3 research outputs found

    Exploiting the Data Sensitivity of Neurometric Fidelity for Optimizing EEG Sensing

    Get PDF
    With newly developed wireless neuroheadsets, electroencephalography (EEG) neurometrics can be incorporated into in situ and ubiquitous physiological monitoring for human mental health. As a resource constraint system providing critical health services, the EEG headset design must consider both high application fidelity and energy efficiency. However, through empirical studies with an off-the-shelf Emotiv EPOC Neuroheadset, we uncover a mismatch between lossy EEG sensor communication and high neurometric application fidelity requirements. To tackle this problem, we study how to learn the sensitivity of neurometric application fidelity to EEG data. The learned sensitivity is used to develop two algorithms: 1) an energy minimization algorithm minimizing the energy usage in EEG sampling and networking while meeting applications\u27 fidelity requirements and 2) a fidelity maximization algorithm maximizing the sum of all applications\u27 fidelities through the incorporation and optimal utilization of a limited data buffer. The effectiveness of our proposed solutions is validated through trace-driven experiments

    Design and Implementation of an Innovative Internet of Things (IOT) based Smart Energy Meter

    Get PDF
    Energy meter is very essential measuring instrument for measuring the power in domestic, industrial etc. environment. Correct and appropriate measuring of power without any error is important in order to calculate the total power consumption and then for tariff calculation. In view of this, in this paper design and implementation on an innovative smart energy meter is proposed. The proposed smart energy meter is based on Internet of Things (IoT) applications. The paper describes its design along with its working

    Internet of Things (IoT): Research, Architectures and Applications

    Get PDF
    Internet of Things is the concept of connecting any device (so long as it has an on/off switch) to the Internet and to other connected devices. The IoT is a giant network of connected things and people, all of which collect and share data about the way they are used and about the environment around them. Experts estimate that the IoT will consist of about 30 billion objects by 2020. This paper presents a study based on IoT and its applications in different field of science and technology. Along with the introduction of the IoT literature review is also provided. The paper also discusses the architecture and elements of the IoT along with its different applications
    corecore