4 research outputs found

    On the Implementation of Spread Spectrum Fingerprinting in Asymmetric Cryptographic Protocol

    Get PDF
    <p/> <p>Digital fingerprinting of multimedia contents involves the generation of a fingerprint, the embedding operation, and the realization of traceability from redistributed contents. Considering a buyer's right, the asymmetric property in the transaction between a buyer and a seller must be achieved using a cryptographic protocol. In the conventional schemes, the implementation of a watermarking algorithm into the cryptographic protocol is not deeply discussed. In this paper, we propose the method for implementing the spread spectrum watermarking technique in the fingerprinting protocol based on the homomorphic encryption scheme. We first develop a rounding operation which converts real values into integer and its compensation, and then explore the tradeoff between the robustness and communication overhead. Experimental results show that our system can simulate Cox's spread spectrum watermarking method into asymmetric fingerprinting protocol.</p

    Robust feature-based 3D mesh segmentation and visual mask with application to QIM 3D watermarking

    Get PDF
    The last decade has seen the emergence of 3D meshes in industrial, medical and entertainment applications. Many researches, from both the academic and the industrial sectors, have become aware of their intellectual property protection arising with their increasing use. The context of this master thesis is related to the digital rights management (DRM) issues and more particularly to 3D digital watermarking which is a technical tool that by means of hiding secret information can offer copyright protection, content authentication, content tracking (fingerprinting), steganography (secret communication inside another media), content enrichment etc. Up to now, 3D watermarking non-blind schemes have reached good levels in terms of robustness against a large set of attacks which 3D models can undergo (such as noise addition, decimation, reordering, remeshing, etc.). Unfortunately, so far blind 3D watermarking schemes do not present a good resistance to de-synchronization attacks (such as cropping or resampling). This work focuses on improving the Spread Transform Dither Modulation (STDM) application on 3D watermarking, which is an extension of the Quantization Index Modulation (QIM), through both the use of the perceptual model presented, which presents good robustness against noising and smoothing attacks, and the the application of an algorithm which provides robustness noising and smoothing attacks, and the the application of an algorithm which provides robustness against reordering and cropping attacks based on robust feature detection. Similar to other watermarking techniques, imperceptibility constraint is very important for 3D objects watermarking. For this reason, this thesis also explores the perception of the distortions related to the watermark embed process as well as to the alterations produced by the attacks that a mesh can undergo

    Exploring QIM based Anti-Collusion Fingerprinting for Multimedia

    No full text
    Digital fingerprinting is an emerging technology to protect multimedia from unauthorized use by embedding a unique fingerprint signal into each user’s copy. A robust embedding algorithm is an important building block in order to make the fingerprint resilient to various distortions and collusion attacks. Spread spectrum embedding has been widely used for multimedia fingerprinting. In this paper, we explore another class of embedding methods – Quantization Index Modulation (QIM) for fingerprinting applications. We first employ Dither Modulation (DM) technique and extend it for embedding multiple symbols through a basic dither sequence design. We then develop a theoretical model and propose a new algorithm to improve the collusion resistance of the basic scheme. Simulation results show that the improvement algorithm enhances the collusion resistance, while there is still a performance gap with the existing spread spectrum based fingerprinting. We then explore coded fingerprinting based on spread transform dither modulation (STDM) embedding. Simulation results show that this coded STDM based fingerprinting has significant advantages over spread spectrum based fingerprinting under blind detection

    Exploring QIM-based anti-collusion fingerprinting for multimedia

    No full text
    corecore