9 research outputs found

    Exploring a new transport protocol for vehicular networks

    Get PDF
    The Future Internet will be very different from the current Internet. In particular, support for new networks such as vehicular networks, will be a key part of the new environment. Applications running on these networks will require low latency and high bandwidth, which must be provided in a highly mobile environment. The goal of this paper is to look at these issues as they have been addressed in the design and development of the Simple Lightweight Transport Protocol (SLTP) to support vehicular networking. The functions and workings of the protocol are examined in this paper as well as the ecosystem that is needed to provide low latency. A detailed set of preliminary results are presented and compared with a standard TCP implementation. SLTP was also ported to the Roadside Units of a Vehicle Ad-Hoc Network and results are presented for moving data to and from the Roadside Units. This work highlights the need for the Future Internet to place more resources at the edge of the core network to provide support for low latency in vehicular environments

    Exploring a new transport protocol for vehicular networks

    Get PDF
    The Future Internet will be very different from the current Internet. In particular, support for new networks such as vehicular networks, will be a key part of the new environment. Applications running on these networks will require low latency and high bandwidth, which must be provided in a highly mobile environment. The goal of this paper is to look at these issues as they have been addressed in the design and development of the Simple Lightweight Transport Protocol (SLTP) to support vehicular networking. The functions and workings of the protocol are examined in this paper as well as the ecosystem that is needed to provide low latency. A detailed set of preliminary results are presented and compared with a standard TCP implementation. SLTP was also ported to the Roadside Units of a Vehicle Ad-Hoc Network and results are presented for moving data to and from the Roadside Units. This work highlights the need for the Future Internet to place more resources at the edge of the core network to provide support for low latency in vehicular environments

    Building an intelligent edge environment to provide essential services in smart cities

    Get PDF
    Smart Cities will cause major societal change because they will provide a comprehensive set of key services including seamless communication, intelligent transport systems, advanced healthcare platforms, urban and infrastructure management, and digital services for local and regional government. Thus, a new service and networking environment which will provide low latency and sustainable high bandwidth is needed to build new applications and services for smart cities. In this system services will be managed from the edge of the Internet and not from the centre as they currently are. This represents a new computing paradigm which is called the Intelligent Edge Environment. This paper looks at how to build this new ecosystem. Firstly, a new framework which comprises seven layers is unveiled, showing the functions that must be supported to realise this brave new world. New mechanisms are then introduced and a small prototype is developed to support storage in highly mobile environments. The results show that this approach could be used to build smart city digital platforms. The paper ends by discussing the development of a Distributed Operating System for smart cities

    Building an Intelligent Edge Environment to Provide Essential Services for Smart Cities

    Get PDF
    Smart Cities will cause major societal change because they will provide a comprehensive set of key services including seamless communication, intelligent transport systems, advanced healthcare platforms, urban and infrastructure management, and digital services for local and regional government. Thus, a new service and networking environment which will provide low latency and sustainable high bandwidth is needed to build new applications and services for smart cities. In this system services will be managed from the edge of the Internet and not from the centre as they currently are. This represents a new computing paradigm which is called the Intelligent Edge Environment. This paper looks at how to build this new ecosystem. Firstly, a new framework which comprises seven layers is unveiled, showing the functions that must be supported to realise this brave new world. New mechanisms are then introduced and a small prototype is developed to support storage in highly mobile environments. The results show that this approach could be used to build smart city digital platforms. The paper ends by discussing the development of a Distributed Operating System for smart cities

    Exploring intelligent service migration in a highly mobile network

    Get PDF
    Mobile services allow services to be migrated or replicated closer to users as they move around. This is now regarded as a viable mechanism to provide good Quality of Service to users in highly mobile environments such as vehicular networks. The vehicular environment is rapidly becoming a significant part of the internet and this presents various challenges that must be addressed; this is due to continuous handovers as mobile devices change their point of attachment to these networks resulting in a loss of service. Therefore, this explains the need to build a framework for intelligent service migration. This thesis addresses these issues. It starts by discussing the requirements for intelligent service migration. Then it investigates a low latency Quality of Service Aware Framework as well as an experimental transport protocol that would be favoured by vehicular networks. Furthermore, two analytical models are developed using the Zero-Server Markov Chain technique which is a way of analysing scenarios when the server is not continuously available to serve. Using the Zero-Server Markov Chain, the first analytical model looks at lost service due to continuous handovers and the communication dynamics of vehicular networks, while the second model analyses how service migration affects service delivery in these networks. Formulas are developed to yield the average number of packets in the system, the response time, the probability of blocking and a new parameter called the probability of lost service. These formulas are then applied to the Middlesex VANET Testbed to look at reactive and proactive service migration. These techniques are then incorporated into a new Service Management Framework to provide sustainable Quality of Service and Quality of Experience to mobile users in vehicular networks. This thesis also shows that this new approach is better than current approaches as it addresses key issues in intelligent service migration in such environments, and hence can play a significant part in the development of Intelligent Transport Systems for Smart Cities

    Securing mHealth - Investigating the development of a novel information security framework

    Get PDF
    The deployment of Mobile Health (mHealth) platforms as well as the use of mobile and wireless technologies have significant potential to transform healthcare services. The use of mHealth technologies allow a real-time remote monitoring as well as direct access to healthcare data so that users (e.g., patients and healthcare professionals) can utilise mHealth services anywhere and anytime. Generally, mHealth offers smart solutions to tackle challenges in healthcare. However, there are still various issues regarding the development of the mHealth system. One of the most common diffi-culties in developing the mHealth system is the security of healthcare data. mHealth systems are still vulnerable to numerous security issues with regard to their weak-nesses in design and data management. Several information security frameworks for mHealth devices as well as information security frameworks for Cloud storage have been proposed, however, the major challenge is developing an effective information se-curity framework that will encompass every component of an mHealth system to secure sensitive healthcare data. This research investigates how healthcare data is managed in mHealth systems and proposes a new information security framework that secures mHealth systems. Moreover, a prototype is developed for the purpose of testing the proposed information security framework. Firstly, risk identification is carried out to determine what could happen to cause potential damage and to gain insight into how, where, and why the damage might happen. The process of risk identification includes the identification of assets those need to be protected, threats that we try to protect against, and vulnerabilities that are weaknesses in mHealth systems. Afterward, a detailed analysis of the entire mHealth domain is undertaken to determine domain-specific features and a taxonomy for mHealth, from which a set of the most essential security requirements is identified to develop a new information security framework. It then examines existing information security frameworks for mHealth devices and the Cloud, noting similarities and differences. Key mechanisms to implement the new framework are discussed and the new framework is then presented. Furthermore, a prototype is developed for the purpose of testing. It consists of four layers including an mHealth secure storage system, Capability system, Secure transactional layer, and Service management layer. Capability system, Secure transactional layer, and Service management layer are developed as main contributions of the research

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions
    corecore