560 research outputs found

    The Need of an Optimal QoS Repository and Assessment Framework in Forming a Trusted Relationship in Cloud: A Systematic Review

    Full text link
    © 2017 IEEE. Due to the cost-effectiveness and scalable features of the cloud the demand of its services is increasing every next day. Quality of Service (QOS) is one of the crucial factor in forming a viable Service Level Agreement (SLA) between a consumer and the provider that enable them to establish and maintain a trusted relationship with each other. SLA identifies and depicts the service requirements of the user and the level of service promised by provider. Availability of enormous service solutions is troublesome for cloud users in selecting the right service provider both in terms of price and the degree of promised services. On the other end a service provider need a centralized and reliable QoS repository and assessment framework that help them in offering an optimal amount of marginal resources to requested consumer. Although there are number of existing literatures that assist the interaction parties to achieve their desired goal in some way, however, there are still many gaps that need to be filled for establishing and maintaining a trusted relationship between them. In this paper we tried to identify all those gaps that is necessary for a trusted relationship between a service provider and service consumer. The aim of this research is to present an overview of the existing literature and compare them based on different criteria such as QoS integration, QoS repository, QoS filtering, trusted relationship and an SLA

    DeepScaler: Holistic Autoscaling for Microservices Based on Spatiotemporal GNN with Adaptive Graph Learning

    Full text link
    Autoscaling functions provide the foundation for achieving elasticity in the modern cloud computing paradigm. It enables dynamic provisioning or de-provisioning resources for cloud software services and applications without human intervention to adapt to workload fluctuations. However, autoscaling microservice is challenging due to various factors. In particular, complex, time-varying service dependencies are difficult to quantify accurately and can lead to cascading effects when allocating resources. This paper presents DeepScaler, a deep learning-based holistic autoscaling approach for microservices that focus on coping with service dependencies to optimize service-level agreements (SLA) assurance and cost efficiency. DeepScaler employs (i) an expectation-maximization-based learning method to adaptively generate affinity matrices revealing service dependencies and (ii) an attention-based graph convolutional network to extract spatio-temporal features of microservices by aggregating neighbors' information of graph-structural data. Thus DeepScaler can capture more potential service dependencies and accurately estimate the resource requirements of all services under dynamic workloads. It allows DeepScaler to reconfigure the resources of the interacting services simultaneously in one resource provisioning operation, avoiding the cascading effect caused by service dependencies. Experimental results demonstrate that our method implements a more effective autoscaling mechanism for microservice that not only allocates resources accurately but also adapts to dependencies changes, significantly reducing SLA violations by an average of 41% at lower costs.Comment: To be published in the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023

    TPMCF: Temporal QoS Prediction using Multi-Source Collaborative Features

    Full text link
    Recently, with the rapid deployment of service APIs, personalized service recommendations have played a paramount role in the growth of the e-commerce industry. Quality-of-Service (QoS) parameters determining the service performance, often used for recommendation, fluctuate over time. Thus, the QoS prediction is essential to identify a suitable service among functionally equivalent services over time. The contemporary temporal QoS prediction methods hardly achieved the desired accuracy due to various limitations, such as the inability to handle data sparsity and outliers and capture higher-order temporal relationships among user-service interactions. Even though some recent recurrent neural-network-based architectures can model temporal relationships among QoS data, prediction accuracy degrades due to the absence of other features (e.g., collaborative features) to comprehend the relationship among the user-service interactions. This paper addresses the above challenges and proposes a scalable strategy for Temporal QoS Prediction using Multi-source Collaborative-Features (TPMCF), achieving high prediction accuracy and faster responsiveness. TPMCF combines the collaborative-features of users/services by exploiting user-service relationship with the spatio-temporal auto-extracted features by employing graph convolution and transformer encoder with multi-head self-attention. We validated our proposed method on WS-DREAM-2 datasets. Extensive experiments showed TPMCF outperformed major state-of-the-art approaches regarding prediction accuracy while ensuring high scalability and reasonably faster responsiveness.Comment: 10 Pages, 7 figure

    An effective scheme for QoS estimation via alternating direction method-based matrix factorization

    Get PDF
    Accurately estimating unknown quality-of-service (QoS) data based on historical records of Web-service invocations is vital for automatic service selection. This work presents an effective scheme for addressing this issue via alternating direction method-based matrix factorization. Its main idea consists of a) adopting the principle of the alternating direction method to decompose the task of building a matrix factorization-based QoS-estimator into small subtasks, where each one trains a subset of desired parameters based on the latest status of the whole parameter set; b) building an ensemble of diversified single models with sophisticated diversifying and aggregating mechanism; and c) parallelizing the construction process of the ensemble to drastically reduce the time cost. Experimental results on two industrial QoS datasets demonstrate that with the proposed scheme, more accurate QoS estimates can be achieved than its peers with comparable computing time with the help of its practical parallelization.This work was supported in part by the FDCT (Fundo para o Desenvolvimento das Ciências e da Tecnologia) under Grant119/2014/A3, in part by the National Natu-ral Science Foundation of China under Grant 61370150, and Grant 61433014; in part by the Young Scientist Foun-dation of Chongqing under Grant cstc2014kjrc-qnrc40005; in part by the Chongqing Research Program of Basic Re-search and Frontier Technology under Grant cstc2015jcyjB0244; in part by the Postdoctoral Science Funded Project of Chongqing under Grant Xm2014043; in part by the Fundamental Research Funds for the Central Universities under Grant 106112015CDJXY180005; in part by the Specialized Research Fund for the Doctoral Pro-gram of Higher Education under Grant 20120191120030

    Hybrid mobile computing for connected autonomous vehicles

    Get PDF
    With increasing urbanization and the number of cars on road, there are many global issues on modern transport systems, Autonomous driving and connected vehicles are the most promising technologies to tackle these issues. The so-called integrated technology connected autonomous vehicles (CAV) can provide a wide range of safety applications for safer, greener and more efficient intelligent transport systems (ITS). As computing is an extreme component for CAV systems,various mobile computing models including mobile local computing, mobile edge computing and mobile cloud computing are proposed. However it is believed that none of these models fits all CAV applications, which have highly diverse quality of service (QoS) requirements such as communication delay, data rate, accuracy, reliability and/or computing latency.In this thesis, we are motivated to propose a hybrid mobile computing model with objective of overcoming limitations of individual models and maximizing the performances for CAV applications.In proposed hybrid mobile computing model three basic computing models and/or their combinations are chosen and applied to different CAV applications, which include mobile local computing, mobile edge computing and mobile cloud computing. Different computing models and their combinations are selected according to the QoS requirements of the CAV applications.Following the idea, we first investigate the job offloading and allocation of computing and communication resources at the local hosts and external computing centers with QoS aware and resource awareness. Distributed admission control and resource allocation algorithms are proposed including two baseline non-cooperative algorithms and a matching theory based cooperative algorithm. Experiment results demonstrate the feasibility of the hybrid mobile computing model and show large improvement on the service quality and capacity over existing individual computing models. The matching algorithm also largely outperforms the baseline non-cooperative algorithms.In addition, two specific use cases of the hybrid mobile computing for CAV applications are investigated: object detection with mobile local computing where only local computing resources are used, and movie recommendation with mobile cloud computing where remote cloud resources are used. For object detection, we focus on the challenges of detecting vehicles, pedestrians and cyclists in driving environment and propose three methods to an existing CNN based object detector. Large detection performance improvement is obtained over the KITTI benchmark test dataset. For movie recommendation we propose two recommendation models based on a general framework of integrating machine learning and collaborative filtering approach.The experiment results on Netix movie dataset show that our models are very effective for cold start items recommendatio

    Comparing time series with machine learning-based prediction approaches for violation management in cloud SLAs

    Get PDF
    © 2018 In cloud computing, service level agreements (SLAs) are legal agreements between a service provider and consumer that contain a list of obligations and commitments which need to be satisfied by both parties during the transaction. From a service provider's perspective, a violation of such a commitment leads to penalties in terms of money and reputation and thus has to be effectively managed. In the literature, this problem has been studied under the domain of cloud service management. One aspect required to manage cloud services after the formation of SLAs is to predict the future Quality of Service (QoS) of cloud parameters to ascertain if they lead to violations. Various approaches in the literature perform this task using different prediction approaches however none of them study the accuracy of each. However, it is important to do this as the results of each prediction approach vary according to the pattern of the input data and selecting an incorrect choice of a prediction algorithm could lead to service violation and penalties. In this paper, we test and report the accuracy of time series and machine learning-based prediction approaches. In each category, we test many different techniques and rank them according to their order of accuracy in predicting future QoS. Our analysis helps the cloud service provider to choose an appropriate prediction approach (whether time series or machine learning based) and further to utilize the best method depending on input data patterns to obtain an accurate prediction result and better manage their SLAs to avoid violation penalties

    Risk-based framework for SLA violation abatement from the cloud service provider's perspective

    Get PDF
    © The British Computer Society 2018. The constant increase in the growth of the cloud market creates new challenges for cloud service providers. One such challenge is the need to avoid possible service level agreement (SLA) violations and their consequences through good SLA management. Researchers have proposed various frameworks and have made significant advances in managing SLAs from the perspective of both cloud users and providers. However, none of these approaches guides the service provider on the necessary steps to take for SLA violation abatement; that is, the prediction of possible SLA violations, the process to follow when the system identifies the threat of SLA violation, and the recommended action to take to avoid SLA violation. In this paper, we approach this process of SLA violation detection and abatement from a risk management perspective. We propose a Risk Management-based Framework for SLA violation abatement (RMF-SLA) following the formation of an SLA which comprises SLA monitoring, violation prediction and decision recommendation. Through experiments, we validate and demonstrate the suitability of the proposed framework for assisting cloud providers to minimize possible service violations and penalties
    corecore