28,191 research outputs found

    Parallelized Interactive Machine Learning on Autonomous Vehicles

    Full text link
    Deep reinforcement learning (deep RL) has achieved superior performance in complex sequential tasks by learning directly from image input. A deep neural network is used as a function approximator and requires no specific state information. However, one drawback of using only images as input is that this approach requires a prohibitively large amount of training time and data for the model to learn the state feature representation and approach reasonable performance. This is not feasible in real-world applications, especially when the data are expansive and training phase could introduce disasters that affect human safety. In this work, we use a human demonstration approach to speed up training for learning features and use the resulting pre-trained model to replace the neural network in the deep RL Deep Q-Network (DQN), followed by human interaction to further refine the model. We empirically evaluate our approach by using only a human demonstration model and modified DQN with human demonstration model included in the Microsoft AirSim car simulator. Our results show that (1) pre-training with human demonstration in a supervised learning approach is better and much faster at discovering features than DQN alone, (2) initializing the DQN with a pre-trained model provides a significant improvement in training time and performance even with limited human demonstration, and (3) providing the ability for humans to supply suggestions during DQN training can speed up the network's convergence on an optimal policy, as well as allow it to learn more complex policies that are harder to discover by random exploration.Comment: 6 pages, NAECON 2018 - IEEE National Aerospace and Electronics Conferenc

    Explore, Exploit or Listen: Combining Human Feedback and Policy Model to Speed up Deep Reinforcement Learning in 3D Worlds

    Full text link
    We describe a method to use discrete human feedback to enhance the performance of deep learning agents in virtual three-dimensional environments by extending deep-reinforcement learning to model the confidence and consistency of human feedback. This enables deep reinforcement learning algorithms to determine the most appropriate time to listen to the human feedback, exploit the current policy model, or explore the agent's environment. Managing the trade-off between these three strategies allows DRL agents to be robust to inconsistent or intermittent human feedback. Through experimentation using a synthetic oracle, we show that our technique improves the training speed and overall performance of deep reinforcement learning in navigating three-dimensional environments using Minecraft. We further show that our technique is robust to highly innacurate human feedback and can also operate when no human feedback is given

    Constraining the Size Growth of the Task Space with Socially Guided Intrinsic Motivation using Demonstrations

    Get PDF
    This paper presents an algorithm for learning a highly redundant inverse model in continuous and non-preset environments. Our Socially Guided Intrinsic Motivation by Demonstrations (SGIM-D) algorithm combines the advantages of both social learning and intrinsic motivation, to specialise in a wide range of skills, while lessening its dependence on the teacher. SGIM-D is evaluated on a fishing skill learning experiment.Comment: JCAI Workshop on Agents Learning Interactively from Human Teachers (ALIHT), Barcelona : Spain (2011
    • …
    corecore