1,413 research outputs found

    The Effective of Image Retrieval in Jpeg Compressed Domain

    Full text link
    We propose a new method of feature extraction in orderto improve the effective of image retrieving by using apartial Joint Photographic Experts Group (JPEG)compressed images algorithm. Prior to that, we prune theimages database by pre-query step based on coloursimilarity, in order to eliminate image candidates. Ourfeature extraction can be carried out directly to JPEGcompressed images. We extract two features of DCTcoefficients, DC feature and AC feature, from a JPEGcompressed image. Then we compute the Euclideandistances between the query image and the images in adatabase in terms of these two features. The image querysystem will give each retrieved image a rank to define itssimilarity to the query image. Moreover, instead of fullydecompressing JPEG images, our system only needs to dopartial entropy decoding. Therefore, our proposed schemecan accelerate the effectiveness of retrieving images.According to our experimental results, our system is notonly highly effective but is also capable of performingsatisfactoril

    Fast image decompression for telebrowsing of images

    Get PDF
    Progressive image transmission (PIT) is often used to reduce the transmission time of an image telebrowsing system. A side effect of the PIT is the increase of computational complexity at the viewer's site. This effect is more serious in transform domain techniques than in other techniques. Recent attempts to reduce the side effect are futile as they create another side effect, namely, the discontinuous and unpleasant image build-up. Based on a practical assumption that image blocks to be inverse transformed are generally sparse, this paper presents a method to minimize both side effects simultaneously

    Coding local and global binary visual features extracted from video sequences

    Get PDF
    Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.Comment: submitted to IEEE Transactions on Image Processin

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Approximating JPEG 2000 wavelet representation through deep neural networks for remote sensing image scene classification

    Get PDF
    Copyright 2019 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.This paper presents a novel approach based on the direct use of deep neural networks to approximate wavelet sub-bands for remote sensing (RS) image scene classification in the JPEG 2000 compressed domain. The proposed approach consists of two main steps. The first step aims to approximate the finer level wavelet sub-bands. To this end, we introduce a novel Deep Neural Network approach that utilizes the coarser level binary decoded wavelet sub-bands to approximate the finer level wavelet sub-bands (the image itself) through a series of deconvolutional layers. The second step aims to describe the high-level semantic content of the approximated wavelet sub- bands and to perform scene classification based on the learnt descriptors. This is achieved by: i) a series of convolutional layers for the extraction of descriptors which models the approximated sub-bands; and ii) fully connected layers for the RS image scene classification. Then, we introduce a loss function that allows to learn the parameters of both steps in an end-to-end trainable and unified neural network. The proposed approach requires only the coarser level wavelet sub-bands as input and thus minimizes the amount of decompression applied to the compressed RS images. Experimental results show the effectiveness of the proposed approach in terms of classification accuracy and reduced computational time when compared to the conventional use of Convolutional Neural Networks within the JPEG 2000 compressed domain
    • …
    corecore