6,728 research outputs found

    Exploiting the Sign of the Advantage Function to Learn Deterministic Policies in Continuous Domains

    Full text link
    In the context of learning deterministic policies in continuous domains, we revisit an approach, which was first proposed in Continuous Actor Critic Learning Automaton (CACLA) and later extended in Neural Fitted Actor Critic (NFAC). This approach is based on a policy update different from that of deterministic policy gradient (DPG). Previous work has observed its excellent performance empirically, but a theoretical justification is lacking. To fill this gap, we provide a theoretical explanation to motivate this unorthodox policy update by relating it to another update and making explicit the objective function of the latter. We furthermore discuss in depth the properties of these updates to get a deeper understanding of the overall approach. In addition, we extend it and propose a new trust region algorithm, Penalized NFAC (PeNFAC). Finally, we experimentally demonstrate in several classic control problems that it surpasses the state-of-the-art algorithms to learn deterministic policies.Comment: International Joint Conferences on Artificial Intelligenc

    Exploiting the sign of the advantage function to learn deterministic policies in continuous domains

    Get PDF
    International audienceIn the context of learning deterministic policies in continuous domains, we revisit an approach, which was first proposed in Continuous Actor Critic Learning Automaton (CACLA) and later extended in Neural Fitted Actor Critic (NFAC). This approach is based on a policy update different from that of deterministic policy gradient (DPG). Previous work has observed its excellent performance empirically, but a theoretical justification is lacking. To fill this gap, we provide a theoretical explanation to motivate this unorthodox policy update by relating it to another update and making explicit the objective function of the latter. We furthermore discuss in depth the properties of these updates to get a deeper understanding of the overall approach. In addition, we extend it and propose a new trust region algorithm, Penalized NFAC (PeNFAC). Finally, we experimentally demonstrate in several classic control problems that it surpasses the state-of-the-art algorithms to learn determinis-tic policies

    Deep Variational Reinforcement Learning for POMDPs

    Full text link
    Many real-world sequential decision making problems are partially observable by nature, and the environment model is typically unknown. Consequently, there is great need for reinforcement learning methods that can tackle such problems given only a stream of incomplete and noisy observations. In this paper, we propose deep variational reinforcement learning (DVRL), which introduces an inductive bias that allows an agent to learn a generative model of the environment and perform inference in that model to effectively aggregate the available information. We develop an n-step approximation to the evidence lower bound (ELBO), allowing the model to be trained jointly with the policy. This ensures that the latent state representation is suitable for the control task. In experiments on Mountain Hike and flickering Atari we show that our method outperforms previous approaches relying on recurrent neural networks to encode the past

    Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes

    Get PDF
    While designing the state space of an MDP, it is common to include states that are transient or not reachable by any policy (e.g., in mountain car, the product space of speed and position contains configurations that are not physically reachable). This leads to defining weakly-communicating or multi-chain MDPs. In this paper, we introduce \tucrl, the first algorithm able to perform efficient exploration-exploitation in any finite Markov Decision Process (MDP) without requiring any form of prior knowledge. In particular, for any MDP with SCS^{\texttt{C}} communicating states, AA actions and ΓC≤SC\Gamma^{\texttt{C}} \leq S^{\texttt{C}} possible communicating next states, we derive a O~(DCΓCSCAT)\widetilde{O}(D^{\texttt{C}} \sqrt{\Gamma^{\texttt{C}} S^{\texttt{C}} AT}) regret bound, where DCD^{\texttt{C}} is the diameter (i.e., the longest shortest path) of the communicating part of the MDP. This is in contrast with optimistic algorithms (e.g., UCRL, Optimistic PSRL) that suffer linear regret in weakly-communicating MDPs, as well as posterior sampling or regularised algorithms (e.g., REGAL), which require prior knowledge on the bias span of the optimal policy to bias the exploration to achieve sub-linear regret. We also prove that in weakly-communicating MDPs, no algorithm can ever achieve a logarithmic growth of the regret without first suffering a linear regret for a number of steps that is exponential in the parameters of the MDP. Finally, we report numerical simulations supporting our theoretical findings and showing how TUCRL overcomes the limitations of the state-of-the-art

    Reinforcement Learning: A Survey

    Full text link
    This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word ``reinforcement.'' The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.Comment: See http://www.jair.org/ for any accompanying file
    • …
    corecore