280 research outputs found

    CHOP: adaptive filter-based DRAM caching for CMP server platforms

    Get PDF
    Journal ArticleAs manycore architectures enable a large number of cores on the die, a key challenge that emerges is the availability of memory bandwidth with conventional DRAM solutions. To address this challenge, integration of large DRAM caches that provide as much as 5Ă— higher bandwidth and as low as 1/3rd of the latency (as compared to conventional DRAM) is very promising. However, organizing and implementing a large DRAM cache is challenging because of two primary tradeoffs: (a) DRAM caches at cache line granularity require too large an on-chip tag area that makes it undesirable and (b) DRAM caches with larger page granularity require too much bandwidth because the miss rate does not reduce enough to overcome the bandwidth increase. In this paper, we propose CHOP (Caching HOt Pages) in DRAM caches to address these challenges. We study several filter-based DRAM caching techniques: (a) a filter cache (CHOP-FC) that profiles pages and determines the hot subset of pages to allocate into the DRAM cache, (b) a memory-based filter cache (CHOPMFC) that spills and fills filter state to improve the accuracy and reduce the size of the filter cache and (c) an adaptive DRAM caching technique (CHOP-AFC) to determine when the filter cache should be enabled and disabled for DRAM caching. We conduct detailed simulations with server workloads to show that our filter-based DRAM caching techniques achieve the following: (a) on average over 30% performance improvement over previous solutions, (b) several magnitudes lower area overhead in tag space required for cache-line based DRAM caches, (c) significantly lower memory bandwidth consumption as compared to page-granular DRAM caches. Index Terms-DRAM cache; CHOP; adaptive filter; hot page; filter cache

    Dynamic Energy Management for Chip Multi-processors under Performance Constraints

    Get PDF
    We introduce a novel algorithm for dynamic energy management (DEM) under performance constraints in chip multi-processors (CMPs). Using the novel concept of delayed instructions count, performance loss estimations are calculated at the end of each control period for each core. In addition, a Kalman filtering based approach is employed to predict workload in the next control period for which voltage-frequency pairs must be selected. This selection is done with a novel dynamic voltage and frequency scaling (DVFS) algorithm whose objective is to reduce energy consumption but without degrading performance beyond the user set threshold. Using our customized Sniper based CMP system simulation framework, we demonstrate the effectiveness of the proposed algorithm for a variety of benchmarks for 16 core and 64 core network-on-chip based CMP architectures. Simulation results show consistent energy savings across the board. We present our work as an investigation of the tradeoff between the achievable energy reduction via DVFS when predictions are done using the effective Kalman filter for different performance penalty thresholds

    Mage: Online Interference-Aware Scheduling in Multi-Scale Heterogeneous Systems

    Full text link
    Heterogeneity has grown in popularity both at the core and server level as a way to improve both performance and energy efficiency. However, despite these benefits, scheduling applications in heterogeneous machines remains challenging. Additionally, when these heterogeneous resources accommodate multiple applications to increase utilization, resources are prone to contention, destructive interference, and unpredictable performance. Existing solutions examine heterogeneity either across or within a server, leading to missed performance and efficiency opportunities. We present Mage, a practical interference-aware runtime that optimizes performance and efficiency in systems with intra- and inter-server heterogeneity. Mage leverages fast and online data mining to quickly explore the space of application placements, and determine the one that minimizes destructive interference between co-resident applications. Mage continuously monitors the performance of active applications, and, upon detecting QoS violations, it determines whether alternative placements would prove more beneficial, taking into account any overheads from migration. Across 350 application mixes on a heterogeneous CMP, Mage improves performance by 38% and up to 2x compared to a greedy scheduler. Across 160 mixes on a heterogeneous cluster, Mage improves performance by 30% on average and up to 52% over the greedy scheduler, and by 11% over the combination of Paragon [15] for inter- and intra-server heterogeneity

    Implementing a hybrid SRAM / eDRAM NUCA architecture

    Get PDF
    In this paper, we propose a hybrid cache architecture that exploits the main features of both memory technologies, speed of SRAM and high density of eDRAM. We demonstrate, that due to the high locality found in emerging applications, a high percentage of data that enters to the on-chip last-level cache are not accessed again before they are replacedPreprin

    ANALYTICAL MODEL FOR CHIP MULTIPROCESSOR MEMORY HIERARCHY DESIGN AND MAMAGEMENT

    Get PDF
    Continued advances in circuit integration technology has ushered in the era of chip multiprocessor (CMP) architectures as further scaling of the performance of conventional wide-issue superscalar processor architectures remains hard and costly. CMP architectures take advantageof Moore¡¯s Law by integrating more cores in a given chip area rather than a single fastyet larger core. They achieve higher performance with multithreaded workloads. However,CMP architectures pose many new memory hierarchy design and management problems thatmust be addressed. For example, how many cores and how much cache capacity must weintegrate in a single chip to obtain the best throughput possible? Which is more effective,allocating more cache capacity or memory bandwidth to a program?This thesis research develops simple yet powerful analytical models to study two newmemory hierarchy design and resource management problems for CMPs. First, we considerthe chip area allocation problem to maximize the chip throughput. Our model focuses onthe trade-off between the number of cores, cache capacity, and cache management strategies.We find that different cache management schemes demand different area allocation to coresand cache to achieve their maximum performance. Second, we analyze the effect of cachecapacity partitioning on the bandwidth requirement of a given program. Furthermore, ourmodel considers how bandwidth allocation to different co-scheduled programs will affect theindividual programs¡¯ performance. Since the CMP design space is large and simulating only one design point of the designspace under various workloads would be extremely time-consuming, the conventionalsimulation-based research approach quickly becomes ineffective. We anticipate that ouranalytical models will provide practical tools to CMP designers and correctly guide theirdesign efforts at an early design stage. Furthermore, our models will allow them to betterunderstand potentially complex interactions among key design parameters
    • …
    corecore