2,500 research outputs found

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Exploration of Compiler Optimization Sequences Using a Hybrid Approach

    Get PDF
    Finding a program-specific compiler optimization sequence is a challenge, due to the large number of optimizations provided by optimizing compilers. As a result, researchers have proposed design-space exploration schemes. This paper also presents a design-space exploration scheme, which aims to search for a compiler optimization sequence. Our hybrid approach relies on sequences previously generated for a set of training programs, with the purpose of finding optimizations and their order of application. In the first step, a clustering algorithm chooses optimizations, and in the second step, a metaheuristic algorithm discovers the sequence, in which the compiler will apply each optimization. We evaluate our approach using the LLVM compiler, and an I7 processor, respectively. The results show that we can find optimization sequences that result in target codes that, when executed on the I7 processor, outperform the standard optimization level O3, by an average improvement of 8.01 % and 6.07 %, on Polybench and cBench benchmark suites, respectively. In addition, our approach outperforms the method proposed by Purini and Jain, Best10, by an average improvement of 24.22 % and 38.81 %, considering the two benchmarks suites

    Evolutionary improvement of programs

    Get PDF
    Most applications of genetic programming (GP) involve the creation of an entirely new function, program or expression to solve a specific problem. In this paper, we propose a new approach that applies GP to improve existing software by optimizing its non-functional properties such as execution time, memory usage, or power consumption. In general, satisfying non-functional requirements is a difficult task and often achieved in part by optimizing compilers. However, modern compilers are in general not always able to produce semantically equivalent alternatives that optimize non-functional properties, even if such alternatives are known to exist: this is usually due to the limited local nature of such optimizations. In this paper, we discuss how best to combine and extend the existing evolutionary methods of GP, multiobjective optimization, and coevolution in order to improve existing software. Given as input the implementation of a function, we attempt to evolve a semantically equivalent version, in this case optimized to reduce execution time subject to a given probability distribution of inputs. We demonstrate that our framework is able to produce non-obvious optimizations that compilers are not yet able to generate on eight example functions. We employ a coevolved population of test cases to encourage the preservation of the function's semantics. We exploit the original program both through seeding of the population in order to focus the search, and as an oracle for testing purposes. As well as discussing the issues that arise when attempting to improve software, we employ rigorous experimental method to provide interesting and practical insights to suggest how to address these issues

    COBAYN: Compiler autotuning framework using Bayesian networks

    Get PDF
    The variety of today's architectures forces programmers to spend a great deal of time porting and tuning application codes across different platforms. Compilers themselves need additional tuning, which has considerable complexity as the standard optimization levels, usually designed for the average case and the specific target architecture, often fail to bring the best results. This article proposes COBAYN: Compiler autotuning framework using Bayesian Networks, an approach for a compiler autotuning methodology using machine learning to speed up application performance and to reduce the cost of the compiler optimization phases. The proposed framework is based on the application characterization done dynamically by using independent microarchitecture features and Bayesian networks. The article also presents an evaluation based on using static analysis and hybrid feature collection approaches. In addition, the article compares Bayesian networks with respect to several state-of-the-art machine-learning models. Experiments were carried out on an ARM embedded platform and GCC compiler by considering two benchmark suites with 39 applications. The set of compiler configurations, selected by the model (less than 7% of the search space), demonstrated an application performance speedup of up to 4.6× on Polybench (1.85× on average) and 3.1× on cBench (1.54× on average) with respect to standard optimization levels. Moreover, the comparison of the proposed technique with (i) random iterative compilation, (ii) machine learning-based iterative compilation, and (iii) noniterative predictive modeling techniques shows, on average, 1.2×, 1.37×, and 1.48×speedup, respectively. Finally, the proposed method demonstrates 4×and 3×speedup, respectively, on cBench and Polybench in terms of exploration efficiency given the same quality of the solutions generated by the random iterative compilation model

    Iterative Schedule Optimization for Parallelization in the Polyhedron Model

    Get PDF
    In high-performance computing, one primary objective is to exploit the performance that the given target hardware can deliver to the fullest. Compilers that have the ability to automatically optimize programs for a specific target hardware can be highly useful in this context. Iterative (or search-based) compilation requires little or no prior knowledge and can adapt more easily to concrete programs and target hardware than static cost models and heuristics. Thereby, iterative compilation helps in situations in which static heuristics do not reflect the combination of input program and target hardware well. Moreover, iterative compilation may enable the derivation of more accurate cost models and heuristics for optimizing compilers. In this context, the polyhedron model is of help as it provides not only a mathematical representation of programs but, more importantly, a uniform representation of complex sequences of program transformations by schedule functions. The latter facilitates the systematic exploration of the set of legal transformations of a given program. Early approaches to purely iterative schedule optimization in the polyhedron model do not limit their search to schedules that preserve program semantics and, thereby, suffer from the need to explore numbers of illegal schedules. More recent research ensures the legality of program transformations but presumes a sequential rather than a parallel execution of the transformed program. Other approaches do not perform a purely iterative optimization. We propose an approach to iterative schedule optimization for parallelization and tiling in the polyhedron model. Our approach targets loop programs that profit from data locality optimization and coarse-grained loop parallelization. The schedule search space can be explored either randomly or by means of a genetic algorithm. To determine a schedule's profitability, we rely primarily on measuring the transformed code's execution time. While benchmarking is accurate, it increases the time and resource consumption of program optimization tremendously and can even make it impractical. We address this limitation by proposing to learn surrogate models from schedules generated and evaluated in previous runs of the iterative optimization and to replace benchmarking by performance prediction to the extent possible. Our evaluation on the PolyBench 4.1 benchmark set reveals that, in a given setting, iterative schedule optimization yields significantly higher speedups in the execution of the program to be optimized. Surrogate performance models learned from training data that was generated during previous iterative optimizations can reduce the benchmarking effort without strongly impairing the optimization result. A prerequisite for this approach is a sufficient similarity between the training programs and the program to be optimized

    Harvey: A Greybox Fuzzer for Smart Contracts

    Full text link
    We present Harvey, an industrial greybox fuzzer for smart contracts, which are programs managing accounts on a blockchain. Greybox fuzzing is a lightweight test-generation approach that effectively detects bugs and security vulnerabilities. However, greybox fuzzers randomly mutate program inputs to exercise new paths; this makes it challenging to cover code that is guarded by narrow checks, which are satisfied by no more than a few input values. Moreover, most real-world smart contracts transition through many different states during their lifetime, e.g., for every bid in an auction. To explore these states and thereby detect deep vulnerabilities, a greybox fuzzer would need to generate sequences of contract transactions, e.g., by creating bids from multiple users, while at the same time keeping the search space and test suite tractable. In this experience paper, we explain how Harvey alleviates both challenges with two key fuzzing techniques and distill the main lessons learned. First, Harvey extends standard greybox fuzzing with a method for predicting new inputs that are more likely to cover new paths or reveal vulnerabilities in smart contracts. Second, it fuzzes transaction sequences in a targeted and demand-driven way. We have evaluated our approach on 27 real-world contracts. Our experiments show that the underlying techniques significantly increase Harvey's effectiveness in achieving high coverage and detecting vulnerabilities, in most cases orders-of-magnitude faster; they also reveal new insights about contract code.Comment: arXiv admin note: substantial text overlap with arXiv:1807.0787

    MAGPIE: Machine Automated General Performance Improvement via Evolution of Software

    Get PDF
    Performance is one of the most important qualities of software. Several techniques have thus been proposed to improve it, such as program transformations, optimisation of software parameters, or compiler flags. Many automated software improvement approaches use similar search strategies to explore the space of possible improvements, yet available tooling only focuses on one approach at a time. This makes comparisons and exploration of interactions of the various types of improvement impractical. We propose MAGPIE, a unified software improvement framework. It provides a common edit sequence based representation that isolates the search process from the specific improvement technique, enabling a much simplified synergistic workflow. We provide a case study using a basic local search to compare compiler optimisation, algorithm configuration, and genetic improvement. We chose running time as our efficiency measure and evaluated our approach on four real-world software, written in C, C++, and Java. Our results show that, used independently, all techniques find significant running time improvements: up to 25% for compiler optimisation, 97% for algorithm configuration, and 61% for evolving source code using genetic improvement. We also show that up to 10% further increase in performance can be obtained with partial combinations of the variants found by the different techniques. Furthermore, the common representation also enables simultaneous exploration of all techniques, providing a competitive alternative to using each technique individually.Comment: 19 page

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped to achieve one of the major goals of the NESUS Action: to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management, training, contributing to glue disparate researchers working across different areas and provide a meeting ground for researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency, and resilience.European Cooperation in Science and Technology. COS
    corecore