4 research outputs found

    Evaluation and implementation of a 5-level hybrid DC-DC converter

    Get PDF
    In this work, a hybrid voltage regulator topology is analyzed, implemented, and evaluated. The common topologies of DC-DC converters have proven to be lacking in some aspects, such as integrability for buck converters, or maximum efficiency for switched-capacitor regulators. The hybrid topology tackles these shortcomings by combining the advantages of switched-capacitor and inductor-based voltage regulators. A 5-level buck converter is evaluated, implemented, and compared to other converter implementations using the same components. The 5-Level Buck converter can achieve 5 different levels, allowing it to cover 4 operation regions, each between 2 levels. Accordingly, it covers a wide range of output voltages. By reducing the voltage difference at the inductor input, the 5-level buck converter can use smaller inductor compared to both 3-level and conventional buck converters which makes it cheaper, smaller in size, and much more efficient. Simulations show proper functionality of the 5-Level topology, while putting restrictions on the inductor size, efficiency, and component footprint (or total converter area). A test PCB is implemented for verification of the functionality and experimental measurements show that for the same switching frequency and inductor size, the 5-level buck converter achieves up to 15% efficiency improvement over a conventional buck converter and a 3-level buck converter at certain output voltage ranges. Peak efficiency of 94% has been achieved by the 5-Level hybrid converter, which includes all external switching and conduction losses. The proposed hybrid topology proved to yield high conversion efficiency even in the face of component size limitations, which indicates potential benefit in using multilevel converters for several off-chip as well as on-chip applications

    Circuit and System Level Design Optimization for Power Delivery And Management

    Get PDF
    As the VLSI technology scales to the nanometer scale, power consumption has become a critical design concern of VLSI circuits. Power gating and dynamic voltage and frequency scaling (DVFS) are two effective power management techniques that are widely utilized in modern chip designs. Various design challenges merge with these power management techniques in nanometer VLSI circuits. For example, power gating introduces unique power integrity issues and trade-offs between switching noise and rush current noise. Assuring power integrity and achieving power efficiency are two highly intertwined design challenges. In addition, these trade-offs significantly vary with the supply voltage. It is difficult to use conventional power-gated power delivery networks (PDNs) to fully meet the involved conflicting design constraints while maximizing power saving and minimizing supply noise. The DVFS controller and the DC-DC power converter are two highly intertwining enablers for DVFS-based systems. However, traditional DVFS techniques treat the design optimizations of the two as separate tasks, giving rise to sub-optimal designs. To address the above research challenges, we propose several circuit and system level design optimization techniques in this dissertation. For power-gated PDN designs, we propose systemic decoupling capacitor (decap) optimization strategies that optimally trade-off between power integrity and leakage saving. First, new global decap and re-routable decap design concepts are proposed to relax the tight interaction between power integrity and leakage power saving of power-gated PDN at a single supply voltage level. Furthermore, we propose to leverage re-routable decaps to provide flexible decap allocation structures to better suit multiple supply voltage levels. The proposed strategies are implemented in an automatic design flow for choosing optimal amount of local decaps, global decaps and re-routable decaps. The proposed techniques significantly increase leakage saving without jeopardizing power integrity. The flexible decap allocations enabled by re-routable decaps lead to optimal design trade-offs for PDNs operating with two supply voltage levels. To improve the effectiveness of DVFS, we analyze the drawbacks of circuit-level only and policy-level only optimizations and the promising opportunities resulted from the cross-layer co-optimization of the DC-DC converter and online learning based DVFS polices. We present a cross-layer approach that optimizes transition time, area, energy overhead of the DC-DC converter along with key parameters of an online learning DVFS controller. We systematically evaluate the benefits of the proposed co-optimization strategy based on several processor architectures, namely single and dual-core processors and processors with DVFS and power gating. Our results indicate that the co-optimization can introduce noticeable additional energy saving without significant performance degradation

    Modeling, Design and Optimization of IC Power Delivery with On-Chip Regulation

    Get PDF
    As IC technology continues to follow the Moore’s Law, IC designers have been constantly challenged with power delivery issues. While useful power must be reliably delivered to the on-die functional circuits to fulfill the desired functionality and performance, additional power overheads arise due to the loss associated with voltage conversion and parasitic resistance in the metal wires. Hence, one of the key IC power delivery design challenges is to develop voltage conversion/regulation circuits and the corresponding design strategies to provide a guaranteed level of power integrity while achieving high power efficiency and low area overhead. On-chip voltage regulation, a significant ongoing design trend, offers appealing active supply noise suppression close to the loads and is well positioned to address many power delivery challenges. However, to realize the full potential of on-chip voltage regulation requires systemic optimization of and tradeoffs among settling time, steady-state error, power supply noise, power efficiency, stability and area overhead, which are the key focuses of this dissertation. First, we develop new low-dropout voltage regulators (LDOs) that are well optimized for low power applications. To this end, dropout voltage, bias current and speed are important competing design objectives. This dissertation presents new flipped voltage follower (FVF) based topologies of on-chip voltage regulators that handle ultra-fast load transients in nanoseconds while achieving significant improvement on bias current consumption. An active frequency compensation is embedded to achieve high area efficiency by employing a smaller amount of compensation capacitors, the major silicon area contributor. Furthermore, in one of the proposed topologies an auxiliary digital feedback loop is employed in order to lower quiescent power consumption further. Second, coping with supply noise is becoming increasingly more difficult as design complexity grows, which leads to increased spatial and temporal load heterogeneity, and hence larger voltage variations in a given power domain. Addressing this challenge through a distributed methodology wherein multiple voltage regulators are placed across the same voltage domain is particularly promising. This distributive nature allows for even faster suppression of multiple hot spots by the nearby regulators within the power domain and can significantly boost power integrity. Nevertheless, reasoning about the stability of such distributively regulated power networks becomes rather complicated as a result of complex interactions between multiple active regulators and the large passive subnetwork. Coping with this stability challenge requires new theory and stability-ensuring design practice, as targeted by this dissertation. For the first time, we adopt and develop a hybrid stability framework for large power delivery networks with distributed voltage regulation. This framework is local in the sense that both the checking and assurance of network stability can be dealt with on the basis of each individual voltage regulator, leading to feasible design of large power delivery networks that would be computationally impossible otherwise. Accordingly, we propose a new hybrid stability margin concept, examine its tradeoffs with power efficiency, supply noise and silicon area, and demonstrate the resulted key design implications pertaining to new stability-ensuring LDO circuit design techniques and circuit topologies. Finally, we develop an automated hybrid stability design flow that is computationally efficient and provides a practical guarantee of network stability

    Power delivery mechanisms for asynchronous loads in energy harvesting systems

    Get PDF
    PhD ThesisFor systems depending on methods, a fundamental contradiction in the power delivery chain has existed between conventional to supply it. DC/DC conversion (e.g.) has therefore been an integral part of such systems to resolve this contradiction. be made tolerant to a much wider range of Vdd variance. This may open up opportunities for much more energy efficient methods of power delivery. performance of different power delivery mechanisms driving both asynchronous and synchronous loads directly from a harvester source bypassing bulky energy method, which employs a energy from a EH circuit depending on load and source conditions, is developed. through comprehensive comparative analysis. Based on the novel CBB power delivery method, an asynchronous controller is circuits to work with tasks. The successful asynchronous control design drives a case study that is meant to explore relations between power path and task path. To deal with different tasks with variable harvested power, systems may have a range of operation conditions and thus dynamically call for CBB or SCC type power set of capacitors to form CBB or SCC is implemented with economic system size. This work presents an unconventional way of designing a compact-size, quick- circuit overcome large voltage variation in EH systems and implement smart power management for harsh EH environment. The power delivery mechanisms (SCC, employed to help asynchronous- logic-based chip testing and micro-scale EH system demonstrations
    corecore