98 research outputs found

    Hardware optimizations of dense binary hyperdimensional computing: Rematerialization of hypervectors, binarized bundling, and combinational associative memory

    Get PDF
    Brain-inspired hyperdimensional (HD) computing models neural activity patterns of the very size of the brain's circuits with points of a hyperdimensional space, that is, with hypervectors. Hypervectors are Ddimensional (pseudo)random vectors with independent and identically distributed (i.i.d.) components constituting ultra-wide holographic words: D = 10,000 bits, for instance. At its very core, HD computing manipulates a set of seed hypervectors to build composite hypervectors representing objects of interest. It demands memory optimizations with simple operations for an efficient hardware realization. In this article, we propose hardware techniques for optimizations of HD computing, in a synthesizable open-source VHDL library, to enable co-located implementation of both learning and classification tasks on only a small portion of Xilinx UltraScale FPGAs: (1)We propose simple logical operations to rematerialize the hypervectors on the fly rather than loading them from memory. These operations massively reduce the memory footprint by directly computing the composite hypervectors whose individual seed hypervectors do not need to be stored in memory. (2) Bundling a series of hypervectors over time requires a multibit counter per every hypervector component. We instead propose a binarized back-to-back bundling without requiring any counters. This truly enables onchip learning with minimal resources as every hypervector component remains binary over the course of training to avoid otherwise multibit components. (3) For every classification event, an associative memory is in charge of finding the closest match between a set of learned hypervectors and a query hypervector by using a distance metric. This operator is proportional to hypervector dimension (D), and hence may take O(D) cycles per classification event. Accordingly, we significantly improve the throughput of classification by proposing associative memories that steadily reduce the latency of classification to the extreme of a single cycle. (4) We perform a design space exploration incorporating the proposed techniques on FPGAs for a wearable biosignal processing application as a case study. Our techniques achieve up to 2.39 7 area saving, or 2,337 7 throughput improvement. The Pareto optimal HD architecture is mapped on only 18,340 configurable logic blocks (CLBs) to learn and classify five hand gestures using four electromyography sensors

    PULP-HD: Accelerating Brain-Inspired High-Dimensional Computing on a Parallel Ultra-Low Power Platform

    Full text link
    Computing with high-dimensional (HD) vectors, also referred to as hypervectors\textit{hypervectors}, is a brain-inspired alternative to computing with scalars. Key properties of HD computing include a well-defined set of arithmetic operations on hypervectors, generality, scalability, robustness, fast learning, and ubiquitous parallel operations. HD computing is about manipulating and comparing large patterns-binary hypervectors with 10,000 dimensions-making its efficient realization on minimalistic ultra-low-power platforms challenging. This paper describes HD computing's acceleration and its optimization of memory accesses and operations on a silicon prototype of the PULPv3 4-core platform (1.5mm2^2, 2mW), surpassing the state-of-the-art classification accuracy (on average 92.4%) with simultaneous 3.7×\times end-to-end speed-up and 2×\times energy saving compared to its single-core execution. We further explore the scalability of our accelerator by increasing the number of inputs and classification window on a new generation of the PULP architecture featuring bit-manipulation instruction extensions and larger number of 8 cores. These together enable a near ideal speed-up of 18.4×\times compared to the single-core PULPv3

    Integer Sparse Distributed Memory and Modular Composite Representation

    Get PDF
    Challenging AI applications, such as cognitive architectures, natural language understanding, and visual object recognition share some basic operations including pattern recognition, sequence learning, clustering, and association of related data. Both the representations used and the structure of a system significantly influence which tasks and problems are most readily supported. A memory model and a representation that facilitate these basic tasks would greatly improve the performance of these challenging AI applications.Sparse Distributed Memory (SDM), based on large binary vectors, has several desirable properties: auto-associativity, content addressability, distributed storage, robustness over noisy inputs that would facilitate the implementation of challenging AI applications. Here I introduce two variations on the original SDM, the Extended SDM and the Integer SDM, that significantly improve these desirable properties, as well as a new form of reduced description representation named MCR.Extended SDM, which uses word vectors of larger size than address vectors, enhances its hetero-associativity, improving the storage of sequences of vectors, as well as of other data structures. A novel sequence learning mechanism is introduced, and several experiments demonstrate the capacity and sequence learning capability of this memory.Integer SDM uses modular integer vectors rather than binary vectors, improving the representation capabilities of the memory and its noise robustness. Several experiments show its capacity and noise robustness. Theoretical analyses of its capacity and fidelity are also presented.A reduced description represents a whole hierarchy using a single high-dimensional vector, which can recover individual items and directly be used for complex calculations and procedures, such as making analogies. Furthermore, the hierarchy can be reconstructed from the single vector. Modular Composite Representation (MCR), a new reduced description model for the representation used in challenging AI applications, provides an attractive tradeoff between expressiveness and simplicity of operations. A theoretical analysis of its noise robustness, several experiments, and comparisons with similar models are presented.My implementations of these memories include an object oriented version using a RAM cache, a version for distributed and multi-threading execution, and a GPU version for fast vector processing

    QubitHD: A Stochastic Acceleration Method for HD Computing-Based Machine Learning

    Full text link
    Machine Learning algorithms based on Brain-inspired Hyperdimensional (HD) computing imitate cognition by exploiting statistical properties of high-dimensional vector spaces. It is a promising solution for achieving high energy-efficiency in different machine learning tasks, such as classification, semi-supervised learning and clustering. A weakness of existing HD computing-based ML algorithms is the fact that they have to be binarized for achieving very high energy-efficiency. At the same time, binarized models reach lower classification accuracies. To solve the problem of the trade-off between energy-efficiency and classification accuracy, we propose the QubitHD algorithm. It stochastically binarizes HD-based algorithms, while maintaining comparable classification accuracies to their non-binarized counterparts. The FPGA implementation of QubitHD provides a 65% improvement in terms of energy-efficiency, and a 95% improvement in terms of the training time, as compared to state-of-the-art HD-based ML algorithms. It also outperforms state-of-the-art low-cost classifiers (like Binarized Neural Networks) in terms of speed and energy-efficiency by an order of magnitude during training and inference.Comment: 8 pages, 7 figures, 3 table

    QHD: A brain-inspired hyperdimensional reinforcement learning algorithm

    Full text link
    Reinforcement Learning (RL) has opened up new opportunities to solve a wide range of complex decision-making tasks. However, modern RL algorithms, e.g., Deep Q-Learning, are based on deep neural networks, putting high computational costs when running on edge devices. In this paper, we propose QHD, a Hyperdimensional Reinforcement Learning, that mimics brain properties toward robust and real-time learning. QHD relies on a lightweight brain-inspired model to learn an optimal policy in an unknown environment. We first develop a novel mathematical foundation and encoding module that maps state-action space into high-dimensional space. We accordingly develop a hyperdimensional regression model to approximate the Q-value function. The QHD-powered agent makes decisions by comparing Q-values of each possible action. We evaluate the effect of the different RL training batch sizes and local memory capacity on the QHD quality of learning. Our QHD is also capable of online learning with tiny local memory capacity, which can be as small as the training batch size. QHD provides real-time learning by further decreasing the memory capacity and the batch size. This makes QHD suitable for highly-efficient reinforcement learning in the edge environment, where it is crucial to support online and real-time learning. Our solution also supports a small experience replay batch size that provides 12.3 times speedup compared to DQN while ensuring minimal quality loss. Our evaluation shows QHD capability for real-time learning, providing 34.6 times speedup and significantly better quality of learning than state-of-the-art deep RL algorithms
    • …
    corecore