4 research outputs found

    Exploiting semantics for improving clinical information retrieval

    Get PDF
    Clinical information retrieval (IR) presents several challenges including terminology mismatch and granularity mismatch. One of the main objectives in clinical IR is to fill the semantic gap among the queries and documents and going beyond keywords matching. To address these issues, in this study we attempt to use semantic information to improve the performance of clinical IR systems by representing queries in an expressive and meaningful context. In this study we propose query context modeling to improve the effectiveness of clinical IR systems. To model query contexts we propose two novel approaches to modeling medical query contexts. The first approach concerns modeling medical query contexts based on mining semantic-based AR for improving clinical text retrieval. The query context is derived from the rules that cover the query and then weighted according to their semantic relatedness to the query concepts. In our second approach we model a representative query context by developing query domain ontology. To develop query domain ontology we extract all the concepts that have semantic relationship with the query concept(s) in UMLS ontologies. Query context represents concepts extracted from query domain ontology and weighted according to their semantic relatedness to the query concept(s). The query context is then exploited in the patient records query expansion and re-ranking for improving clinical retrieval performance. We evaluate this approach on the TREC Medical Records dataset. Results show that our proposed approach significantly improves the retrieval performance compare to classic keyword-based IR model

    Semantic concept extraction from electronic medical records for enhancing information retrieval performance

    Get PDF
    With the healthcare industry increasingly using EMRs, there emerges an opportunity for knowledge discovery within the healthcare domain that was not possible with paper-based medical records. One such opportunity is to discover UMLS concepts from EMRs. However, with opportunities come challenges that need to be addressed. Medical verbiage is very different from common English verbiage and it is reasonable to assume extracting any information from medical text requires different protocols than what is currently used in common English text. This thesis proposes two new semantic matching models: Term-Based Matching and CUI-Based Matching. These two models use specialized biomedical text mining tools that extract medical concepts from EMRs. Extensive experiments to rank the extracted concepts are conducted on the University of Pittsburgh BLULab NLP Repository for the TREC 2011 Medical Records track dataset that consists of 101,711 EMRs that contain concepts in 34 predefined topics. This thesis compares the proposed semantic matching models against the traditional weighting equations and information retrieval tools used in the academic world today

    Rewarding the Location of Terms in Sentences to Enhance Probabilistic Information Retrieval

    Get PDF
    In most traditional retrieval models, the weight (or probability) of a query term is estimated based on its own distribution or statistics. Intuitively, however, the nouns are more important in information retrieval and are more often found near the beginning and the end of sentences. In this thesis, we investigate the effect of rewarding the terms based on their location in sentences on information retrieval. Particularly, we propose a kernel-based method to capture the term placement pattern, in which a novel Term Location retrieval model is derived in combination with the BM25 model to enhance probabilistic information retrieval. Experiments on five TREC datasets of varied size and content indicates that the proposed model significantly outperforms the optimized BM25 and DirichletLM in MAP over all datasets with all kernel functions, and excels compared to the optimized BM25 and DirichletLM over most of the datasets in P@5 and P@20 with different kernel functions

    Learning Clinical Data Representations for Machine Learning

    Get PDF
    corecore