15,989 research outputs found

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Eclectic Theory of Intelligent Robots

    Get PDF

    A NATURALISTIC COMPUTATIONAL MODEL OF HUMAN BEHAVIOR IN NAVIGATION AND SEARCH TASKS

    Get PDF
    Planning, navigation, and search are fundamental human cognitive abilities central to spatial problem solving in search and rescue, law enforcement, and military operations. Despite a wealth of literature concerning naturalistic spatial problem solving in animals, literature on naturalistic spatial problem solving in humans is comparatively lacking and generally conducted by separate camps among which there is little crosstalk. Addressing this deficiency will allow us to predict spatial decision making in operational environments, and understand the factors leading to those decisions. The present dissertation is comprised of two related efforts, (1) a set of empirical research studies intended to identify characteristics of planning, execution, and memory in naturalistic spatial problem solving tasks, and (2) a computational modeling effort to develop a model of naturalistic spatial problem solving. The results of the behavioral studies indicate that problem space hierarchical representations are linear in shape, and that human solutions are produced according to multiple optimization criteria. The Mixed Criteria Model presented in this dissertation accounts for global and local human performance in a traditional and naturalistic Traveling Salesman Problem. The results of the empirical and modeling efforts hold implications for basic and applied science in domains such as problem solving, operations research, human-computer interaction, and artificial intelligence

    Next-Best-Sense: a multi-criteria robotic exploration strategy for RFID tags discovery

    Get PDF
    Automated exploration is one of the most relevant applications of autonomous robots. In this paper, we suggest a novel online coverage algorithm called Next-Best-Sense (NBS), an extension of the Next-Best-View class of exploration algorithms that optimizes the exploration task balancing multiple criteria. This novel algorithm is applied to the problem of localizing all Radio Frequency Identification (RFID) tags with a mobile robotic platform that is equipped with a RFID reader. We cast this problem as a coverage planning problem by defining a basic sensing operation -- a scan with the RFID reader -- as the field of “view” of the sensor. NBS evaluates candidate locations with a global utility function which combines utility values for travel distance, information gain, sensing time, battery status and RFID information gain, generalizing the use of Multi-Criteria Decision Making. We developed an RFID reader and tag model in the Gazebo simulator for validation. Experiments performed both in simulation and with a real robot suggest that our NBS approach can successfully localize all the RFID tags while minimizing navigation metrics such sensing operations, total traveling distance and battery consumption. The code developed is publicly available on the authors' repository

    Opportunistic communication schemes for unmanned vehicles in urban search and rescue

    Get PDF
    In urban search and rescue (USAR) operations, there is a considerable amount of danger faced by rescuers. The use of mobile robots can alleviate this issue. Coordinating the search effort is made more difficult by the communication issues typically faced in these environments, such that communication is often restricted. With small numbers of robots, it is necessary to break communication links in order to explore the entire environment. The robots can be viewed as a broken ad hoc network, relying on opportunistic contact in order to share data. In order to minimise overheads when exchanging data, a novel algorithm for data exchange has been created which maintains the propagation speed of flooding while reducing overheads. Since the rescue workers outside of the structure need to know the location of any victims, the task of finding their locations is two parted: 1) to locate the victims (Search Time), and 2) to get this data outside the structure (Delay Time). Communication with the outside is assumed to be performed by a static robot designated as the Command Station. Since it is unlikely that there will be sufficient robots to provide full communications coverage of the area, robots that discover victims are faced with the difficult decision of whether they should continue searching or return with the victim data. We investigate a variety of search techniques and see how the application of biological foraging models can help to streamline the search process, while we have also implemented an opportunistic network to ensure that data are shared whenever robots come within line of sight of each other or the Command Station. We examine this trade-off between performing a search and communicating the results

    Multi-Criteria Decision Making in Complex Decision Environments

    Get PDF
    In the future, many decisions will either be fully automated or supported by autonomous system. Consequently, it is of high importance that we understand how to integrate human preferences correctly. This dissertation dives into the research field of multi-criteria decision making and investigates the satellite image acquisition scheduling problem and the unmanned aerial vehicle routing problem to further the research on a priori preference integration frameworks. The work will aid in the transition towards autonomous decision making in complex decision environments. A discussion on the future of pairwise and setwise preference articulation methods is also undertaken. "Simply put, a direct consequence of the improved decision-making methods is,that bad decisions more clearly will stand out as what they are - bad decisions.

    Asynchronous Visualization of Spatiotemporal Information for Multiple Moving Targets

    Get PDF
    In the modern information age, the quantity and complexity of spatiotemporal data is increasing both rapidly and continuously. Sensor systems with multiple feeds that gather multidimensional spatiotemporal data will result in information clusters and overload, as well as a high cognitive load for users of these systems. To meet future safety-critical situations and enhance time-critical decision-making missions in dynamic environments, and to support the easy and effective managing, browsing, and searching of spatiotemporal data in a dynamic environment, we propose an asynchronous, scalable, and comprehensive spatiotemporal data organization, display, and interaction method that allows operators to navigate through spatiotemporal information rather than through the environments being examined, and to maintain all necessary global and local situation awareness. To empirically prove the viability of our approach, we developed the Event-Lens system, which generates asynchronous prioritized images to provide the operator with a manageable, comprehensive view of the information that is collected by multiple sensors. The user study and interaction mode experiments were designed and conducted. The Event-Lens system was discovered to have a consistent advantage in multiple moving-target marking-task performance measures. It was also found that participants’ attentional control, spatial ability, and action video gaming experience affected their overall performance
    • …
    corecore