Many real-world sequential decision making problems are partially observable
by nature, and the environment model is typically unknown. Consequently, there
is great need for reinforcement learning methods that can tackle such problems
given only a stream of incomplete and noisy observations. In this paper, we
propose deep variational reinforcement learning (DVRL), which introduces an
inductive bias that allows an agent to learn a generative model of the
environment and perform inference in that model to effectively aggregate the
available information. We develop an n-step approximation to the evidence lower
bound (ELBO), allowing the model to be trained jointly with the policy. This
ensures that the latent state representation is suitable for the control task.
In experiments on Mountain Hike and flickering Atari we show that our method
outperforms previous approaches relying on recurrent neural networks to encode
the past