4 research outputs found

    Falsifiable Network Models. A Network-based Approach to Predict Treatment Efficacy in Ulcerative Colitis

    Get PDF
    This work is focused on understanding the treatment efficacy of patients with ulcerative colitis (UC) using a network-based approach. UC is one of two forms of inflammatory bowel disease (IBD) along with Crohn’s disease. UC is a debilitating condition characterized by chronic inflammation and ulceration of the colon and rectum. UC symptoms occur gradually rather than abruptly, and the degree of symptoms differs across UC patients. Only around 20% of all UC cases can be explained by known genetic variations, implying a more ambiguous aetiology that is yet not fully understood but is thought to involve a complex interplay between genetic and environmental factors. The available therapy for UC substantially reduces symptoms and achieves long-term remission. However, about one-third of UC patients fail to respond to anti-TNFα therapy and consequently develop long-term side effects due to medication. Non-response to existing antibody-based therapies in subgroups of UC patients is a major challenge and incurs a healthcare burden. Therefore, the disease markers for predicting therapy response to assist individualized therapy decisions are needed. To date, no quantitative computational framework is available to predict treatment response in UC. We developed a quantitative framework that uses gene expression data and existing biological background information on signalling pathways to quantify network connectivity from receptors to transcription factors (TF) that are involved in UC pathogenesis. Variations in network connectivity in UC patients can be used to identify responders and non-responders to anti-TNFα and anti-Integrin treatment. Our findings allow us to summarize the effect of small gene expression changes on the overall connectivity of a signalling network and estimate the effect this will have on the individual patients' responses. Estimating the network connectivity associated with varied drug responses may provide an understanding of individualized treatment outcomes. Our model could be used to generate testable hypotheses about how individual genes act together in networks to cause inflammation in UC as well as other immune-inflammatory diseases such as psoriasis, asthma, and rheumatoid arthritis

    Exploiting transfer learning for the reconstruction of the human gene regulatory network

    No full text
    Motivation: The reconstruction of gene regulatory networks (GRNs) from gene expression data has received increasing attention in recent years, due to its usefulness in the understanding of regulatory mechanisms involved in human diseases. Most of the existing methods reconstruct the network through machine learning approaches, by analyzing known examples of interactions. However, (i) they often produce poor results when the amount of labeled examples is limited, or when no negative example is available and (ii) they are not able to exploit information extracted from GRNs of other (better studied) related organisms, when this information is available. Results: In this paper, we propose a novel machine learning method that overcomes these limitations, by exploiting the knowledge about the GRN of a source organism for the reconstruction of the GRN of the target organism, by means of a novel transfer learning technique. Moreover, the proposed method is natively able to work in the positive-unlabeled setting, where no negative example is available, by fruitfully exploiting a (possibly large) set of unlabeled examples. In our experiments, we reconstructed the human GRN, by exploiting the knowledge of the GRN of Mus musculus. Results showed that the proposed method outperforms state-of-the-art approaches and identifies previously unknown functional relationships among the analyzed genes

    Exploiting Transfer Learning for the Reconstruction of the Human Gene Regulatory Network

    No full text
    Motivation: The reconstruction of Gene Regulatory Networks (GRNs) from gene expression data has received increasing attention in recent years, due to its usefulness in the understanding of regulatory mechanisms involved in human diseases. Most of the existing methods reconstruct the network through machine learning approaches, by analyzing known examples of interactions. However, i) they often produce poor results when the amount of labeled examples is limited, or when no negative example is available and ii) they are not able to exploit information extracted from GRNs of other (better studied) related organisms, when this information is available. Result: In this paper we propose a novel machine learning method which overcomes these limitations, by exploiting the knowledge about the GRN of a source organism for the reconstruction of the GRN of the target organism, by means of a novel transfer learning technique. Moreover, the proposed method is natively able to work in the Positive-Unlabeled setting, where no negative example is available, by fruitfully exploiting a (possibly large) set of unlabeled examples. In our experiments we reconstructed the human GRN, by exploiting the knowledge of the GRN of M. musculus. Results showed that the proposed method outperforms state-of-the-art approaches and identifies previously unknown functional relationships among the analyzed genes
    corecore