46,274 research outputs found

    Flow-based Intrinsic Curiosity Module

    Full text link
    In this paper, we focus on a prediction-based novelty estimation strategy upon the deep reinforcement learning (DRL) framework, and present a flow-based intrinsic curiosity module (FICM) to exploit the prediction errors from optical flow estimation as exploration bonuses. We propose the concept of leveraging motion features captured between consecutive observations to evaluate the novelty of observations in an environment. FICM encourages a DRL agent to explore observations with unfamiliar motion features, and requires only two consecutive frames to obtain sufficient information when estimating the novelty. We evaluate our method and compare it with a number of existing methods on multiple benchmark environments, including Atari games, Super Mario Bros., and ViZDoom. We demonstrate that FICM is favorable to tasks or environments featuring moving objects, which allow FICM to utilize the motion features between consecutive observations. We further ablatively analyze the encoding efficiency of FICM, and discuss its applicable domains comprehensively.Comment: The SOLE copyright holder is IJCAI (International Joint Conferences on Artificial Intelligence), all rights reserved. The link is provided as follows: https://www.ijcai.org/Proceedings/2020/28

    Combining Experience Replay with Exploration by Random Network Distillation

    Full text link
    Our work is a simple extension of the paper "Exploration by Random Network Distillation". More in detail, we show how to efficiently combine Intrinsic Rewards with Experience Replay in order to achieve more efficient and robust exploration (with respect to PPO/RND) and consequently better results in terms of agent performances and sample efficiency. We are able to do it by using a new technique named Prioritized Oversampled Experience Replay (POER), that has been built upon the definition of what is the important experience useful to replay. Finally, we evaluate our technique on the famous Atari game Montezuma's Revenge and some other hard exploration Atari games.Comment: 8 pages, 6 figures, accepted as full-paper at IEEE Conference on Games (CoG) 201

    Learning Representations in Model-Free Hierarchical Reinforcement Learning

    Full text link
    Common approaches to Reinforcement Learning (RL) are seriously challenged by large-scale applications involving huge state spaces and sparse delayed reward feedback. Hierarchical Reinforcement Learning (HRL) methods attempt to address this scalability issue by learning action selection policies at multiple levels of temporal abstraction. Abstraction can be had by identifying a relatively small set of states that are likely to be useful as subgoals, in concert with the learning of corresponding skill policies to achieve those subgoals. Many approaches to subgoal discovery in HRL depend on the analysis of a model of the environment, but the need to learn such a model introduces its own problems of scale. Once subgoals are identified, skills may be learned through intrinsic motivation, introducing an internal reward signal marking subgoal attainment. In this paper, we present a novel model-free method for subgoal discovery using incremental unsupervised learning over a small memory of the most recent experiences (trajectories) of the agent. When combined with an intrinsic motivation learning mechanism, this method learns both subgoals and skills, based on experiences in the environment. Thus, we offer an original approach to HRL that does not require the acquisition of a model of the environment, suitable for large-scale applications. We demonstrate the efficiency of our method on two RL problems with sparse delayed feedback: a variant of the rooms environment and the first screen of the ATARI 2600 Montezuma's Revenge game
    corecore