
Building an Intelligent Edge Environment to Provide
Essential Services for Smart Cities

Gayathri Karthick
Middlesex University

The Burroughs Hendon
United Kingdom NW4 4BT
Email: gayuinfy@gmail.com

Glenford Mapp
Middlesex University

The Burroughs Hendon
United Kingdom NW4 4BT
Email: g.mapp@mdx.ac.uk

Jon Crowcroft
University of Cambridge

15 JJ Thomson Avenue Cambridge
United Kingdom CB3 0FD

Email: jon.crowcroft@cl.cam.ac.uk

ABSTRACT
Smart Cities will cause major societal change because they
will provide a comprehensive set of key services including
seamless communication, intelligent transport systems, ad-
vanced healthcare platforms, urban and infrastructure man-
agement, and digital services for local and regional govern-
ment. Thus, a new service and networking environment
which will provide low latency and sustainable high band-
width is needed to build new applications and services for
smart cities. In this system services will be managed from
the edge of the Internet and not from the centre as they cur-
rently are. This represents a new computing paradigm which
is called the Intelligent Edge Environment. This paper looks
at how to build this new ecosystem. Firstly, a new frame-
work which comprises seven layers is unveiled, showing the
functions that must be supported to realise this brave new
world. New mechanisms are then introduced and a small
prototype is developed to support storage in highly mobile
environments. The results show that this approach could be
used to build smart city digital platforms. The paper ends
by discussing the development of a Distributed Operating
System for smart cities.

CCS CONCEPTS
• Networks → Network services; Cloud computing; Lo-
cation based services; Programmable networks;

KEYWORDS
Intelligent Edge Environment, Mobile and Vehicular Com-
munications, Capabilities, Service Management Framework,

This work is licensed under a Creative Commons Attribution International 
4.0 License.
MobiArch’23, October 6, 2023, Madrid, Spain
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0341-6/23/10.
https://doi.org/10.1145/3615587.3615987

Docker, FUSE, Network Memory Servers, Distributed Oper-
ating Systems

ACM Reference Format:
Gayathri Karthick, Glenford Mapp, and Jon Crowcroft. 2023. Build-
ing an Intelligent Edge Environment to Provide Essential Services
for Smart Cities. InWorkshop on Mobility in the Evolving Internet Ar-
chitecture (MobiArch’23), October 6, 2023, Madrid, Spain. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3615587.3615987

1 INTRODUCTION
The Smart City agenda is now being pursued by numer-
ous companies, institutions and governments because of the
huge societal impact it will have. New key services will be
developed. Firstly, ubiquitous communication based around
the 4As paradigm: anywhere, anytime, anything, and any-
how will be provided. Intelligent Transport Systems (ITS) as
well as Advanced Digital Medical Platforms (ADIMEP) will
also play a big part in smart cities, along with smart grids,
intelligent buildings and smart homes.
In order to fulfil these requirements, it is necessary to

move services and servers closer to the user. Mobile Edge
Computing (MEC) has evolved over the years to help deliver
better services to users by offloading some of the work from
central servers. However, to provide much lower latency and
higher bandwidth, services must run from the edge of the
network by default instead of from the centre of the network.
This represents a new computing and networking paradigm
which is called the Intelligent Edge Environment (IEE) and
is shown in Figure 1.

Figure 1: Intelligent Edge Environment

https://doi.org/10.1145/3615587.3615987
https://doi.org/10.1145/3615587.3615987
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3615587.3615987&domain=pdf&date_stamp=2023-10-02


MobiArch’23, October 6, 2023, Madrid, Spain Karthick et al.

Several resources and mechanisms are required to build
the IEE. In terms of resources, High Performance Edge Com-
puting Systems (HPECS), fast storage systems using large
Solid States Disks (SSDs), as well as Intelligent Caching Ar-
chitectures and support for heterogeneous networking must
form key components of the IEE. In addition, mechanisms
including support for mobile services, where services can
be dynamically migrated to support mobile users must also
be available. Though migration mechanisms such as virtual
machines [3], Docker [1] [21], LXD-CRIU [2], and Uniker-
nels [12] can be employed to migrate services between dif-
ferent Cloud systems, Machine Learning (ML) and AI algo-
rithms are needed to decide where is the best place to run a
service at any given time. Furthermore, security protocols
are also needed to ensure that servers are not hosted by
rogue Cloud systems and that Cloud systems are not dam-
aged by malicious servers. Finally, the IEE needs to support
a microservice architecture allowing services to be quickly
migrated, and more complex services to be built using other
smaller services.

This paper explores the building of the IEE to support the
development of applications and services for smart cities. It
first looks at a new framework to define the functionality
of the IEE. It then discusses the mechanisms needed for this
new environment including a Resource Allocation Secure
Protocol (RASP), Capabilities and a new ServiceManagement
Framework (SMF). Using these mechanisms, a prototype
implementation employing a FUSE system with a Network
Memory Server (NMS) to provide reliable storage is then
detailed.

The contributions of this paper are detailed below:

• A new framework for the IEE is presented.
• A RASP system is developed which has been verified
by Proverif.

• A new Capability System for Secure Storage is speci-
fied.

• A new SMF is examined.
• A prototype using FUSE and NMS is unveiled and
tested.

The rest of the paper is as follows: Section 2 looks at
Related Work. Section 3 details the new framework for the
IEE while Section 4 examines its key system components. In
Section 5, an initial prototype is developed and tested while
Section 6 concludes the paper.

2 RELATEDWORK
Mobile Edge Computing (MEC) was originally developed
as an offloading mechanism to provide more computing re-
sources at the edge of the network. In a survey of architec-
ture and computation offloading in MEC, the authors in [11]

explained that the current research being carried out re-
garding MEC is basically around how to guarantee service
continuity in highly dynamic scenarios. In that regard, the
authors in [22], proposed a vehicular offloading framework
in a cloud-based MEC environment. They were able to inves-
tigate the computation offloading mechanism. The latency
and resource limitations of MEC servers were taken into con-
sideration which enabled the proposal of a computational,
resource allocation and contract-based offloading scheme to
be developed. Multi-access Edge Computing also called MEC,
emerged as an enhanced paradigm of Mobile Edge Comput-
ing to also look at heterogeneous networking as a way of
improving access to local services because new networks
such as 5G and Fibre-to-the-Home have provided low-latency
communications in the local environment. In [15], the au-
thors examined the use of 5G and Wi-Fi networks for MEC;
the results showed improved performance.
Along with advances in MEC, there have been consider-

able improvements in virtual machines and container tech-
nologies such as Docker, LXD and Unikernels. In [14], the
authors compared the performance of these mechanisms and
found that Unikernels had the best performance, especially
for microservices. This was also validated in [19]. These
technologies, therefore, led to the development of mobile
services where services are migrated or replicated closer to
the user. In [18], the author unveiled a new framework for
mobile services and used it to experiment with determining
whether or not a service can be successfully migrated, given
the mobility of the user and the time it took to migrate the
service [16]. However, this work did not consider security
as well as issues of Quality of Service (QoS). Therefore, the
authors in [5] looked at deep reinforcement techniques for
service migration. In [10], a lightweight edge computing
platform was explored using Raspberry Pis. Different types
of orchestration techniques were explored. The project val-
idates the approach taken in this paper. Though all these
efforts were good and very useful, what is now needed is to
combine these techniques as well to add new mechanisms to
build a new computing and service environment at the edge
of the network which is the focus of this paper.

3 A FRAMEWORK FOR THE IEE
By combining the issues discussed above, it is possible to
specify a new framework for the Intelligent Edge Environ-
ment which is shown in Figure 2.

3.1 Layers of the IEE
The functions of each layer of the IEE are detailed below:

• Layer 1: Heterogeneous Networking Layer (HNL): A
variety of networking technologies, including mobile
networks such as 4G, 5G and CV2X as well as vehicular



Building an Intelligent Edge Environment to Provide Essential Services for Smart Cities MobiArch’23, October 6, 2023, Madrid, Spain

Figure 2: Intelligent Edge Environment Layers

networking technologies such as IEEE 802.11p and
IEEE 802.11bd, are supported by the HNL. The HNL
will support ubiquitous communication [8] using fast
vertical handovers between the various networks and
new transport protocols such as SLTP [7].

• Layer 2: Data Management Layer (DML): This layer
usesmany structures such as blocks, files, and databases
to manage data. Individual data blocks are stored in a
block storage system, where each block is encrypted
for security and replicated for redundancy. For files
and databases, meta-data storage is supported. Data
is cached or replicated by an Intelligent Caching and
Prefetching System to make sure it is always readily
accessible. Machine learning (ML) techniques are used
to analyse data access patterns.

• Layer 3: High Performance Edge Clouds (HPECS): This
layer supports various Cloud-based services and of-
fers processing and computational resources using VM
techniques including support for Vmware and Citrix
ecosystems. Clouds may also advertise their available
resources to servers.

• Layer 4: Service Management Framework (SMF): This
layer manages services and servers within the system.
It offers mobile service support by migrating and repli-
cating services using various migration techniques
(Docker, KVM, Unikernels). Using AI techniques, it
also determines the best location to run a service based
on the QoS required, the location and mobility of the
user as well as available Cloud resources at the edge
of the network.

• Layer 5: Microservices Layer (MSL): This layer sup-
ports a large number of microservices. Microservices
should be fast and small in order to be easily migrated.

• Layer 6: Application Framework Layer (APL): This
layer uses the microservices layer to build systems and

services for applications. It provides a new mobile vir-
tual environment for processing, storage, GUI, HTTP,
eCommerce platforms, etc.

• Layer 7: Application Layer (AL): This layer allows ap-
plications that have been built using the Application
Framework Layer to be installed on the system and
made available to users. Through this layer, users get
applications that use all the resources of the IEE.

4 KEY SYSTEM COMPONENTS FOR THE
IEE

In order to build the IEE, key system components must be
developed.

4.1 New Resource Allocation Algorithm for
the IEE

A primary goal is to ensure that services can be quickly mi-
grated or replicated. In this system, Cloud Platforms (CPs),
advertise their free resources in terms of CPU, memory, net-
work, and storage. Servers therefore hear these advertise-
ments and based on their own requirements in terms of CPU,
memory, network and storage will decide whether there are
enough free resources on the advertising CP. If the decision
is to migrate the service to the advertised CP, the server will
contact the Resource Allocation Server (RAS), also known as
the Registry. With this approach, all CPs and services must
register with the RAS. Hence, the RAS has data on all the
maximum and allocated resources for all CPs as well as the
requirements of services and thus the RAS can say whether
the CP platform has the necessary resources. Once the server
has checked with the RAS that the CP is registered and has
the required resources, the server will send a transfer request
to the advertising CP.

The CP will look at the server requirements in the transfer
request and will contact the RAS to enquire if the server
is a valid server. If the RAS indicates that the server is a
valid server, the Cloud Platform will send a positive reply to
the server’s transfer request. The server will then begin to
transfer the service to a new Cloud Platform. Each region
will have a RAS server; large cities will have several RAS
systems which will connected to form a distributed system
to improve the scalability of the system.
The interactions between all parties and the transfer of

the service are done using a Resource Allocation Secure
Protocol (RASP). In RASP, a symmetric session key is used
to encrypt and decrypt information to secure the transfer of
services to the new Cloud infrastructure. ProVerif [4] is an
automated reasoning tool to verify security properties using
cryptographic tools. The RASP was developed and tested
using Proverif. The results showed that the RASP system
was safe. Details of the work are found in [9].



MobiArch’23, October 6, 2023, Madrid, Spain Karthick et al.

4.2 Capabilities
In any computing environment, issues of authentication,
authorisation and accounting must be addressed. Because of
the dynamic nature of the IEE where users, devices as well
as services can be mobile, traditional AAA mechanisms such
as the use of RADIUS Servers are no longer a good solution.
It was therefore decided that AAA should be based around
the subject or user rather than the object as this seems more
scalable in the context of large systems. Thus capabilities are
used to provide AAA for the IEE [20].

Figure 3: Capability Structure and SYS Field

4.3 Capability Structure
With the IEE, every object and its properties are identified
using capabilities. Therefore, it is necessary that capabilities
be carefully managed and be protected from being created
or modified in an unauthorised manner and should be easily
revoked. The format of the capability-based system is shown
in Figure 3. The structure is explained below.

• Type Field (8 bits): This field is used to specify the type
of object capability that is being used. Types include
users, digital assets, facilities, etc.

• SYS Field (4 bits): This field is used to help manage
capabilities. The capability related fields are given by
four bits which are explained below.

• Property Field (12 bits): This field is used to define the
properties of the object associated with the capability.
This field is related to properties or functions of the
object to which the capability refers.

• Object ID (72 bits): This field is used to uniquely iden-
tify the object in the system. A EUI-64 identification
field is used to identify the object and a netadmin field
(8 bits) is used to manage the object on a network.

• Random Bit Field (16 bits): The random bit field pro-
vides unforgeability. This field helps to uniquely iden-
tify the object. The random bit field is generated after
the type field, SYS field, property field, and Object_ID

field are created. When Proxy certificates are created,
a new random field is generated. The random field also
enables easy revocation of capabilities as this can be
done by simply changing the random field and recom-
puting the capability, hence revoking previous versions
of the capability.

• Hash Field (16 bits): The hash field is used to detect the
tampering of capabilities. When a capability is created,
the type field, sys field, property field, and Object_ID
field are first generated, followed by the random bit
field. Finally, these fields are used to generate a SHA-1
hash which is placed in the Hash Field of the capability.

4.3.1 As shown in Figure 3, the SYS FIELD consists of:
• The Private or P bit: This bit is used to restrict the list of
people holding the capability. With a public capability,
only the capability for the object must be presented.
Because it is a public capability, anyone can hold this
capability and hence, the sender’s identification is not
required. With a private capability, the capability of
the object as well as the capability of the subject or
user must be presented to ensure that the sender has
the right to invoke that object.

• The System or S bit: This indicates whether the ob-
ject involved has been created by the system, or by
an application or user. A system capability cannot be
modified or deleted by users or applications.

• The Master or M bit: This bit indicates that the capa-
bility was created by a Certificate Authority (CA). The
Master capability is usually created when the object
is created. If this bit is not set, it means that this is a
Proxy capability. Proxy capabilities are derived from
Master Capabilities and cannot be derived from other
Proxy Capabilities.

• TheChange or C bit: This bit is used to indicatewhether
this capability can be changed or not. This means that
if this bit is set, the Proxy Capabilities can be derived
from the Master Capability. If this bit is not set, it
means that this capability must not be modified and
hence Proxy capabilities cannot be generated.

4.4 New Service Management Framework
In order to allow services to migrate as users move around,
it is necessary to have a robust service architecture [17], [6].
Hence, a new Service Management Framework (SMF) for
mobile services has been developed and discussed in [13].
The layers of the SMF are detailed below:

• Application Layer (AL): This is the first layer of SMF
and runs on the mobile node and invokes the service
through the Service Management Layer (SManL), giv-
ing the Service name, Service_ID and the required QoS.
When a service registers with the SMF for the first time,



Building an Intelligent Edge Environment to Provide Essential Services for Smart Cities MobiArch’23, October 6, 2023, Madrid, Spain

it will be given a unique ID to identify the service. The
service name indicates which type of service is re-
quired and the resources needed by the application
such as CPU, Memory, or Storage must be specified.

• Service Management Layer (SManL): This layer is the
management layer that administers the mobile service
and is also responsible for the service subscription
and service delivery. Service subscription refers to the
Service-Level Agreement (SLA), which is also used
for billing and accounting purposes. Service delivery
describes how services should migrate from one loca-
tion to another. Once this layer decides that a service
should be migrated, it passes this information to the
service migration layer (SML).

• Service Migration Layer (SML): This layer handles the
migration requested by SManL and uses the RASP
system for secure migration. In turn, the RASP proto-
col will use standard migration mechanisms such as
Docker, KVM, LXD and Unikernels to do the actual
migration. SML updates SManL when the migration is
completed.

• Service Connection Layer (SCL): This layer monitors
the connection status of the clients/application. It re-
ports to the SManL when the mobile node is no longer
available due to a handover to another network.

4.5 Microservices - FUSE and NMS
The Network Memory Server (NMS) is a network-based stor-
age server that is used to provide blocks of storage to its
clients. These blocks are held in non-volatile memory and
thus can be used to provide low-latency, high-bandwidth
storage for applications. The NMS is an example of a mi-
croservice because it is small and fast, and can therefore be
easily migrated or replicated on different servers. FUSE is
a library which is used to build user-space file systems. For
this work, we have implemented a basic file system using
FUSE with the NMS as the back-end providing permanent
storage.

5 IMPLEMENTATION OF A PROTOTYPE
IEE

5.1 Components of the Prototype
• SMF: The Service Management Framework: The ser-
vice to be managed must first be registered with the
SMF. The SMF is responsible for putting servers in
touch with clients who require their service. The SMF
will also migrate the service when required.

• The NMS: The NMS is the service that is being man-
aged by the SMF. It is registered as a Block Storage Ser-
vice. The NMS creates, deletes, reads from and writes

to different data blocks on behalf of its clients. The
NMS is migrated to different Roadside Units (RSUs).

• FUSE file system: This was built using the FUSE library
and runs on the application machine. It contacts the
NMS and performs operations on data blocks managed
by the NMS.

• Docker: In our implementation, we use Docker as the
migration mechanism to migrate the service. A Docker
hub has public, private and container repositories that
contain a collection of Docker images. We first created
an account in the Docker hub. Once we logged in, we
created a private repository to store our services and
the computing resources to enable migration in Cloud
environments.

5.2 Final results of SMF
The initial prototype was tested and showed that the SMF
was able to start the service in another machine using Docker.
The setup is shown in Figure 4. However, further develop-
ment, testing and evaluation are currently taking place. Once
fully tested, the prototype will be put in the public domain
to allow further development.

6 CONCLUSIONS AND FUTUREWORK
This paper has examined a new computing and network-
ing paradigm called the Intelligent Edge Environment (IEE)
which is needed to support the development of essential
services for smart cities. A new framework was unveiled
and new mechanisms have been introduced. A prototype
was built which showed that this framework could be used
to build real systems. However, we believe that this work
also points to the need to explore the development of a Dis-
tributed Operating System For Smart Cities so that essential
services could be delivered in a secure, efficient, and reliable
way for smart cities of the future.

REFERENCES
[1] 2019-08-02. Docker Technology. https://docs.docker.com/engine/

reference/commandline/commit
[2] 2019-08-05. LXD Technology. https://ubuntu.com/blog/lxd-2-0-

remote-hosts-and-container-migration-612(accessed20/08/19)
[3] 2019-08-05. Qemu or KVM Virtual Machines - Proxmox VE. https:

//pve.proxmox.com/wiki/Qemu/KVM_Virtual_Machines
[4] Bruno Blanchet et al. 2016. Modeling and verifying security protocols

with the applied pi calculus and ProVerif. Foundations and Trends® in
Privacy and Security 1, 1-2 (2016), 1–135.

[5] Y. Cheng and X. Li. 2020. A compute-intensive service migration
strategy based on deep learning algorithm. In IEEE 4th Information
Technology, Networking, Electronic and Automation Control Conference
(ITNEC. 1385–1388.

[6] Qiang Duan, Yuhong Yan, and Athanasios V Vasilakos. 2012. A survey
on service-oriented network virtualization toward convergence of
networking and cloud computing. IEEE Transactions on Network and
Service Management 9, 4 (2012), 373–392.

https://docs.docker.com/engine/reference/commandline/commit
https://docs.docker.com/engine/reference/commandline/commit
https://ubuntu.com/blog/lxd-2-0-remote-hosts-and-container-migration-612 (accessed 20/08/19)
https://ubuntu.com/blog/lxd-2-0-remote-hosts-and-container-migration-612 (accessed 20/08/19)
https://pve.proxmox.com/wiki/Qemu/KVM_Virtual_Machines
https://pve.proxmox.com/wiki/Qemu/KVM_Virtual_Machines


MobiArch’23, October 6, 2023, Madrid, Spain Karthick et al.

Figure 4: SMF (top left), FUSE Client (bottom left) and NMS (top right) and Docker Status (bottom right): NMS
running at a different location using the SMF

[7] A. Ezenwigbo, V.V. Paranthaman, R. Trestian, G. Mapp, and F. Sardis.
2018. Exploring a new transport protocol for vehicular networks. In
Proceedings of the 5th International Conference on the Internet of Things.

[8] Arindam Ghosh, Vishnu Paranthaman, Glenford Mapp, Orhan
Gemikonakli, and Jonathan Loo. 2015. Enabling seamless V2I commu-
nications towards developing cooperative automotive applications in
VANET systems. IEEE Communications Magazine 53, 12 (2015), 80–86.
https://doi.org/doi:10.1109/MCOM.2015.7355570

[9] G. Karthick, G. Mapp, F. Kammueller, and M. Aiash. 2021. Modelling
and Verifying a Resource Allocation Algorithm for Secure Service
Migration in Commerical Cloud Environments. Journal of Computation
Intelligence (Feb 2021).

[10] A. Lertsinsrubtavee, A.Ali, C. Molina-Jimenez, A. Sathiaseelan, and
J. Crowcroft. 2017. Picasso: A lightweight edge computing platform.
In IEEE 6th International Conference on Cloud Networking (CloudNet).
1–7.

[11] P. Mach and Z. Becvar. [n.d.]. Mobile edge computing: A survey
on architecture and computational offloading. IEEE Communications
Surveys Tutorials 19, 3 ([n. d.]), 1628–1656.

[12] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library Operating Systems
for the Cloud. SIGPLAN Not. 48, 4 (March 2013), 461–472. https:
//doi.org/10.1145/2499368.2451167

[13] A. E. Onyekachukwu, J. Ramirez, G.i Karthick, R. Trestian, and G.
Mapp. 2020. Exploring the Provision of Reliable Network Storage in
Highly Mobile Environments. Bucharest, Romania. https://doi.org/10.
1109/COMM48946.2020.9142033

[14] J. Ramirez, O. A. Ezenwigbo, G. Karthick, R. Trestian, and G. Mapp.
2020. A new service managment framework for vehicular networks.
In The 23rd Conference on Innovation in Clouds, Internet and Networks
Workshop (ICIN). 162–164.

[15] B. P. Rimal, D. P. Van, and M. Maier. 2017b. Mobile edge comput-
ing empowered fiber-wireless access networks in the 5g era. In IEEE
Communications Magazine, Vol. 55. 192–200.

[16] Fragkiskos Sardis. 2015. Exploring traffic and QoS management mecha-
nisms to support mobile cloud computing using service localisation in
heterogeneous environments. Ph.D. Dissertation. Middlesex Univer-
sity. https://unihub.mdx.ac.uk/study/types/research-at-middlesex/
research-repository

[17] F Sardis, G Mapp, and J Loo. 2011. On Demand Service Dilivery for
Mobile Networks. In Proceedings of the First International Conference on
Mobile Services, Resources and Users (Mobility 2011). Barclona, Spain.

[18] F Sardis, G E Mapp, J Loo, M Aiash, and A Vinel. 2013. On the In-
vestigation of Cloud-based Mobile Media Environments with Service-
Populating and QoS-aware Mechanisms. IEEE Transactions on Multi-
media (2013). https://doi.org/10.1109/T6MM.2013.224028

[19] Polychronis Valsamas, Lefteris Mamatas, and Luis Miguel Contreras.
2022. A Comparative Evaluation of Edge Cloud Virtualization Tech-
nologies. IEEE Transactions on Network and Service Management 19, 2
(2022), 1351–1365. https://doi.org/10.1109/TNSM.2021.3130792

[20] N. Vithanwattana, G. Karthick, G. Mapp, C. George, and A. Samuels.
2022. Securing Future Health in a post-COVID-19 world: Moving from
Frameworks to Prototypes. Journal of Reliable Intelligence Environ-
ments (July 2022).

[21] B. Xu, S. Wu, J. Xiao, H. Jin, Y. Zhang, G. Shi, T. Lin, J. Rao, L. Yi,
and J. Jiang. 2020. Sledge: Towards effective live migration of docker
containers. In IEEE 13th International Conference on Cloud Computing
(CLOUD). 321–328.

[22] K. Zhang, Y. Mao, S. Leng, A. Vinel, and Y. Zhang. 2016a. Delay
constrained offloading for mobile edge computing in cloud-enabled
vehicular networks. In 8th InternationalWorkshop on Resilient Networks
Design and Modeling (RNDM). 294–299.

https://doi.org/doi:10.1109/MCOM.2015.7355570
https://doi.org/10.1145/2499368.2451167
https://doi.org/10.1145/2499368.2451167
https://doi.org/10.1109/COMM48946.2020.9142033
https://doi.org/10.1109/COMM48946.2020.9142033
https://unihub.mdx.ac.uk/study/types/research-at-middlesex/research-repository
https://unihub.mdx.ac.uk/study/types/research-at-middlesex/research-repository
https://doi.org/10.1109/T6MM.2013.224028
https://doi.org/10.1109/TNSM.2021.3130792

	Abstract
	1 Introduction
	2 Related Work
	3 A Framework for the IEE
	3.1 Layers of the IEE

	4 Key System Components for the IEE
	4.1 New Resource Allocation Algorithm for the IEE
	4.2 Capabilities
	4.3 Capability Structure
	4.4 New Service Management Framework
	4.5 Microservices - FUSE and NMS

	5 Implementation of a Prototype IEE
	5.1 Components of the Prototype
	5.2 Final results of SMF

	6 CONCLUSIONS AND FUTURE WORK
	References

