass such mitigation. It perturbs the semantics in the attribute space of DeepFake images, which are inconspicuous to human beings (e.g., mouth open) but can result in substantial differences in DeepFake detection. We evaluate our proposed AVA attack on nine state-of-the-art DeepFake detection algorithms and applications. The empirical results demonstrate that AVA attack defeats the state-of-the-art black box attacks against DeepFake detectors and achieves more than a 95% success rate on two commercial DeepFake detectors. Moreover, our human study indicates that AVA-generated DeepFake images are often imperceptible to humans, which presents huge security and privacy concerns

    Recent Advances in Digital Image and Video Forensics, Anti-forensics and Counter Anti-forensics

    Full text link
    Image and video forensics have recently gained increasing attention due to the proliferation of manipulated images and videos, especially on social media platforms, such as Twitter and Instagram, which spread disinformation and fake news. This survey explores image and video identification and forgery detection covering both manipulated digital media and generative media. However, media forgery detection techniques are susceptible to anti-forensics; on the other hand, such anti-forensics techniques can themselves be detected. We therefore further cover both anti-forensics and counter anti-forensics techniques in image and video. Finally, we conclude this survey by highlighting some open problems in this domain

    Multimodal Adversarial Learning

    Get PDF
    Deep Convolutional Neural Networks (DCNN) have proven to be an exceptional tool for object recognition, generative modelling, and multi-modal learning in various computer vision applications. However, recent findings have shown that such state-of-the-art models can be easily deceived by inserting slight imperceptible perturbations to key pixels in the input. A good target detection systems can accurately identify targets by localizing their coordinates on the input image of interest. This is ideally achieved by labeling each pixel in an image as a background or a potential target pixel. However, prior research still confirms that such state of the art targets models are susceptible to adversarial attacks. In the case of generative models, facial sketches drawn by artists mostly used by law enforcement agencies depend on the ability of the artist to clearly replicate all the key facial features that aid in capturing the true identity of a subject. Recent works have attempted to synthesize these sketches into plausible visual images to improve visual recognition and identification. However, synthesizing photo-realistic images from sketches proves to be an even more challenging task, especially for sensitive applications such as suspect identification. However, the incorporation of hybrid discriminators, which perform attribute classification of multiple target attributes, a quality guided encoder that minimizes the perceptual dissimilarity of the latent space embedding of the synthesized and real image at different layers in the network have shown to be powerful tools towards better multi modal learning techniques. In general, our overall approach was aimed at improving target detection systems and the visual appeal of synthesized images while incorporating multiple attribute assignment to the generator without compromising the identity of the synthesized image. We synthesized sketches using XDOG filter for the CelebA, Multi-modal and CelebA-HQ datasets and from an auxiliary generator trained on sketches from CUHK, IIT-D and FERET datasets. Our results overall for different model applications are impressive compared to current state of the art

    Diffusion Models for Medical Image Analysis: A Comprehensive Survey

    Full text link
    Denoising diffusion models, a class of generative models, have garnered immense interest lately in various deep-learning problems. A diffusion probabilistic model defines a forward diffusion stage where the input data is gradually perturbed over several steps by adding Gaussian noise and then learns to reverse the diffusion process to retrieve the desired noise-free data from noisy data samples. Diffusion models are widely appreciated for their strong mode coverage and quality of the generated samples despite their known computational burdens. Capitalizing on the advances in computer vision, the field of medical imaging has also observed a growing interest in diffusion models. To help the researcher navigate this profusion, this survey intends to provide a comprehensive overview of diffusion models in the discipline of medical image analysis. Specifically, we introduce the solid theoretical foundation and fundamental concepts behind diffusion models and the three generic diffusion modelling frameworks: diffusion probabilistic models, noise-conditioned score networks, and stochastic differential equations. Then, we provide a systematic taxonomy of diffusion models in the medical domain and propose a multi-perspective categorization based on their application, imaging modality, organ of interest, and algorithms. To this end, we cover extensive applications of diffusion models in the medical domain. Furthermore, we emphasize the practical use case of some selected approaches, and then we discuss the limitations of the diffusion models in the medical domain and propose several directions to fulfill the demands of this field. Finally, we gather the overviewed studies with their available open-source implementations at https://github.com/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging.Comment: Second revision: including more papers and further discussion

    DEEP LEARNING FOR FORENSICS

    Get PDF
    The advent of media sharing platforms and the easy availability of advanced photo or video editing software have resulted in a large quantity of manipulated images and videos being shared on the internet. While the intent behind such manipulations varies widely, concerns on the spread of fake news and misinformation is growing. Therefore, detecting manipulation has become an emerging necessity. Different from traditional classification, semantic object detection or segmentation, manipulation detection/classification pays more attention to low-level tampering artifacts than to semantic content. The main challenges in this problem include (a) investigating features to reveal tampering artifacts, (b) developing generic models which are robust to a large scale of post-processing methods, (c) applying algorithms to higher resolution in real scenarios and (d) handling the new emerging manipulation techniques. In this dissertation, we propose approaches to tackling these challenges. Manipulation detection utilizes both low-level tamper artifacts and semantic contents, suggesting that richer features needed to be harnessed to reveal more evidence. To learn rich features, we propose a two-stream Faster R-CNN network and train it end-to-end to detect the tampered regions given a manipulated image. Experiments on four standard image manipulation datasets demonstrate that our two-stream framework outperforms each individual stream, and also achieves state-of-the-art performance compared to alternative methods with robustness to resizing and compression. Additionally, to extend manipulation detection from image to video, we introduce VIDNet, Video Inpainting Detection Network, which contains an encoder-decoder architecture with a quad-directional local attention module. To reveal artifacts encoded in compression, VIDNet additionally takes in Error Level Analysis (ELA) frames to augment RGB frames, producing multimodal features at different levels with an encoder. Besides, to improve the generalization of manipulation detection model, we introduce a manipulated image generation process that creates true positives using currently available datasets. Drawing from traditional work on image blending, we propose a novel generator for creating such examples. In addition, we also propose to further create examples that force the algorithm to focus on boundary artifacts during training. Extensive experimental results validate our proposal. Furthermore, to apply deep learning models to high resolution scenarios efficiently, we treat the problem as a mask refinement given a coarse low resolution prediction. We propose to convert the regions of interest into strip images and compute a boundary prediction in the strip domain. Extensive experiments on both the public and a newly created high resolution dataset strongly validate our approach. Finally, to handle new emerging manipulation techniques while preserving performance on learned manipulation, we investigate incremental learning. We propose a multi-model and multi-level knowledge distillation strategy to preserve performance on old categories while training on new categories. Experiments on standard incremental learning benchmarks show that our method improves the overall performance over standard distillation techniques

    Privacy Attacks and Protection in Generative Models

    Get PDF
    Recent years have witnessed the tremendous success of generative models in data synthesis. Typically, a well-trained model itself and its training set constitute key assets for model owners, which allows technology companies to gain a leading position in the global market. However, privacy is a key consideration in deploying state-of-the-art generative models in practice. On the one hand, the exposure of model privacy can lead to the compromise of the intellectual property rights of legitimate model owners, which consequently affects the market share of companies. On the other hand, the disclosure of training data, especially when it includes personal information, constitutes a direct infringement of data privacy, which severely leads to legal sanctions for companies. Indeed, the advent of emerging generative models critically necessitates novel privacy analysis and protection techniques to ensure the confidentiality of cutting-edge models and their training data. To solve these challenges, this dissertation investigates several new privacy attacks and protection methods for generative models from the perspective of model privacy and data privacy. In addition, this dissertation also explores a new mode that leverages existing pre-trained generative models to study the security vulnerabilities of discriminative models, which provides a fresh angle to apply generative models to the risk analysis of discriminative models. This dissertation is organized into three parts. In the first part, i.e. model privacy in generative models, I develop new model extraction attacks to steal generative adversarial networks (GANs). The evaluations show that preventing model extraction attacks against GANs is difficult but protecting GANs through verifying the ownership can be a deterrence against malicious adversaries. Thus, I further propose an ownership protection method to safeguard GANs, which can effectively recognize these stolen models constructed from physical stealing and model extraction. In the second part, i.e. data privacy in generative models, I develop two types of membership inference attacks against diffusion models, and the proposed loss-based method reveals the relationship between membership inference risks and the generative mechanism of diffusion models. I also investigate property inference risks in diffusion models and propose the first property aware sampling method to mitigate this attack, which bears the benefits of being plug-in and model-agnostic. In the third part, i.e. applications of generative models, I propose a new type of out-of-distribution (OOD) attack by leveraging off-the-shelf pre-trained GANs, which demonstrates that GANs can be utilized to directly construct samples to fool classification models and evade OOD detection. Taken together, this dissertation primarily provides new privacy attacks and protection methods for generative models and can contribute to a deeper and more comprehensive understanding of the privacy of generative artificial intelligence.Privacy Attacks And Protection In Machine Learning As A Servic

    Verifying the Behavior of Security-Impacting Programs

    Get PDF
    Verifying the behavior of systems can be a critical tool for early identification of security vulnerabilities and attacks. Whether the system is a single program, a set of identical devices running the same program, or a population of heterogeneous devices running different ensembles of programs, analyzing the behavior at scale enables early detection of security flaws and potential adversary behavior. In the first case of single program systems such as a cryptographic protocol implementation like OpenSSL, behavioral verification can detect attacks such as Heartbleed without pre-existing knowledge of the attack. The second case of multiple devices is typical of manufacturing settings, where thousands of identical devices can be running a critical program such as cryptographic key generation. Verifying statistical properties of output (keys) across the full set of devices can detect potentially catastrophic entropy flaws before deployment. Finally, in enterprise incident response settings, there can be a large, heterogeneous population of employee laptops running different ensembles of programs. In this case, correct behavior is rarely well-defined and requires evaluation by human analysts, a severely limited resource. Monitoring both the internal and output behavior of laptops at scale enables machine learning to approximate the intuition of a human analyst across a large dataset, and thereby facilitates early detection of malware and host compromise.Doctor of Philosoph

    Deep Fakes: A Looming Challenge for Privacy, Democracy, and National Security

    Get PDF
    Harmful lies are nothing new. But the ability to distort reality has taken an exponential leap forward with “deep fake” technology. This capability makes it possible to create audio and video of real people saying and doing things they never said or did. Machine learning techniques are escalating the technology’s sophistication, making deep fakes ever more realistic and increasingly resistant to detection. Deep-fake technology has characteristics that enable rapid and widespread diffusion, putting it into the hands of both sophisticated and unsophisticated actors. While deep-fake technology will bring with it certain benefits, it also will introduce many harms. The marketplace of ideas already suffers from truth decay as our networked information environment interacts in toxic ways with our cognitive biases. Deep fakes will exacerbate this problem significantly. Individuals and businesses will face novel forms of exploitation, intimidation, and personal sabotage. The risks to our democracy and to national security are profound as well. Our aim is to provide the first in-depth assessment of the causes and consequences of this disruptive technological change, and to explore the existing and potential tools for responding to it. We survey a broad array of responses, including: the role of technological solutions; criminal penalties, civil liability, and regulatory action; military and covert-action responses; economic sanctions; and market developments. We cover the waterfront from immunities to immutable authentication trails, offering recommendations to improve law and policy and anticipating the pitfalls embedded in various solutions
    • …
    corecore