45,156 research outputs found

    Visualization of spectral images

    Get PDF
    Spectral image sensors provide images with a large number of contiguous spectral channels per pixel. Visualization of these huge data sets is not a straightforward issue. There are three principal ways in which spectral data can be presented; as spectra, as image and in feature space. This paper describes several visualization methods and their suitability in the different steps in the research cycle. Combinations of the three presentation methods and dynamic interaction between them, adds significant to the usability. Examples of some software implementations are given. Also the application of volume visualization methods to display spectral images is shown to be valuabl

    Earthshine as an Illumination Source at the Moon

    Full text link
    Earthshine is the dominant source of natural illumination on the surface of the Moon during lunar night, and at locations within permanently shadowed regions that never receive direct sunlight. As such, earthshine may enable the exploration of areas of the Moon that are hidden from solar illumination. The heat flux from earthshine may also influence the transport and cold trapping of volatiles present in the very coldest areas. In this study, Earth's spectral radiance at the Moon is examined using a suite of Earth spectral models created using the Virtual Planetary Laboratory (VPL) three dimensional modeling capability. At the Moon, the broadband, hemispherical irradiance from Earth near 0 phase is approximately 0.15 watts per square meter, with comparable contributions from solar reflectance and thermal emission. Over the simulation timeframe, spanning two lunations, Earth's thermal irradiance changes less than a few mW per square meter as a result of cloud variability and the south-to-north motion of sub-observer position. In solar band, Earth's diurnally averaged light curve at phase angles < 60 degrees is well fit using a Henyey Greenstein integral phase function. At wavelengths > 0.7 microns, near the well known vegetation "red edge", Earth's reflected solar radiance shows significant diurnal modulation as a result of the longitudinal asymmetry in projected landmass, as well as from the distribution of clouds. A simple formulation with adjustable coefficients is presented for estimating Earth's hemispherical irradiance at the Moon as a function of wavelength, phase angle and sub-observer coordinates. It is demonstrated that earthshine is sufficiently bright to serve as a natural illumination source for optical measurements from the lunar surface.Comment: 27 pages, 15 figures, 1 tabl

    ASIME 2018 White Paper. In-Space Utilisation of Asteroids: Asteroid Composition -- Answers to Questions from the Asteroid Miners

    Full text link
    In keeping with the Luxembourg government's initiative to support the future use of space resources, ASIME 2018 was held in Belval, Luxembourg on April 16-17, 2018. The goal of ASIME 2018: Asteroid Intersections with Mine Engineering, was to focus on asteroid composition for advancing the asteroid in-space resource utilisation domain. What do we know about asteroid composition from remote-sensing observations? What are the potential caveats in the interpretation of Earth-based spectral observations? What are the next steps to improve our knowledge on asteroid composition by means of ground-based and space-based observations and asteroid rendez-vous and sample return missions? How can asteroid mining companies use this knowledge? ASIME 2018 was a two-day workshop of almost 70 scientists and engineers in the context of the engineering needs of space missions with in-space asteroid utilisation. The 21 Questions from the asteroid mining companies were sorted into the four asteroid science themes: 1) Potential Targets, 2) Asteroid-Meteorite Links, 3) In-Situ Measurements and 4) Laboratory Measurements. The Answers to those Questions were provided by the scientists with their conference presentations and collected by A. Graps or edited directly into an open-access collaborative Google document or inserted by A. Graps using additional reference materials. During the ASIME 2018, first day and second day Wrap-Ups, the answers to the questions were discussed further. New readers to the asteroid mining topic may find the Conversation boxes and the Mission Design discussions especially interesting.Comment: Outcome from the ASIME 2018: Asteroid Intersections with Mine Engineering, Luxembourg. April 16-17, 2018. 65 Pages. arXiv admin note: substantial text overlap with arXiv:1612.0070

    Emission cross sections for energetic O+^+(4S,2D,2P^4S,^2D,^2P)-N2_2 collisions

    Full text link
    We report measurements of excitation functions for the O+^{+}-N2_{2} process with the incident beam of 1101-10 keV O+^{+} in the ground O+(4S)^{+}(^{4}S) and metastable O+(2D)^{+}(^{2}D) and O+(2P)^{+}(^{2}P) states. The measurements are performed with the sufficiently high energy resolution of 0.001 eV, which allows to distinguish the excitation channels. The excitation cross section induced by incident ions in the metastable state O+(2P)^{+}(^{2}P) is much larger than that for the ground O+(4S)^{+}(^{4}S). The excitation cross section of N2+_{2}^{+} ion for (0,0), (0,1) and (1,2) bands system is measured and the ratio of intensities for these bands is established as 10:3:1.10:3:1. It is shown that the cross sections for the N+^{+^{\ast }}ions excitations in the dissociative charge exchange processes increase with the increase of the incident ion energy. The energy dependence of the excitation cross section of the band (0,0) λ=391.4\lambda=391.4 nm of the first negative system of the N2+_{2}^{+} and degree of polarization of radiation in O+^{+}-N2_{2} collision are measured for the first time. An influence of an admixture of the ion metastable state on a degree of polarization is revealed. It is demonstrated that for O+^{+}-N2_{2} collision system the degree of polarization by metastable O+^{+}(2P^{2}P) ions is less compared to those that are in the ground O+^{+}(4S^{4}S) state and the sign of polarization degree of excited molecular ions does not change.Comment: 15 pages, 8 Figure
    corecore