
REWARDING THE LOCATION OF

TERMS IN SENTENCES TO

ENHANCE PROBABILISTIC

INFORMATION RETRIEVAL

BAIYAN LIU

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN

PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF ARTS

GRADUATE PROGRAM IN INFORMATION SYSTEMS AND

TECHNOLOGY

YORK UNIVERSITY

TORONTO, ONTARIO

SEPTEMBER 2016

©Baiyan Liu 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by YorkSpace

https://core.ac.uk/display/84743886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In most traditional retrieval models, the weight (or probability) of a query term is

estimated based on its own distribution or statistics. Intuitively, however, the nouns are

more important in information retrieval and are more often found near the beginning

and the end of sentences. In this thesis, we investigate the effect of rewarding the terms

based on their location in sentences on information retrieval. Particularly, we propose

a kernel-based method to capture the term placement pattern, in which a novel Term

Location retrieval model is derived in combination with the BM25 model to enhance

probabilistic information retrieval. Experiments on five TREC datasets of varied size

and content indicates that the proposed model significantly outperforms the optimized

BM25 and DirichletLM in MAP over all datasets with all kernel functions, and excels

compared to the optimized BM25 and DirichletLM over most of the datasets in P@5

and P@20 with different kernel functions.

ii

Acknowledgements

I would like to thank my supervisor Dr. Jimmy Huang for his motivation and guidance.

I would like to thank my thesis committee member Dr. Augustine Wong for his insight

and suggestions and my defense committee member Dr. Aijun An for her thorough

scrutiny. I would also like to thank Dr. Jeff Ye and Dr. Xiangdong An from the

Information Retrieval and Knowledge Management lab for their help in designing and

running my experiments.

Finally, I would also like to thank my wife Anjie for her support.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

1 Introduction 1

1.1 History of Information Retrieval . 1

1.2 Information Retrieval Models . 2

1.2.1 The Boolean Model . 2

1.2.2 The Vector Space Model . 2

1.2.3 Probabilistic Models . 3

1.2.3.1 The Language Model . 4

1.2.3.2 The BM25 Model . 4

1.3 Natural Language Processing . 5

1.3.1 Statistical Phrases . 6

1.3.2 Syntactic Phrases . 7

1.4 Sentence Patterns . 7

1.5 Term Proximity . 9

2 Related Work 11

2.1 Syntactic Nouns and Noun-Phrases . 11

2.2 Syntactic Patterns . 12

2.3 Other Patterns in Documents . 14

2.4 Term Proximity . 15

2.4.1 Kernel Functions . 16

2.4.2 Sentence-based Summarization . 17

3 Preliminary Experiments 19

3.1 Experimental Settings . 19

3.2 Placement of Nouns in Sentences . 20

3.2.1 Design . 20

3.2.2 Results . 21

3.3 Placement of Important Terms in Sentences 22

3.3.1 Design . 22

3.3.2 Results . 23

iv

3.3.3 Query Length Analysis . 24

3.4 Effectiveness of Proposed Weighting Method 25

3.4.1 Design . 25

3.4.2 Results . 26

4 Integration of Term Location into BM25 28

4.1 Design of the Reward Formula . 28

4.1.1 Term Location . 28

4.1.2 Kernel Functions . 29

4.1.3 Effect of the β and γ Parameters 32

4.1.4 Sentence Length Normalization . 34

4.2 Merge into BM25 . 34

4.3 Query Length Normalization . 35

4.4 Design Decisions . 36

5 Experimental Settings 37

5.1 Collections . 37

5.2 Evaluation Metrics . 38

5.3 Terrier Settings . 39

5.4 Baselines . 39

5.5 System Settings . 40

5.6 Secondary Index Settings . 40

5.7 Retrieval and Evaluation . 41

6 Experimental Results 42

6.1 Effectiveness of Our Model . 42

6.1.1 WT2g . 42

6.1.2 disk4+5 . 44

6.1.3 WT10g . 46

6.1.4 Blogs06 . 48

6.1.5 Gov2 . 49

6.1.6 Overall Effectiveness . 51

6.2 Parameter Sensitivity . 52

6.2.1 The α Parameter . 52

6.2.1.1 WT2g . 53

6.2.1.2 disk4+5 . 54

6.2.1.3 WT10g . 55

6.2.1.4 Blogs06 . 56

6.2.1.5 Gov2 . 57

6.2.2 The β Parameter . 58

6.2.2.1 WT2g . 58

6.2.2.2 disk4+5 . 59

6.2.2.3 WT10g . 60

6.2.2.4 Blogs06 . 61

6.2.2.5 Gov2 . 62

6.2.3 The γ Parameter . 64

6.2.3.1 WT2g . 64

v

6.2.3.2 disk4+5 . 64

6.2.3.3 WT10g . 65

6.2.3.4 Blogs06 . 66

6.2.3.5 Gov2 . 67

6.2.4 Summary . 68

7 Conclusions and Future Work 71

7.1 Conclusions . 71

7.2 Future Work . 72

Bibliography 74

Appendix A Placement of Nouns in Sentences Preliminary Experiment 80

A.1 Instructions . 80

A.2 Noun Placement Parser . 81

Appendix B Placement of Important Terms in Sentences Preliminary
Experiment 86

B.1 Instructions . 86

B.2 Query Term Placement Parser . 88

Appendix C Effectiveness of Proposed Weighting Method Preliminary
Experiment 102

C.1 Instructions . 102

C.2 Weighting Method Parser . 103

C.3 Complete Results . 108

Appendix D Modifying Terrier 110

D.1 Instructions . 110

D.2 Code Changes . 110

Appendix E Terrier Properties Files 152

Appendix F Generating the Primary Index 155

Appendix G Generating the Secondary Index 156

Appendix H Running Retrieval on Terrier 157

vi

Chapter 1

Introduction

1.1 History of Information Retrieval

Information retrieval (IR) is simply the concept of cataloging and retrieving records

within a collection, such as web pages on the Internet, books in a library, or chapters

in a book. IR originated from librarianship. It arose from the need to manage large

amounts of documents efficiently in such a way that facilitates retrieval. Historically,

written records were ordered categorically, alphabetically, or catalogued with a table

of contents. A well-known example of a table of contents is the first book of Natural

History, a comprehensive encyclopedia published by Pliny the Elder circa 77-79 AD.

In addition, Pliny the Elder credits Quintus Valerius Soranus, a Latin poet, for his

precedence in creating a table of contents approximately a hundred years before in On

Mysteries. However, more primitive methods of cataloging can be traced back to around

3000 BC [1].

Historic methods of manually cataloging and retrieving records are not sufficient for

modern information. The advent of and the advances in computers followed by the

Internet have led to what’s known as information overload, where data is produced

quicker than our ability to ingest it. Vannevar Bush first planted the idea of using

computers to perform automatic IR in As We May Think in 1945 [2]. The next three

decades then saw the building of the foundation of modern IR.

Formally, modern IR, or text retrieval, is the task of identifying the documents in a

document collection that are relevant to the information needs. The relevant documents

1

are often ranked by the degree of relevance, from the most relevant document to the

least relevant document. Information needs is expressed in the form of a query, such as

a search string in a web search engine. The documents are often indexed or catalogued

based on the terms in the document, which is based on Luhn’s work [3]. The degree

of relevance can then be determined by calculating the degree of similarity between the

query and the document. Many IR models have been developed to calculate this degree

of similarity.

1.2 Information Retrieval Models

1.2.1 The Boolean Model

The earliest IR models are the Boolean models, which are based on set theory. In the

standard Boolean model, the document D is represented as a set:

D = {d1, d2 . . . dn} (1.1)

where di =

 1 if ti ∈ D

0 if ti 6∈ D
(1.2)

and T = {t1, t2 . . . tn} (1.3)

where T is the set of all terms used in the IR system, ti is the ith term in T , and n is the

number of terms in T . The query Q can only be formulated as a Boolean expression with

the Boolean operators AND, OR, and NOT . The document is considered relevant only

if it is an exact match to Q, otherwise, the document is not considered relevant. The

limitations of the standard Boolean model is that it is not capable of ranking documents,

partially matching documents, or assigning different weights to terms. Complex Boolean

expressions are also difficult to formulate.

1.2.2 The Vector Space Model

The vector space model [4–6] is based on linear algebra. It improves upon the rigidness

of the standard Boolean model. In the vector space model, the document D and the

2

query Q are represented as vectors:

−→
D = {d1, d2 . . . dn} and

−→
Q = {q1, q2 . . . qn} (1.4)

where di and qi are the weights of the term ti in D and Q, respectively, ti is the ith term

in T , and n is the number of items in T . T is defined in Equation 1.3. The weight of a

term determines the importance of the term in the document.

A typical way of calculating the weight of ti in D in the vector space model is with term

statistics based approaches such as the TF -IDF weighting model [5]. The TF -IDF

weighting model is based on two components, TF , which promotes terms that appear

frequently in the document, and IDF , which demotes terms that appear frequently

in the document collection. The degree of similarity between D and Q, sim(D,Q), is

calculated with the cosine similarity measure as follows:

sim(D,Q) =

∑n
i=1(di ∗ qi)√∑n

i=1 d
2
i ∗
√∑n

i=1 q
2
i

(1.5)

The main limitation of the vector space model is that the semantic and statistical de-

pendence information between the terms in the document is lost. This is because the

vector representation assumes that the dimensions in the vector are independent. In IR,

assuming that the terms in the document are semantically and statistically independent

is also known as the bag of words approach.

1.2.3 Probabilistic Models

The probabilistic relevance model [7] is based on probability theory. It was proposed in

1976, around the same time as the vector space model. In the probabilistic relevance

model, the document D and the query Q are represented as vectors. D and Q are defined

in Equation 1.4. The degree of similarity between D and Q, sim(D,Q), is estimated as

follows:

sim(D,Q) =
P (R|D)

P (R|D)
=
P (D|R)P (R)

P (D|R)P (R)
(1.6)

where R is relevance and R is non-relevance. P (R|D) is then the probability that D is

relevant and P (R|D) is the probability that D is not relevant. Since for a single query,

P (R) and P (R) are constant for every document in the document collection, equation

3

1.6 can be formulated as follows:

sim(D,Q)
rank
=

P (D|R)

P (D|R)
(1.7)

Several weighting models have been proposed to estimate Equation 1.7. The most well-

known and effective models are the language model [8–10] and the BM25 model [11–14].

Both the language model and the BM25 model are state of the art weighting models

in IR. However, the probabilistic relevance model and the vector space model are not

dissimilar. The main difference is the way that the degree of similarity between a

document and a query is calculated. The probabilistic relevance model also assumes

that all the terms in the document are semantically and statistically independent.

1.2.3.1 The Language Model

The language model was proposed by Ponte and Croft in 1998 [8]. The model generates

a language model, or a probability distribution, MD from the document D. It then

estimates the probability that the query Q is generated by D. The documents are

ranked by the probability that Q is generated from each document, from the mostly

probable to the least probable. The uni-gram language model follows the bag of words

approach and is the most common. In the uni-gram language model, the probability

that Q is generated by D, P (Q|MD), is as follows:

given Q = {q1, q2 . . . qn} (1.8)

P (Q|MD) = P (q1, q2 . . . qn|MD) =
n∏
i=1

P (qi|MD) (1.9)

where qi is the ith term of Q. Smoothing is often used to ensure that P (qi|MD) > 0.

In our experiments, we compare the performance of our model against the DirichletLM

model, which is the uni-gram language model with Dirichlet smoothing [15].

1.2.3.2 The BM25 Model

The BM25 model was proposed by Robertson et al in 1995 [12]. It is based on the

2-Poisson model [16]. The 2-Poisson model assumes that there are two types of terms,

4

function terms and specialty terms. The distribution of a function term in a docu-

ment collection can be modeled with a Poisson distribution. However, they discovered

that there exists two levels of treatment for specialty terms in a document collection.

This indicates that there are two document classes for each specialty term. Modelling

the distribution of a specialty term in a document collection then requires a 2-Poisson

distribution, which is defined as follows:

f(t = k) = π
e−λ1λk1
k!

+ (1− π)
e−λ2λk2
k!

(1.10)

where λ1, λ2, and π are parameters. λi is the mean frequency of the term t in the

document class i, π is the proportion of class 1 documents in the document collection,

and f(t = k) is distribution of t with frequency k in the document collection.

In 1980, Robertson et al [17] proposed a probabilistic weighting model. In this model,

the weight score of the document D, w(D), is defined as follows:

w(D) = log
P (D|R)P (0|R)

P (D|R)P (0|R)
(1.11)

where 0 is the zero vector. In 1994, Robertson and Walker combined Equation 1.10 with

Equation 1.11 and proposed the BM11 and BM15 models [11]. In 1995, Robertson et al

then combined BM11 and BM15 into the BM25 model [12]. The contribution of BM11

and BM15 into BM25 is controlled with the b parameter. BM25 is equivalent to BM15

if b = 0 and is equivalent to BM11 if b = 1. In our experiments, we extend the BM25

model and compare the performance of our model against the BM25 model.

1.3 Natural Language Processing

Most modern IR models such as the DirichletLM and the BM25 models use the bag of

words approach. However, the bag of words approach is only used to simplify the models

and the assumption that all the terms in a document are independent is not always true

in practice. For example, the terms “rock” and “star” in a document could indicate

that the document is about astronomy, but if the terms are adjacent to one another,

then the document could be about music. However, the bag of words approach treats

5

both scenarios equivalently. Therefore, with the bag of words approach, all semantic

and statistical relations between the terms in a document are lost.

Natural Language Processing (NLP) is the concept of extracting the semantic meaning

from natural language. NLP has a wide range of applications, such as machine transla-

tion, automatic summarizing, and IR. For example, stemming is a NLP task. Stemming

is the process of reducing a term to its stem such that all morphological variants of

the term are represented identically. For example, both “connecting” and “connected”

would be stemmed to “connect”. In most modern IR systems the terms in the document

and the query are stemmed. In our experiments, we use the English Porter stemmer

[18], which is based on suffix stripping.

1.3.1 Statistical Phrases

NLP can be used improve IR by replenishing the semantic meaning removed by the bag

of words approach. A common and effective NLP approach to improve IR is to combine

the terms into phrases. There are two types of phrases, statistical phrases and syntactical

phrases [19]. Statistical phrases are non-function terms that often appear together in

a document. For example, if the term “rock” is always immediately followed by the

term “star” in a document, then “rock star” is a statistical phrase in the document.

Statistical phrases are not limited to two terms. However, bi-gram statistical phrases are

the easiest to implement and the least complex to compute. The effectiveness of higher

order n-grams also suffer from diminishing returns since the frequency of higher order

n-grams is much lower than bi-grams. Low frequency n-grams are not good document

discriminators and have an adverse effect on retrieval recall [5]. Therefore bi-gram

statistical phrases provide the best trade-off between effectiveness and complexity and

are the most common.

However, strict adjacency is too rigid of a requirement since two semantically related

terms may not always be adjacent. For example, in Figure 1.1, “ice” is semantically

related to “asteroid” but is not always adjacent to “asteroid”.

Scientists have discovered water ice on an asteroid for the second time. The asteroid’s
ice layer is probably less than one micron thick.

Figure 1.1: Example: semantically related non-adjacent terms

6

Both query accuracy and query coverage is needed for good retrieval performance [5, 19].

Enforcing strict adjacency may be too restrictive and may have an adverse effect on query

coverage and therefore retrieval recall. A more effective approach is to estimate the

probability that two terms are semantically related by analyzing the distance between

the occurrences of the two terms in a document. Two terms that always appear close

together in a document are more likely to be semantically related. Many IR models have

been proposed to estimate this probability using methods such as a sliding window and

kernel functions [20–25].

1.3.2 Syntactic Phrases

Syntactic phrases are sets of terms that follow syntactic patterns. For example, ‘blue

hat” matches the syntactic pattern {adjective noun} and is a syntactic phrase. Part-of-

speech tagging is performed to identify the part-of-speech that each term in the document

corresponds to. Interesting syntactic patterns are then extracted from the document

and used in IR. Noun-based phrases, or noun-phrases, have been found to be the most

effective type of syntactic phrases in improving retrieval performance [26]. However,

extracting syntactic phrases from the documents is more computationally intensive than

extracting statistical phrases, but can be more effective [19].

We want to combine the effectiveness of syntactic phrases with the simplicity of statistical

phrases. Specifically, we want to identify the nouns in the documents using statistical

phrase extraction methods in order to improve probabilistic retrieval performance.

1.4 Sentence Patterns

In linguistic topology, languages can be classified by the most common word-order of

sentences. English is classified as a subject-verb-object (SVO) language [27]. This means

that in most English sentences, the subject is placed at the beginning of the sentence

and the object is placed at the end of the sentence.

Most English sentences follow the six basic sentence patterns shown in Table 1.1 [28].

In most of the sentence patterns, the subject is placed at the beginning of the sentence.

The subject, direct object, subject complement, or object complement is placed at the

7

Subject Predicate

Pattern 1 Subject Intransitive verb

The baby is sleeping.

Pattern 2 Subject Linking verb Subject complement

Dogs are social animals.

Pattern 3 Subject Transitive verb Direct object

We visited our aunt.

Pattern 4 Subject Transitive verb Direct object Object complement

Our neighbors leave their dogs alone.

Pattern 5 Subject Transitive verb Indirect object Direct object

They bought her a new leash.

Pattern 6 There or It Verb (usually be) Subject

There isn’t any hot water.

Table 1.1: Basic English sentence patterns [28]

end of the sentence. The subject and direct object are comprised of nouns and noun-

phrases. The subject complement and object complement are comprised of adjectives or

nouns. These sentence patterns suit most but not all English sentences, and exceptions

are rare [27].

Google bid, but lost the auction to own the Nortel patents.

Figure 1.2: Example: noun placement pattern in sentences

Modern methods of integrating part-of-speech information into IR involve part-of-speech

tagging or with the assistance of a dictionary or a thesaurus. These methods are complex

and computationally intensive. We want to integrate basic English sentence patterns

information into IR in order to identify the nouns in the documents. We do this with

statistical phrase extraction methods in order to avoid the cost in complexity and com-

puting time associated with traditional methods. Specifically, we want to estimate the

probability that a term is a noun based on the location of the term in sentences. Since

the subject and the object are placed at the beginning and the end of most of sentences,

a term that always appear at the beginning or the end of sentences is more likely to be

a noun.

8

1.5 Term Proximity

Term proximity in IR is the technique of measuring the distance between the terms in a

document to estimate the semantic relatedness of the terms. This is to extract statistical

phrases from documents. Many IR models have been proposed to meaningfully capture

this information. Most of the well-known models are based on adjacency [19], usually

within a window, spans [23], and the term-to-term distance [24]. However, span-based

measures such as Span [29] and MinCover [23] are not as effective as the other measures.

Indeed, the density of spans was found to be negatively correlated with the relevance of

the documents [25].

We use the location of the term in sentences to estimate the probability that the term

is a noun. There are two methods that we can use to capture the location of the terms.

The first method is to measure the distance between the terms and the nearest sentence-

final punctuation. In doing this, we can apply term proximity measures to measure the

proximity of the term to the beginning or the end of sentences. We can then use this

information to estimate the probability that the term is a noun. The second method

is to measure the distance between the terms and the middle of sentences. We can

then estimate the probability that the term is not a noun. In our experiments, we

choose the latter method using a combination of the adjacency within a window and the

term-to-term distance measures.

In order to integrate this information into IR, we reward a term tD based on the prob-

ability that tD is a noun in the document D, where t is a term in the query. tD is given

more reward if tD is more likely to be a noun. We do this for all of the documents in the

document collection in order to promote the documents where t is more likely to be used

as a noun and demote the documents where t is less likely to be used as a noun. Nouns

are more important than the other part-of-speech in a document in IR [26]. Therefore

we hope to elevate the documents in which t is important and improve probabilistic IR.

The main contributions of this thesis are summarized as follows:

• We investigate the importance of the patterns of terms in the English language.

9

• In order to reward terms that are more likely to be nouns, we propose a kernel-

based method to capture the term placement pattern, in which we propose a novel

Term Location retrieval model.

• A normalization is proposed specifically for balancing term weights in short and

long sentences.

The rest of this thesis is organized as follows. In Chapter 2, we discuss related work

in integrating syntactic patterns and term proximity information into IR. In Chapter

3, we conduct preliminary experiments to prove the soundness of our assumptions. In

Chapter 4, we show the details of the implementation of our model and the effect of the

parameters in our model. In Chapter 5, we show the settings under which we conduct

our experiments and perform our evaluation. In Chapter 6, we show and analyze the

results of our experiments. In Chapter 7 we present our conclusions and discuss possible

extensions to our model.

10

Chapter 2

Related Work

2.1 Syntactic Nouns and Noun-Phrases

In IR, the weighting model is one of the most important components. The weighting

model is used to assign scores to the documents according to their degree of similarity

to a given search query. In the past decades, a large number of models such as the TF -

IDF weighting model [5], BM25 [12], and the language model [8] have been proposed

to address this problem. Most of the models estimate the importance (or probability)

of a query term in a document based on the distribution or the statistics of the term,

such as the term frequency, the collection term frequency, and the document frequency.

However, as described in Chapter 1.2, most of the models use the bag of words approach

to accomplish this. Statistically similar terms and documents may not be semantically

similar. For example, the terms “blue hat” and “red hat” are statistically similarly,

but could be unrelated semantically. Similarly, ”red hat” could also be semantically

unrelated to the term “hat”.

In order to refine this estimation, some researchers have proposed to identify nouns

and noun-phrases in the documents using NLP. Jing and Croft [26] found that previous

attempts at automatically constructing association thesauri were not very successful in

improving IR. They theorized that one of the causes was that all lexical categories were

treated equally. They proposed PhraseFinder to automatically construct collection-

dependent association thesauri. They then used the association thesauri to assist query

expansion and found that nouns and noun-phrases were the most effective in improving

11

IR. Evans and Zhai [30] recognized that using single words as indexing terms, or the

bag-of-words approach, may not accurately describe the document and is prone to many

problems, such as the phrase normalization problem. The phrase normalization problem

is where phrases that are syntactically different but semantically similar, such as ”junior

college” and ”college junior”, are matched. In order to address those problems, they

extended the phrase-based indexing system in CLARIT to include the following noun-

based phrase types: lexical atoms, head modifier strips, sub-compounds, and cross-

preposition modification pairs. Liu et al [31] classified noun-phrases into four types,

proper names, dictionary phrases, simple phrases, and complex phrases and ranked

documents based on phrase similarity. They also imposed additional constraints on

candidate term selection in pseudo relevance feedback. Terms also need to be either

highly positively globally correlated with a query term or phrase or contain query terms

in its WordNet definition to be chosen as a candidate. Zheng et al [32] used noun-

phrases and semantic relationships to represent documents in order to assist document

clustering. Noun-phrases were extracted with the assistance of WordNet. There are also

other work that used nouns and noun-phrases to improve IR [19, 33, 34].

However, previous work that use nouns and noun-phrases to improve IR rely on a the-

saurus such as WordNet or a part-of-speech tagger to facilitate the identification of the

nouns and noun-phrases. These methods, while effective at replenishing the semantic

information in the documents, are computationally intensive. We propose to use the

positional information of the terms in sentences to calculate the probability that the

terms are important. Our proposed method does not rely on a thesaurus or a part-of-

speech tagger, which should alleviate the cost in computing time associated with those

approaches.

2.2 Syntactic Patterns

A syntactic pattern is a linguistic pattern or schema of the semantic relationships be-

tween terms. For example, {adjective noun} is a syntactic pattern. Sentence patterns

is also a type of syntactic pattern. Many part-of-speech taggers such as the Brill tagger

[35] rely on the usage of syntactic patterns to correctly tag the terms in sentences. Sim-

ilarly, syntactic patterns have been used to facilitate the identification of the nouns and

noun-phrases, which are the important terms in the documents in IR.

12

Yang et al [36] used a parse tree to transform sentences in legal agreements into SVO

representations of sentences. The SVO representations are then used in conjunction with

cue terms to identify the provisions provided by sentences, such as assignment and risk

of loss. In their experiments they found that provisions extraction using the SVO repre-

sentation resulted in high precision but low recall, which could be due to the specificity

of SVO sentence patterns and the difficulty in parsing complex sentences. Liu et al [37]

used syntactic patterns such as {NP such as NP} and {NP aka NP} to extract seman-

tic relationships such as meronymy and synonymy from clinical documents. However,

experimental results varied between the two corpora used and not all syntactic patterns

produced the same quality of semantic relationships. They also observed a low recall

rate in their experiments due to the low frequency of the syntactic patterns in some

of the documents. Hung et al [38] used syntactic pattern matching to extract syntac-

tically complete sentences that express event-based commonsense knowledge from web

documents. Semantic role labeling is then used to tag the semantic roles of the terms

in sentences, such as the subject and the object. Various plausibility verification heuris-

tics are then applied to sentences to prune the low quality sentences. The effectiveness

of their approach was comparable to ConceptNet, a human annotated commonsense

knowledge base. Ibekwe-SanJuan et al [39] built finite state automaton with syntactic

patterns and synonyms from WordNet. The finite state automaton is used to tag sen-

tences in scientific documents according to its category, such as result and objective.

The tagged sentences are then used to summarize the documents.

The above work are all limited in scope. The experiments were only conducted on a

specific type of documents or sentences, for example, legal documents [36] and scientific

documents [39]. This is due to the difficulty of training or finding all effective syntactic

patterns in a corpora [39]. Likewise, it is also difficult to find syntactic patterns that

are effective in all the documents of a single corpus [37]. Rule-based part-of-speech

taggers are less effective in unseen text. Therefore, we propose to use sentence patterns.

Since English is a SVO language [27], most of the English sentences follow the syntactic

pattern {subject verb object}. Yang et al [36] used the SVO syntactic pattern to extract

the subject, the verb, and the object from sentences. Similarly, we propose to use the

SVO syntactic pattern to calculate the probability that a term is part of the subject

or part of the object. We do this based on its nearness to the start or the end of the

sentence. Furthermore, [36, 37] both observed low recall in their experiments due to

13

the specificity of the syntactic patterns. Yang et al [36] used legal cue words to parse

sentences and Liu et al [37] used syntactic patterns that only matched specific types of

semantic relationships. Therefore we propose to use general sentence patterns that are

applicable to most of sentences in English, which should improve recall.

2.3 Other Patterns in Documents

In addition to syntactic patterns, there exists other patterns in English documents [40–

49]. Many researchers have used the pattern information in the documents to reward

the terms that are more important in order to improve retrieval performance. Zhao

et al [50] theorized that terms near the beginning of a document are more important

in information retrieval. This is based on the intuition that a summary is a good

representation of a document and that authors often summarize of their ideas near the

beginning of the document. They proposed shape functions to reward terms based on

its nearness to the beginning of the document. This is to use the syntactic structure

information of the document and estimate the probability that a term is important. Our

proposed approach is similar. However, we consider the syntactic structure information

in sentences of the document instead of the whole document. Similarly, Seo and Jeon [51]

re-ranked documents based on the normalized query likelihood scores of sentences in the

documents. The query likelihood score of a sentence S is P (Q|S), or the probability of

the query Q given the uni-gram language model of S. A logical regression model is then

used with various features such as the variance of the relevance levels and the position

of the first peak to greatly improve the precision of the top 5 documents. Trotman [40]

gave certain parts of academic documents more weight, such as the headline, the author,

and the leading paragraph. The weights were trained using a genetic algorithm. This

approach makes similar assumptions as [50]. However, no significant improvement over

BM25 was observed. Though the context unit of [40, 50] are different from our proposed

approach, the motivation is the same, which is to use the non-obvious patterns in the

documents to improve IR.

There also exist works that use the structural information of the explicit structures,

such as XML elements [52] and lists [41], in the documents to improve IR. Broschart

and Schenkel [52] gave more weight to terms co-occurring in the same element than terms

occurring close together but in different elements in XML documents. They did this by

14

introducing virtual gaps between the elements so that terms in different elements are

considered more distant. This approach could be integrated into our proposed method

but in the context of a sentence instead of a XML document. Varying-sized virtual

gaps could be introduced for cue words or punctuation when calculating the distance

between a term and sentence-final punctuation. Dou et al [41] used free text patterns,

HTML tag patterns, and repeat region patterns in web documents to extract lists from

the documents, which were clustered into dimensions. Analysis showed that the top

results for each query contained many meaningful dimensions. Lists can be used to

find hypernymy and meronymy relationships in the documents, which can be used to

improve IR [37]. This extension is beyond the scope of this thesis. We leave them for

future investigation. Zhou et al [45] explored the effect of document length on document

relevance. They used kernel density estimation to estimate the probability density of the

relevant and non-relevant documents in a collection. Data transformation algorithms is

then applied on top of that in order to better visualize the difference between relevant

and non-relevant documents, from which a distribution function is estimated for the

relevant and non-relevant documents. This information is then integrated into BM25 in

order to significantly improve it.

2.4 Term Proximity

Since we strive to achieve the same effect as syntactic phrase extraction but with simpler

methods. we turn to statistical phrase extraction methods, which are less complex and

less computationally intensive. A popular and well-studied approach is to use term

proximity to estimate the probability that the statistical phrase comprised of two terms

is related, where the probability is higher if the two terms are closer together. Many

models have been proposed to measure the distance between the terms and estimate

that probability [53–55].

Liu et al proposed a similar model in [56]. Rasolofo and Savoy [20] found that using term

proximity information with Okapi BM25 improved retrieval performance especially with

top documents. They define distance as the number of terms between two key terms.

Büttcher et al [21] extended [20] and processed the queries using the document-at-a-

time approach. They defined the distance between key terms Ti and Tj as the number

of postings between posting Pi, containing Ti, and posting Pj , containing Tj . They

15

found that term proximity information is more important in larger collections. They

theorized that the effect is due to term proximity information effectively discriminating

against the increased number of non-relevant documents that contain the query terms

in larger collections. Tao and Zhai [23] studied span-based distance measures and ag-

gregated pairwise distance measures to measure term proximity. In their experiment,

the span-based distance measures were not effective but the aggregated pairwise dis-

tance measure MinDist improved retrieval performance significantly. They also found

that term proximity information is more effective in longer documents. He et al [57]

used sliding windows and survival analysis to model the proximity between terms and

extended BM25. Song et al [58] used devised a method to group close query terms

together with no overlap. Their approach was more consistently precise than [20]. Cho

et al [59] used Bahadur-Lazarsfeld expansion to generate term pairs within a window.

While improvements were moderate overall, large improvements were seen in precision

in top documents. However, they cited performance issues since the pairs were generated

at retrieval time, and suggested a database with pre-calculated pairs to account for this.

Miao et al [60] integrated the term proximity information between the terms in the query

and the candidate expansion terms in Rocchio’s pseudo relevance feedback model. Term

proximity was calculated using either a sliding window, the Gaussian kernel function, or

the Hyperspace Analogue to Language (HAL) method. All three methods significantly

improved BM25 with Rocchio’s. However, the HAL method proved to be the most

effective.

From those experiments, span-based measures do not seem to be effective in measuring

term proximity. Window-based and aggregated pairwise distance measures [23] are more

effective. In this thesis, we use a window-based method and AvgDist to measure term

proximity.

2.4.1 Kernel Functions

Kernel functions is another method of measuring term proximity. Kernel functions

are flexible. A term is not either inside (1) or outside (0) of a window, instead a value

between [0, 1] is given according to the distance between the two terms. Kernel functions

have been proven to be highly effective in improving IR.

16

Beigbeder and Mercer [61] integrated kernel functions into the Boolean model to ap-

proximate term co-occurrence. Petkova and Croft [22] used kernel density estimation∑N
i k(t, c) to estimate the strength of association between query terms and candidate

entities p(t|c, d). p(t|c, d) is the probability that the query term t is associated with

the candidate entity c in the document d. This was used to estimate p(c, t) in order

to perform named entity retrieval. Zhao et al [24] proposed the CRTER model, which

used kernel density estimation to estimate the probability that two closely occurring

terms form a bi-gram phrase. They originated kernel functions from key terms, where

the probability of the terms forming a bi-gram phrase is the value of the kernel function

where two kernel functions intersect. They used Gaussian, Triangle, Uniform, Circle,

and Cosine kernel functions from [62] and additionally introduced the Quartic, Epanech-

nikov, and Triweight kernel functions to IR. Zhu et al [25] introduced Span Cover to

measure the distance between two query terms. Span Cover is a span based distance

measure, similar to MinCover [23]. They then used the density of each Span Cover

instance in a document, which were calculated with a kernel function, and the number

of Span Cover instances in a document to improve probabilistic information retrieval.

Barakat et al [63] integrated cross terms from [24] into the uni-gram language model.

We adapt kernel functions in term proximity to measure the distance between a term and

sentence-final punctuation. Most of the English sentences follow the syntactic pattern

{subject verb object} [27]. Therefore we use kernel functions to estimate the probability

that a term is the subject or the object based on its distance to where we expect the

subject or the object to be in a sentence. In contrast with [24], our proposed method is

designed such that non-symmetrical kernel functions and kernel functions with negative

values can be adopted. However, we leave that for future investigation.

2.4.2 Sentence-based Summarization

Challenges and techniques in sentence-based summarization are also applicative in sentence-

based IR models. For example, Fisher and Roark [64] extracted sentences from docu-

ments and used supervised sentence rankings for extractive summarizing. They used

mostly features aggregated from word-based features such as the tf -idf of a term in a

cluster and sentence positions. They also removed short and long sentences to avoid

simple sentences and long lists, respectively, which make poor summaries. Quotes and

17

anaphora resolution presented challenges for them. Luhn [65] derived the significance

factor of a sentence based on the frequency of the terms in sentences of the document

and the position of the terms in sentences. A feasibility experiment was then conducted

by combining the most significant sentence in each section of a document into an ab-

stract. In the paper it was hypothesized that synonyms and the authors’ writing styles

may pose problems to their method.

18

Chapter 3

Preliminary Experiments

In order to ensure that our assumptions are sound in practice, we conduct several pre-

liminary experiments. Our main assumptions are summarized as follows:

• Nouns are more likely to be found near the beginning and the end of sentences. In

Chapter 3.2 we assess the soundness of this assumption by analyzing the placement

of the nouns in sentences.

• Important terms are more likely to be found near the beginning and the end of

sentences. In Chapter 3.3 we assess the soundness of this assumption by analyzing

the placement of the query terms in sentences of the relevant and the non-relevant

documents.

Lastly, in Chapter 3.4 we conduct a final preliminary experiment to assess the effective-

ness of our proposed weighting method.

3.1 Experimental Settings

We conduct our first and second preliminary experiments on the WT2g data set. WT2g

is a 2 GB size crawl of general web documents. It was used in the TREC 1999 Web

track. WT2g is comprised of 247,491 documents. In each document, we ignore the

header by only processing the text between the </DOCHDR> and </DOC> tags.

We also remove all HTML tags, numbers, and characters that the Stanford Tagger

19

cannot parse. In the second preliminary experiment, we use the topics 401-450 and

the corresponding relevance ground truths in order to determine the relevant and the

non-relevant documents. We use the Linux Mint 15 and 16 x64 and Ubuntu 12.04 x86

operating systems with Java SE 8u5 x64 and x86, respectively.

The common experimental settings for all our preliminary experiments are as follows.

We use the English Stanford Tagger 3.3.1 for part-of-speech tagging and sentence iden-

tification. We add newlines to the Stanford Tagger’s default set of sentence delimiters.

Punctuation that are tagged as any of {# $ ” () , : “} are removed prior to processing.

We do not analyze non-sentence-final punctuation in this thesis. We stem the terms

using an English Porter stemmer [18]. Stop words are removed using the stop words list

from Terrier 3.5. We also remove both the short and the long sentences in order to avoid

simple sentences and long lists, respectively [64]. We only keep a sentence s if |s| ≥ 7

and |s| ≤ 20 where |s| is the number of terms in s. The sentence length thresholds are

chosen arbitrarily, we leave the in-depth analysis for a future study.

3.2 Placement of Nouns in Sentences

3.2.1 Design

This preliminary experiment is designed to analyze the placement of nouns in sentences.

We define a noun as a term that is tagged as NN (noun, singular or mass), NNP (proper

noun, singular), NNPS (proper noun, plural) or NNS (noun, plural).

In this experiment, we measure AvgD, AvgSL, and the number of nouns and sentences

in the collection. AvgD is the average of the normalized distances of the nouns from

the middle of sentences. AvgD is defined as follows:

AvgD =

∑
t∈T

|Mid(t)−Pos(t)|
Mid(t)

|T |
(3.1)

where Mid(t) =
SenLength(t)− 1

2
(3.2)

where Pos(t) is the position of t in the sentence, T is the nouns in the document, |T |

is the number of terms in T , and SenLength(t) is the length of the sentence that t is

in. AvgD has a range of [0, 1], where a larger AvgD means that the terms are nearer

20

to the beginning and the end of sentences. AvgSL is the average lengths of sentences in

the collection and is defined as follows:

AvgSL =

∑
s∈C |s|
m

(3.3)

where s is a sentence in the collection C and m is the number of sentences in the

collection. The algorithm we use is shown in Figure 3.1.

1 for (document d in collection) {

2 for (sentence s in d) {

3 if (|s| ≥ 7 && |s| ≤ 20) {

4 for (term t in s) {

5 if (Tag(t) == noun) {

6 calc_term_statistics(t);

7 }

8 }

9 calc_sen_statistics(s);

10 }

11 }

12 }

Figure 3.1: Algorithm of the noun placement preliminary experiment

Lastly, we calculate the statistics for the terms that occur in the left half of sentences and

in the right half of sentences separately. This is to see if the placement of the subjects

and objects in sentences are different. A term t is in the left half of the sentence if

Mid(t) − Pos(t) < 1 and is in the right half of the sentence if Mid(t) − Pos(t) > 1.

Occurrences of t where Mid(t)− Pos(t) = 0 are ignored. The source code for the noun

placement parser we use in this experiment can be found in Appendix A.2.

3.2.2 Results

The results of this experiment are shown in Table 3.1 as follows:

Side AvgD # Nouns AvgSL # Sentences

Left 0.5901 24,918,926
10.5619 14,360,676

Right 0.613 26,286,542

Table 3.1: Results of the noun placement preliminary experiment

21

AvgD > 0.5 for the nouns in both of the halves of sentences. This means that the nouns

are nearer to the beginning and the end of sentences. Particularly, the nouns in the

right half of the sentence are more distant from the middle of sentences than nouns in

the left half of sentences. This shows that the subjects and the objects in sentences have

distinct placement patterns. However, the difference is small.

From the results, we can conclude that our first assumption is true in at least the WT2g

collection. However, we require additional experiments in order to see if the placement

information of the terms in sentences can be used to distinguish between the relevant

and the non-relevant documents.

3.3 Placement of Important Terms in Sentences

3.3.1 Design

This preliminary experiment is designed to analyze the placement of the query terms in

the relevant and the non-relevant documents. We do this by calculating various term-

based and sentence-based statistics in both the relevant and the non-relevant documents.

We then look for large differences in the statistics between the relevant and the non-

relevant documents. The algorithm we use is shown in Figure 3.2.

1 for (document d in results) {

2 for (sentence s in d) {

3 if (|s| ≥ 7 && |s| ≤ 20) {

4 rel = d.rel > 0;

5 for (term t in s) {

6 t.stem();

7 if (t in d.query_terms) {

8 calc_term_statistics(t, rel);

9 }

10 }

11 if (# query terms in s > 0) {

12 calc_sen_statistics(s, rel);

13 }

14 }

15 }

16 }

Figure 3.2: Algorithm of the query term placement preliminary experiment

22

We run one pass of retrieval on the WT2g collection using BM25 with k1 = 1.2, k3 = 8,

and b = 0.2. We use the set of documents returned from that retrieval pass as our

document collection in this experiment. We use the same AvgD, AvgSL measures

from Chapter 3.2, except T for each document is the set of corresponding query terms.

Additionally, we use the AvgP , AvgPN , and AvgPL measures. AvgP is the average of

the absolute distances of T from the beginning or the end of sentences, whichever is the

nearest for each term occurrence. AvgP is defined as follows:

AvgP =

∑
t∈T MinPos(t)

|T |
(3.4)

where MinPos(t) = Min(Pos(t), SenLength(t)− Pos(t)− 1) (3.5)

where a smaller AvgP means that the terms are nearer to the beginning or the end of

sentences. AvgPN and AvgPL are the average of the normalized and the log2 normal-

ized values of AvgP . We use the normalization scheme from [66] for AvgPN . AvgPN

and AvgPL are to see if dampening the effect of the outliers will have a large effect.

AvgPN and AvgPL are defined as follows:

AvgPN =

∑
t∈T

MinPos(t)
1+MinPos(t)

|T |
(3.6)

AvgPL =

∑
t∈T log2(MinPos(t))

|T |
(3.7)

We want to be able to meaningfully compare the ability of the measures to discriminate

between the relevant and non-relevant documents. Therefore we divide the values from

the relevant documents by the values from the non-relevant documents for each mea-

sure, for example, AvgD = AvgDrel
AvgDnon−rel

. Similar to Chapter 3.2, we also calculate the

statistics for the terms that occur in the left half of sentences and in the right half of

sentences separately. The source code for the query term placement parser we use in

this experiment is found in Appendix B.2.

3.3.2 Results

The results of this experiment are shown in Table 3.2 as follows:

23

Side AvgD AvgP AvgPN AvgPL AvgSL

Left 1.03 0.9523 0.9646 0.9599
0.9902

Right 1.0021 0.9881 0.9858 0.9869

Table 3.2: Results of the query term placement preliminary experiment

AvgD > 1 and AvgP < 1 for the terms in both halves of sentences. This means

that the terms in the relevant documents are nearer to the beginning or the end of

sentences than the terms in the non-relevant documents. Particularly, the difference in

the placement of the query terms in the left half of sentences is larger than in the right

half of sentences. This means that the placement of the subjects in sentences are better

relevance discriminators than the placement of the objects. Since AvgPN ≈ AvgP ≈

AvgPL, outliers do not seem to have a large effect. This is probably due to the fact that

we remove both the short and the long sentences. There is also no noteworthy difference

between the lengths of sentences.

From the results, we can conclude that our second assumption is true in at least the

WT2g collection. However, the length of the queries could also have an effect. We

conduct an additional experiment in Chapter 3.3.3 in order to see the effect of the query

lengths on the placement of the query terms in sentences of the documents. We expect

that the differences in Table 3.2 are greater in shorter queries than in longer queries. This

is based on the assumption that shorter queries are comprised almost entirely of nouns

whereas longer queries are more likely to contain other lexical classes. For example, a

single query term is always a noun. Additional query terms can be from any of the

lexical classes, such as semantically related nouns or descriptors such as adjectives or

verbs. However, we leave the analysis of this assumption for a future study.

3.3.3 Query Length Analysis

In the topics 401-450, there are 3 queries with 1 query term, 25 queries with 2 query

terms, and 22 queries with 3 query terms. We conduct the previous experiment and

group the statistics by the length of the queries. The results are shown in Table 3.3 as

follows:

Mi is the value of the measure M when the query length is i. AvgD1 > AvgD2 > AvgD3

and AvgP1 < AvgP2 < AvgP3 for the terms in both halves of sentences. This means that

the difference in the placement of the terms are larger in shorter queries. Furthermore,

24

Query Length Side AvgD AvgP AvgPN AvgPL AvgSL

1
Left 1.0973 0.8513 0.915 0.8908

0.9775
Right 1.084 0.8243 0.8757 0.8593

2
Left 1.0312 0.9467 0.9687 0.9605

0.9944
Right 1.0051 0.9871 0.9939 0.9914

3
Left 1.0218 0.9676 0.969 0.968

0.9866
Right 0.9894 1.0068 0.9929 0.9984

Table 3.3: Results of the query length analysis

there is also a small difference in the length of sentences in shorter queries. However, the

sample size is small and the difference is minuscule in longer queries. This shows that in

at least the WT2g collection, the query term placement information is more effective at

discriminating between the relevant and the non-relevant documents in shorter queries

than in longer queries.

3.4 Effectiveness of Proposed Weighting Method

3.4.1 Design

In order to ensure that our proposed weighting method is effective, we conduct a third

preliminary experiment. We partition sentences in a document into three parts, {p1 p2

p3}, where |p1| = |p3| and |pi| is the length of pi. We then gives a score to each term t

in sentences according to Equation 3.8:

Score(t) =

 1 if t ∈ p1 ∪ p3

−1 if t ∈ p2
(3.8)

The score of the term t in the document D is then:

Score(t,D) =
∑
ti∈D

Score(ti) (3.9)

where ti is the ith occurrence of t in the document D. We can then conclude that Equa-

tion 3.10 is true in the majority of the cases. Equation 3.10 means that if Score(t,D) > 0,

then t is more often found near the beginning or the end of sentences.

t ∈

 p1 ∪ p3 if Score(t,D) > 0

p2 if Score(t,D) < 0
(3.10)

25

We also obtain a balance of scores for the document D using Equation 3.11.

Balance(D) =
∑
t∈D

Score(t,D) (3.11)

We then adjust |p1| and |p3| until Balance(D) is as close to 0 as possible for the document

D. Balance = 0 means that the number of terms in p2 is equal to the combined number

of terms in p1 and p3. Balance > 0 means that the number of terms in p2 is less

than the combined number of terms in p1 and p3. The terms are stemmed. We will

confirm that our propose weighting method is effective if the highest scoring terms are

more important in the document than the lower scoring terms. The source code for the

weighting method parser we use in this experiment is found in Appendix C.2.

3.4.2 Results

We conduct this experiment on the book Hard Times by Charles Dickens [67]. We

further extract the nouns of out the terms in the document using the Stanford Log-

linear Part-Of-Speech Tagger [68]. The ten highest and lowest scoring nouns are shown

in Table 3.4 as follows:

Term Score Term Score

mr. 86 head -24

louisa 43 ladi -17

mrs. 31 hand -16

gradgrind 27 countri -16

tom 23 time -16

bounderbi 22 bank -13

father 18 ey -13

slackbridg 15 sparsit -13

wai 15 boi -13

miss 15 mean -11

Table 3.4: Results of the weighting method preliminary experiment

Balance = −117 for this document. This means that there are 117 more words in p2

than in both p1 and p3 combined. The results show that the highest scoring terms

include “louisa”, “gradgrind”, and “bounderbi”, which are the main characters of the

book. “tom”, “slackbridg”, and “sparsit” are minor characters in the book. Since

Balance = −117, we would expect that the above terms would have a negative score

if the positions of the terms were random, which is not the case. The frequency of

26

the terms are not relevant since each occurrence of a term has a more or less equal

(depending on Balance) chance to be in p2 or p1 ∪ p3. This means that in at least

the book Hard Times, our proposed weighting method is able to effectively discriminate

between terms that are important in the document and not important in the document.

Additional results are found in Appendix C.3.

27

Chapter 4

Integration of Term Location into

BM25

4.1 Design of the Reward Formula

4.1.1 Term Location

We assume that the most important terms in the document are near the beginning and

the end of the sentences. This implies that the least important terms in the document

are near the middle of the sentences. We can then measure the distance of a term from

the middle of the sentence in order to determine its importance in the document, where

a term that is more distant is more important. We set q(t,D) to be the distance of the

term t from the middle of the sentence in the document D as follows:

q(t,D) = |Mid(t,D)− Pos(t,D)| (4.1)

where Mid(t,D) =
SL(t,D)− 1

2
(4.2)

where SL(t,D) is the length of the sentence in a document D that contains t and

Pos(t,D) is the location of t in the sentence in D. We use the document-average of

the distances of t from the middle of the sentences in D instead of the distinct distances.

28

We explain this design decision in Chapter 4.4. We define r(t,D) as the document-

average of the distances of t as follows:

r(t,D) =

∑
ti∈D q(ti, D)

tf(t,D)
(4.3)

where ti is the ith occurrence of t in D and tf(t,D) is the term frequency of t in D.

We use parameters to control the spread of the distribution based on the length of the

sentence. The parameters are needed since the shape of the distribution that results in

optimal IR performance is not known. We define m(t,D) to be the document-average

of the lengths of the sentences that contain t in D as follows:

m(t,D) =

∑
ti∈D SL(ti, D)

β ∗ tf(t,D)
+ γ (4.4)

where β and γ are tuning parameters for the spread of the distribution dependently and

independently of the length of the sentence, respectively. The β parameter has a larger

effect in longer sentences since its effect is proportional to the lengths of the sentences.

The γ parameter has a proportionally smaller effect in longer sentences since its effect is

the same in all sentences. Therefore both parameters are needed in order to have more

control over the spread of the distribution in sentences of varying lengths. The effects

of the parameters are illustrated in Chapter 4.1.3.

4.1.2 Kernel Functions

In order to measure the distance of the terms from the middle of the sentences, we fit

a probability distribution or a kernel function over each sentence. We then adjust the

weight of each term based on the value of the distribution at the location of the term.

The value of the distribution is higher near the beginning and the end of the sentences.

Since our preliminary experiments have shown that nouns and important terms in the

documents are more often found near the beginning and the end of the sentences. The

weight of the term is the probability that the term is a noun and important in the

document. In this experiment, we use the following kernel functions:

Gaussian - Kernel(r,m) = 1− e
r2

−2m2 (4.5)

29

Uniform - Kernel(r,m) = 0 (4.6)

Triangle - Kernel(r,m) =
r

m
(4.7)

Cosine - Kernel(r,m) = 1−
1 + cos rπm

2
(4.8)

Circle - Kernel(r,m) = 1−
√

1−
(r
m

)2
(4.9)

Quartic - Kernel(r,m) = 1−
(

1−
(r
m

)2)2

(4.10)

Epanechnikov - Kernel(r,m) =
(r
m

)2
(4.11)

Triweight - Kernel(r,m) = 1−
(

1−
(r
m

)2)3

(4.12)

We supplement the kernel function with Equation 4.13. This ensures that we always

give maximum reward to the terms that are adjacent or nearly adjacent to the beginning

or the end of the sentences. This is parallel to our assumptions. The terms near the

beginning and the end of the sentences are likely to be nouns and important in the

document. The nearer the term is, the higher the likelihood. Therefore the terms that

are adjacent or nearly adjacent to the beginning and the end of the sentences are almost

certainly nouns and important in the document. Our preliminary experiment in Chapter

3.4 shows that this is true.

Reward(r,m) =

 1 if r >= m

Kernel(r,m) if r < m
(4.13)

The definition of nearly adjacent changes based on the β and γ parameters. Figure 4.1,

4.2, and 4.3 illustrates the shapes of the kernel functions we use in this experiment.

In Figures 4.1, 4.2, and 4.3, r(t,D) >= m(t,D) for the terms under the red line. Max-

imum reward is given to those terms as per Equation 4.13. As m(t,D) increases,

the number of terms that are given maximum reward decreases. This is illustrated

in Chapter 4.1.3. Evans and Zhai [30] described the phrase normalization problem in

phrase-based indexing, where semantically different phrases are syntactically similar.

Our kernel-based implementation is also affected by the phrase normalization problem.

For example, the phrase ”junior college” at the beginning of the sentence is equivalent

30

Figure 4.1: The Gaussian, Uniform, and Triangle kernel functions

Figure 4.2: The Cosine, Circle, and Quartic kernel functions

to the phrase ”college junior” at the end of the sentence. Therefore we plan on exploring

non-symmetric kernel functions in the future as a possible solution, such as those in [50].

Similar to our preliminary experiments, we calculate the statistics for the terms that

occur in the left half of the sentences and in the right half of the sentences separately.

Therefore we use the document-average of the reward given to t in the left half of the

sentences in D and in the right half of the sentences in D. We define the averaged

reward (RA) as follows:

RA(t,D) =

Reward(r(t,D)l,m(t,D))+Reward(r(t,D)r,m(t,D))

2 if r(t,D)l > 0 and r(t,D)r > 0

Reward(r(t,D)l,m(t,D)) if r(t,D)l > 0 and r(t,D)r = 0

Reward(r(t,D)r,m(t,D)) if r(t,D)l = 0

(4.14)

31

Figure 4.3: The Epanechnikov and Triweight kernel functions

where r(t,D)l is r for t in the left half of the sentences in D and r(t,D)r is r for t in

the right half of the sentences in D.

4.1.3 Effect of the β and γ Parameters

Figure 4.4 and 4.5 illustrates the effect of changing the β parameter on the reward given

to the terms in sentences of lengths 10 and 20, respectively. Since β is dependent on

the lengths of the sentences, its effect is proportionally similar in sentences of varying

lengths. This can be seen in the figures. If β is equal, the width of the distributions are

similar in sentences of length 10 and length 20. β has a larger effect in longer sentences.

Figure 4.4: Effect of the β parameter in sentences of length 10

Figure 4.6 and 4.7 illustrates the effect of changing the γ parameter on the reward given

to the terms in sentences of lengths 10 and 20, respectively. Since γ is independent of

the lengths of the sentences, its effect is always constant and is proportionally different

32

Figure 4.5: Effect of the β parameter in sentences of length 20

in sentences of varying lengths. This can be seen in the figures. When γ = 2 is equal,

the width of the distribution is much wider in sentences of length 10 than sentences of

length 20. γ has a proportionally larger effect in shorter sentences.

Figure 4.6: Effect of the γ parameter in sentences of length 10

Figure 4.7: Effect of the γ parameter in sentences of length 20

33

4.1.4 Sentence Length Normalization

We normalize the reward given to a term according to the length of the sentence that it

is in. We found that there is no noteworthy difference in the lengths of the sentences in

the relevant and the non-relevant documents in our query length analysis preliminary

experiment in Chapter 3.3.3. However, it is statistically more likely for a term to be

nearer to the beginning or the end of the sentence in shorter even-length sentences. This

is due to how we calculate the distance of the term from the middle of the sentence in

Equation 4.1. For example, if we have the terms t1 and t2 in the sentence s1 where

|s1| = 4 and p(ti) = i − 1, then q(ti, D) = |1.5 − i|, The average distance of the terms

is then 1 which is 33.3% nearer to the beginning or the end of s1 than in reality. This

effect is greatly diminished in longer sentences. Therefore we counteract it by removing

the sentences s from the collection where |s| < 7. We also normalize the Equation 4.13

using the log normalized lengths of the sentences, where more reward is given for the

terms in longer sentences. We defined the normalized reward (RN) as follows:

RN(t,D) =
log2(1 +AvgSL(t,D))

log2(1 +AvgSL)
∗RA(r(t,D),m(t,D)) (4.15)

whereAvgSL is the average of the lengths of the sentences in the collection andAvgSL(t,D)

is the average length of the sentences that contains t in D.

4.2 Merge into BM25

In this experiment, we use the BM25 weighting model as our base weighting model.

BM25 is defined as follows:

Score(t,D) = TF (t,D) ∗ IDF (t) (4.16)

where TF (t,D) =
(k3 + 1) ∗ tf(t,D) ∗ qtf(t)

(k3 + qtf(t)) ∗K
(4.17)

K = k1 ∗
(

1− b+
b ∗ |D|
AvgDL

)
+ tf(t,D) (4.18)

and IDF (t) = log2
N − n(t) + 0.5

n(t) + 0.5
(4.19)

34

where k1, k3, and b are tuning parameters for BM25. qtf(t) is the frequency of t in

the query, |D| is the number of terms in D, and AvgDL is the average length of the

documents in the collection. N is the number of documents in the collection and n(t)

is the number of documents in the collection that contain t. We modify TF (t,D) to

account for the reward given to the terms based on the location of the terms in the

sentences. We define the first Term Location score (TL1) as follows:

TL1(t,D) =
(k3 + 1) ∗RN(t,D) ∗ tf(t,D) ∗ qtf(t)

(k3 + qtf(t)) ∗KTL
(4.20)

and KTL = k1 ∗
(

1− b+
b ∗ |D|
AvgDL

)
+RN(t,D) ∗ tf(t,D) (4.21)

4.3 Query Length Normalization

We normalize the reward given a term according to the length of the query. This is due

to the findings in our query length analysis preliminary experiment in Chapter 3.3.3.

In at least the WT2g collection, the query term placement information is better at

discriminating between the relevant and the non-relevant documents in shorter queries.

Therefore we want to be more stringent in rewarding terms when the query is longer.

We propose the Query Length Score (QLS) to accomplish this as follows:

QLS =

(
0.5

0.5 + |Q|

) 2
3

(4.22)

where |Q| is the number of terms in the query Q. The shape of QLS is illustrated in

Figure 4.8. It is function that decreases slowly as the length of the query is increased.

The constants in QLS were chosen arbitrarily and have proven to be effective in our

experiments. We leave the analysis of QLS for a future study.

We integrate QLS with TL1 to form the second Term Location score (TL2) as follows:

TL2(t,D) = QLS ∗ TL1(t,D) + (1−QLS) (4.23)

We then integrate our model into BM25 using linear combination to form the Term

Location Score (TEL) as follows:

TEL(t,D) = ((1− α) ∗ TF (t,D) + α ∗ TL2(t,D)) ∗ IDF (t) (4.24)

35

Figure 4.8: Query Length Score (QLS)

where α is the tuning parameter for the linear combination. α controls the contribution

of our model in the score of the documents, where a higher α means that our model

contributes more. The full source code of our implementation is found in Appendix D.

4.4 Design Decisions

The values q and SL were aggregated into the values r and m in Equation 4.3 and 4.4,

respectively. Using distinct the values of q and SL proved to be too demanding on the

systems we use to perform our experiment, and drastically increased query running time

due to the increase of the I/O required. The values r and m were calculated during

indexing and therefore have no impact on query running time. Along with additional

optimization average running time for one iteration of retrieval on the WT2g data set

improved by approximately 875%, from approximately 70 seconds to approximately 8

seconds. Tao and Zhai [23] used other measures such as Min and Max to model the

proximity between terms. We will investigate similar methods for aggregating the values

of q and SL in the future.

We did not take into account the location of the terms in the queries because we assume

that the queries are short and will rarely compose a complete sentence. Our model is

therefore not suitable for the queries. We also assume that all terms in a query are

important and contribute equally to the topics sought by the query. Therefore it is also

not necessary to apply our model to the terms in the queries.

36

Chapter 5

Experimental Settings

5.1 Collections

We conduct our experiments on the five standard TREC collections shown in Table 5.1.

These collections vary in both size and content and are representative.

Collection Name # of Docs Topics

WT2g 247,491 401-450

Disk4&5 528,155 301-450

WT10g 1,692,096 451-550

Blogs06 3,215,171 851-950

GOV2 25,178,548 701-850

Table 5.1: Collections we use our experiments

WT2g is a 2 GB size crawl of general web documents. It was used in the TREC 1999 Web

track. Disk4&5 is comprised of news-wire articles from sources such as the Financial

Times (FT) and the Federal Register (FR) and is usually considered as high quality text

data with little noise. Disk4&5 was used in the TREC 1997-1999 Ad hoc tasks. WT10g

is a 10 GB size crawl of general web documents. It was used in the TREC 2000 and 2001

Web tracks. Blogs06 is a 148 GB size crawl of feeds from late 2005 to early 2006 with

associated permalink and homepage documents. It was used in the TREC 2006-2008

Blog tracks. As recommended in [69], we only use the permalink documents. GOV2 is

a 426 GB size crawl of .gov sites. It was used in the TREC 2004-2006 Terabyte tracks.

37

5.2 Evaluation Metrics

Precision P in IR is the proportion of retrieved documents that are relevant and is

measured with the following formula:

P =
|R ∩ T |
|T |

(5.1)

where R is the set of documents that are relevant and T is the set of documents that

are retrieved. Given a set A, |A| is the number of items in the set A. Precision of the

top k documents is then defined as P@(k) as follows:

P@(k) =
|R ∩ (T1 ∪ T2 . . . Tk)|

k
(5.2)

where Ti is the ith document in T .

The mean average precision (MAP) [70] is the mean of the average of the precision of

each query and is defined as follows:

MAP =

∑
q∈QAvg.P (q)

|Q|
(5.3)

where Avg.P (q) =

∑n
k=1(P@(k) ∗Rel(k))

|R|
(5.4)

and Rel(k) =

 1 if Tk ∈ R

0 if Tk /∈ R
(5.5)

where Q is the set of queries and q is a query in Q. In our experiment, n = 1000 in

Equation 5.4.

MAP is the standard measure of overall retrieval performance in IR. P@(k) is a standard

measure of retrieval precision. We also want to emphasize the precision of the top

documents retrieved. In search, it is often the case that only the top documents are

viewed while the rest of the documents are discarded. Spink et al found that 28.6% [71]

and 58% [72] of their users only viewed one page of the results. In a separate study,

Silverstein et al [73] found that 85.2% of their users only viewed one page of the results.

Therefore we use the P@(k) measure for k = {5 10 20} to emphasize the significance of

the top k documents. We use the Wilcoxon signed-rank test with p < 0.05 to test for

statistical significance since the results are paired.

38

5.3 Terrier Settings

The Terrier properties used for each collection are the recommended properties from the

Terrier group. The exact properties can be found in Appendix E. These properties are

used when generating the primary index and running retrieval using Terrier.

5.4 Baselines

We compare the performance of our model against the following weighting models:

1. BM25, with k1 = 1.2 and k3 = 8. We adjust b in the range of [0.1, 0.9] in steps of

0.1. We run one pass of retrieval for each value of b. We order the results on MAP

in descending order and use the value of b with the best result for our baseline.

This process is repeated for each collection.

2. DirichletLM. We adjust µ in the range of [100, 3000] in steps of 100. We find the

optimal value of µ for each collection using the above process.

Table 5.2 and 5.3 shows the optimal parameters and the baseline performance of BM25

and DirichletLM, respectively.

Collection b MAP P@5 P@10 P@20

WT2g 0.2 0.3167 0.512 0.468 0.387

disk4+5 0.3 0.2176 0.468 0.4293 0.3613

WT10g 0.3 0.2134 0.3918 0.3276 0.2776

Blogs06 0.2 0.3195 0.638 0.641 0.6095

Gov2 0.4 0.3008 0.6094 0.5779 0.5406

Table 5.2: BM25 Baseline Parameters and Performance

Collection µ MAP P@5 P@10 P@20

WT2g 1500 0.3059 0.508 0.454 0.387

disk4+5 500 0.219 0.456 0.4167 0.3627

WT10g 600 0.2168 0.3531 0.3173 0.2745

Blogs06 1700 0.3125 0.608 0.613 0.5935

Gov2 800 0.2983 0.5919 0.551 0.5272

Table 5.3: DirichletLM Baseline Parameters and Performance

39

5.5 System Settings

We conduct our experiment using the Terrier 3.5 [74] IR platform. Terrier is an open

source IR platform developed in Java at the University of Glasgow. We use the Linux

Mint 15 and 16 x64 and Ubuntu 12.04 x86 operating systems with Java SE 8u5 x64 and

x86, respectively.

5.6 Secondary Index Settings

The experimental settings in which we index our collections is similar to the experimental

settings in our preliminary experiments. We remove standard English stop-words from

the documents and stem the remaining terms using an English Porter stemmer [18].

In the documents in the WT2g, WT10g, Blogs06, and Gov2 collections, we ignore the

headers by only processing the text between the </DOCHDR> and </DOC> tags. In

the documents in the disk4+5 collection, we only process the text between the <TEXT>

and </TEXT> tags. We remove all HTML tags, numbers, and characters that the

Stanford Tagger cannot parse. We use the English Stanford Tagger 3.3.1 [68] for part-

of-speech tagging and sentence identification. We add newlines to the Stanford Tagger’s

default set of sentence delimiters. Punctuation that are tagged as any of {# $ ” () ,

: “} are removed prior to processing. We also remove all HTML tags, numbers, and

characters that the Stanford Tagger cannot parse from the documents. We only keep

characters with Unicode numbers in the ranges of [20, 2F] and [3A, 7F].

We only keep a sentence s if |s| ≥ 7 and |s| ≤ 20 where |s| is the number of terms in

s. We calculate the statistics for the terms that occur in the left half of sentences and

in the right half of sentences separately. A term t in the document D is in the left half

of the sentence if Mid(t,D) − p(t,D) < 1. t in D is in the right half of the sentence if

Mid(t,D)− p(t,D) > 1. t in D where Mid(t,D)− p(t,D) = 0 are ignored.

We store the term location information, q and SL, in a h2 1.3.174 database. The source

code for the term location indexer is found in Appendix B.2. We do not store the

term location information for all the terms in a document, only the corresponding query

terms. This is done in consideration of running time and disk space. This has no effect

40

on the performance of our model as long as the baseline parameters of BM25 for each

collection are not changed.

5.7 Retrieval and Evaluation

We remove standard English stop-words from the queries and stem the remaining terms

using an English Porter stemmer [18]. The length of the query is the number of terms in

the query after stop-word removal. In this experiment, we set α = 0.2, β = 3, and γ = 3.

We believe that our model is robust enough to not require parameter optimization. We

set k1 = 1.2, k3 = 8, and b to the optimal value from our baseline parameter optimization

process shown in Table 5.2. We set AvgSL = 10.5 in Equation 4.15 for every collection

based on the results from the noun placement preliminary experiment in Chapter 3.2.

We run the first pass of retrieval with BM25. We sort the documents on score in

descending order. We run a second pass of retrieval on the top 1000 documents using our

model. For each document, the score from the first pass of retrieval is multiplied by (1−

α) and the score from the second pass of retrieval is multiplied by α. This implementation

is equivalent to Equation 4.24. The source code of this algorithm is found in Appendix

D.2. We use trec eval 9 to evaluate the MAP and the P@(k) measures for the retrieval

results. We use the function WilcoxonSignedRankTest.wilcoxonSignedRankTest() from

the Apache Commons Math 3.2 API to test for statistical significance.

41

Chapter 6

Experimental Results

6.1 Effectiveness of Our Model

6.1.1 WT2g

The experimental results in Table 6.1 are with k1 = 1.2, k3 = 8, b = 0.2, α = 0.2, β = 3,

and γ = 3.

The results show that the performance of our model is statistically significantly better

than BM25 in MAP , P@5, P@10, and P@20 and LM in MAP , P@5, and P@10. The

Uniform kernel function do not significantly improve BM25 and is the worst performing

kernel function in all metrics. The Quartic kernel function is significantly better than

BM25 in all metrics. However the performance improvement is small compared to the

Gaussian and the Circle kernel functions. The Gaussian and the Circle kernel functions

is significantly better than BM25 in MAP , P@5, and P@10 and significantly better

than LM in MAP , and P@5. The Gaussian the the Circle kernel functions are the best

performing kernel functions overall. All kernel functions except for the Uniform and the

Triweight kernel functions perform better than BM25 and LM in every metric.

The MAP and P@20 performance of all of the kernel functions are better than the

baseline weighting models. However, only some of the improvements are statistically

significant. There are large differences between the best and the worst performances

in P@5 and P@10. The differences between the highest % performance improvement

over BM25 in P@5 and P@10 and the lowest are 4.69% and 5.12% (1.71% without

42

Baseline Model MAP P@5 P@10 P@20

BM25 0.3167 0.512 0.468 0.387

LM 0.3059 0.508 0.454 0.387

Kernel MAP P@5 P@10 P@20

Gaussian
0.3223*+ 0.52* 0.482* 0.396

1.77%, 5.36% 1.56%, 2.36% 2.99%, 6.17% 2.33%, 2.33%

Uniform
0.3226 0.524+ 0.456+ 0.396

1.86%, 5.46% 2.34%, 3.15% -2.56%, 0.44% 2.33%, 2.33%

Triangle
0.3179 0.504 0.472* 0.389*

0.38%, 3.92% -1.56%, -0.79% 0.85%, 3.96% 0.52%, 0.52%

Circle
0.3235*+ 0.528* 0.48* 0.395

2.15%, 5.75% 3.13%, 3.94% 2.56%, 5.73% 2.07%, 2.07%

Cosine
0.3186 0.516* 0.476* 0.389*

0.6%, 4.15% 0.78%, 1.57% 1.71%, 4.85% 0.52%, 0.52%

Quartic
0.3199*+ 0.516* 0.474* 0.39*

1.01%, 4.58% 0.78%, 1.57% 1.28%, 4.41% 0.78%, 0.78%

Epanechnikov
0.3201*+ 0.52* 0.48 0.393

1.07%, 4.64% 1.56%, 2.36% 2.56%, 5.73% 1.55%, 1.55%

Triweight
0.3179 0.508 0.476* 0.388*

0.38%, 3.92% -0.78%, 0% 1.71%, 4.85% 0.26%, 0.26%

Table 6.1: Results for WT2g, * and + denotes statistical significance over BM25 and
LM, respectively. The best result for each metric is in bold. The percentages below

each value is the % improvement over BM25 and LM, respectively

the Uniform kernel function), respectively. P@5 and P@10 are the most volatile out

of the metrics that we use in this experiment. However, the differences are still large

but only in P@5 if the Uniform kernel function is treated as an outlier and ignored.

This can indicate that the performance of our model in the WT2g collection is highly

dependent on the values of the parameters or the kernel function used. This is because

the different kernel functions can have vastly differently optimal values of α, β, and γ.

We will analyze this further in our robustness study in Chapter 6.2.

We choose two kernel functions that perform well across all collections, Gaussian and

Circle, to represent our model. We illustrate the % performance difference between those

kernel functions and the baseline weighting models in Figure 6.1.

The figure shows that the performance of our model is consistently better than the

baseline weighting models. The % performance improvement is also similar in every

metric. This means that the performance of our model is fairly consistent in at least the

top 20 documents. The performance of the Gaussian and the Circle kernel functions are

almost equal overall.

43

MAP P@5 P@10 P@20

96

98

100

102

104

%
p

er
fo

rm
a
n
ce

BM25 LM Gaussian Circle

Figure 6.1: WT2g, % performance improvement

6.1.2 disk4+5

The experimental results in Table 6.2 are with k1 = 1.2, k3 = 8, b = 0.3, α = 0.2, β = 3,

and γ = 3.

Baseline Model MAP P@5 P@10 P@20

BM25 0.2176 0.468 0.4293 0.3613

LM 0.219 0.456 0.4167 0.3627

Kernel MAP P@5 P@10 P@20

Gaussian
0.2201 0.4627+ 0.4247 0.3653*

1.15%, 0.5% -1.13%, 1.47% -1.07%, 1.92% 1.11%, 0.72%

Uniform
0.2206 0.4573+ 0.4227 0.365*

1.38%, 0.73% -2.29%, 0.29% -1.54%, 1.44% 1.02%, 0.63%

Triangle
0.2209* 0.4613+ 0.4267 0.364*+

1.52%, 0.87% -1.43%, 1.16% -0.61%, 2.4% 0.75%, 0.36%

Circle
0.2201 0.4627+ 0.4247 0.3647*

1.15%, 0.5% -1.13%, 1.47% -1.07%, 1.92% 0.94%, 0.55%

Cosine
0.2209* 0.4613+ 0.4287 0.3643*+

1.52%, 0.87% -1.43%, 1.16% -0.14%, 2.88% 0.83%, 0.44%

Quartic
0.2209* 0.4613+ 0.428 0.3643*+

1.52%, 0.87% -1.43%, 1.16% -0.3%, 2.71% 0.83%, 0.44%

Epanechnikov
0.2206 0.464+ 0.4247 0.366*

1.38%, 0.73% -0.85%, 1.75% -1.07%, 1.92% 1.3%, 0.91%

Triweight
0.2205* 0.4613+ 0.4287 0.364*+

1.33%, 0.68% -1.43%, 1.16% -0.14%, 2.88% 0.75%, 0.36%

Table 6.2: Results for disk4+5, * and + denotes statistical significance over BM25
and LM, respectively. The best result for each metric is in bold. The percentages below

each value is the % improvement over BM25 and LM, respectively

44

The results show that the performance of our model is statistically significantly better

than BM25 in MAP and P@20 and significantly better than LM in P@5 and P@20.

However, the performance of our model is consistently worse than BM25 in P@5 and

P@10. The Triangle, the Cosine, and the Quartic kernel functions are the best perform-

ing kernel functions overall. Overall the results are mixed. However, the performance

of all of the kernel functions are moderately better than BM25 in MAP and P@20 and

better than LM in all metrics. However, not all of the improvements are statistically

significant.

There are no large differences between the best and the worst performances in any metric

if the Uniform kernel function is treated as an outlier and ignored. This can indicate

that our model is fairly robust in the disk4+5 collection. The performance of our model

is only moderately better than BM25 in MAP and P@20 and worse than BM25 in

P@5 and P@10. This can indicate that our model does not perform well in the top 10

documents in this data set but perform much better in documents 11-20. We analyze

this further in our robustness study in Chapter 6.2.

We choose two kernel functions that perform well across all collections, Gaussian and

Circle, to represent our model, although the Gaussian and the Circle kernel functions are

not the best performing kernel functions in this data set. We illustrate the % performance

difference between those kernel functions and the baseline weighting models in Figure

6.2.

MAP P@5 P@10 P@20

97

98

99

100

101

%
p

er
fo

rm
a
n
ce

BM25 LM Gaussian Circle

Figure 6.2: disk4+5, % performance improvement

45

The figure shows that the performance of our model is better than BM25 in MAP and

P@20, but worse in P@5 and P@10. The performance of our model is consistently

better than LM. The performance of both the Gaussian and the Circle kernel functions

is around the same.

6.1.3 WT10g

The experimental results in Table 6.3 are with k1 = 1.2, k3 = 8, b = 0.3, α = 0.2, β = 3,

and γ = 3.

Baseline Model MAP P@5 P@10 P@20

BM25 0.2134 0.3918 0.3276 0.2776

LM 0.2168 0.3531 0.3173 0.2745

Kernel MAP P@5 P@10 P@20

Gaussian
0.2202* 0.3898+ 0.3255+ 0.2765

3.19%, 1.57% -0.51%, 10.39% -0.64%, 2.58% -0.4%, 0.73%

Uniform
0.208 0.3816 0.3194+ 0.2663

-2.53%, -4.06% -2.6%, 8.07% -2.5%, 0.66% -4.07%, -2.99%

Triangle
0.2196* 0.3898+ 0.3265+ 0.2755+

2.91%, 1.29% -0.51%, 10.39% -0.34%, 2.9% -0.76%, 0.36%

Circle
0.2202* 0.4* 0.3235+ 0.277

3.19%, 1.57% 2.09%, 13.28% -1.25%, 1.95% -0.22%, 0.91%

Cosine
0.2197* 0.3898+ 0.3265+ 0.277+

2.95%, 1.34% -0.51%, 10.39% -0.34%, 2.9% -0.22%, 0.91%

Quartic
0.2199* 0.3918+ 0.3255+ 0.2755

3.05%, 1.43% 0%, 10.96% -0.64%, 2.58% -0.76%, 0.36%

Epanechnikov
0.2206* 0.3918+ 0.3224+ 0.276

3.37%, 1.75% 0%, 10.96% -1.59%, 1.61% -0.58%, 0.55%

Triweight
0.2198* 0.3898+ 0.3265+ 0.2765+

3%, 1.38% -0.51%, 10.39% -0.34%, 2.9% -0.4%, 0.73%

Table 6.3: Results for WT10g, * and + denotes statistical significance over BM25 and
LM, respectively. The best result for each metric is in bold. The percentages below

each value is the % improvement over BM25 and LM, respectively

The results show that the performance of our model is statistically significantly better

than BM25 in MAP and P@5 and also statistically significantly better than LM in

P@5, P@10, and P@20. However, the performance of our model is consistently worse

than BM25 in P@10 and P@20. In P@5, only the Circle kernel function performs better

than BM25. The performance of the Uniform kernel function is the worst overall and

is worse than BM25 in every metric. The performance of the Circle kernel function is

the best overall, similar to the WT2g collection. Overall the results are mixed. The fact

46

that there’s a large improvement in MAP over BM25 for all kernel functions can mean

that our model is not well suited for the top 20 documents in the WT10g data set.

We treat the Uniform kernel function as an outlier and ignore it. The remaining ker-

nel functions significantly improve BM25 in MAP greatly. All of the kernel functions

improve LM in every metric, though not all improvements are statistically significant.

There are also no large differences between the best and the worst performances in P@10

and P@20. There is a large difference between the highest % improvement over BM25

in P@5 (2.09%) and the lowest (-0.51%). P@5 is the most volatile out of the metrics

that we use in this experiment. The P@5 performance of the Circle kernel function can

be an outlier as well. We analyze this further in our robustness study in Chapter 6.2.

We choose two kernel functions that perform well across all collections, Gaussian and

Circle, to represent our model. We illustrate the % performance difference between those

kernel functions and the baseline weighting models in Figure 6.3.

MAP P@5 P@10 P@20

90

95

100

105

%
p

er
fo

rm
a
n
ce

BM25 LM Gaussian Circle

Figure 6.3: WT10g, % performance improvement

The figure shows that the performance of our model is better than BM25 in MAP and

P@5, but worse than BM25 in P@10 and P@20. The performance of our model is

better than BM25 for documents 1 to 5 and 11 to 20. However, the performance of our

model is moderately worse than BM25 for documents 6 to 10, which affects the P@10

and P@20 performance of our model. The performance of the Circle kernel function

is better than the performance of the Gaussian kernel function overall. However, it is

slightly worse than the Gaussian kernel function for documents 6 to 10.

47

6.1.4 Blogs06

The experimental results in Table 6.4 are with k1 = 1.2, k3 = 8, b = 0.2, α = 0.2, β = 3,

and γ = 3.

Baseline Model MAP P@5 P@10 P@20

BM25 0.3195 0.638 0.641 0.6095

LM 0.3125 0.608 0.613 0.5935

Kernel MAP P@5 P@10 P@20

Gaussian
0.3238+ 0.664* 0.656* 0.618

1.35%, 3.62% 4.08%, 9.21% 2.34%, 7.01% 1.39%, 4.13%

Uniform
0.3158 0.63+ 0.616 0.594

-1.16%, 1.06% -1.25%, 3.62% -3.9%, 0.49% -2.54%, 0.08%

Triangle
0.3241*+ 0.68* 0.652* 0.6225

1.44%, 3.71% 6.58%, 11.84% 1.72%, 6.36% 2.13%, 4.89%

Circle
0.3238+ 0.668* 0.657* 0.6185

1.35%, 3.62% 4.7%, 9.87% 2.5%, 7.18% 1.48%, 4.21%

Cosine
0.3239*+ 0.676* 0.653* 0.621

1.38%, 3.65% 5.96%, 11.18% 1.87%, 6.53% 1.89%, 4.63%

Quartic
0.3239*+ 0.676* 0.653* 0.622

1.38%, 3.65% 5.96%, 11.18% 1.87%, 6.53% 2.05%, 4.8%

Epanechnikov
0.3239+ 0.674* 0.656* 0.6195

1.38%, 3.65% 5.64%, 10.86% 2.34%, 7.01% 1.64%, 4.38%

Triweight
0.3239*+ 0.676* 0.651* 0.622

1.38%, 3.65% 5.96%, 11.18% 1.56%, 6.2% 2.05%, 4.8%

Table 6.4: Results for Blogs06, * and + denotes statistical significance over BM25
and LM, respectively. The best result for each metric is in bold. The percentages below

each value is the % improvement over BM25 and LM, respectively

The results show that the performance of our model is statistically significantly better

than BM25 in MAP , P@5, and P@10 and significantly better than LM in MAP and

P@5. The P@20 performance of our model is better than BM25 but the improvement is

not significant. The P@10 and P@20 performance of our model is better than LM but

likewise, the improvement is not significant. The Uniform kernel function is the worst

performing overall, performing worse than BM25 in all metrics. The improvement in

P@5 is large while the improvement in MAP , P@10, and P@20 is moderate.

We treat the Uniform kernel function as an outlier and ignore it. Overall the performance

of our model is significantly better than BM25 in every metric except for P@20, where

it is at least equivalent. There are no large differences between the best and the worst

performances in MAP , P@10, and P@20. There is a large difference between the

highest % improvement over BM25 in P@5 (6.58%) and the lowest (4.08%). Similar

48

to the WT2g and the WT10g collections, this can be due to the volatility of the P@5

metric. We analyze this further in our robustness study in Chapter 6.2.

We choose two kernel functions that perform well across all collections, Gaussian and

Circle, to represent our model. We illustrate the % performance difference between those

kernel functions and the baseline weighting models in Figure 6.4.

MAP P@5 P@10 P@20

94

96

98

100

102

104

106

%
p

er
fo

rm
a
n
ce

BM25 LM Gaussian Circle

Figure 6.4: Blogs06, % performance improvement

The figure shows that the performance of our model is better than the baseline weighting

models in every metric. The performance of our model is much better than BM25 and

LM for documents 1 to 5 and moderately better than BM25 for documents 11 to 20.

The performance of the two kernel functions are similar.

6.1.5 Gov2

The experimental results in Table 6.5 are with k1 = 1.2, k3 = 8, b = 0.4, α = 0.2, β = 3,

and γ = 3.

The results show that the performance of our model is statistically significantly better

than BM25 in MAP , P@5, and P@10 and significantly better than LM in MAP and

P@5. The performance of our model is consistently worse than BM25 in P@20. All

of the kernel functions except for the Uniform kernel function significantly improves

BM25 in MAP and P@10. The Uniform kernel function performs the worst overall and

performs worse than BM25 in every metric and performs worse than LM in every metric

49

Baseline Model MAP P@5 P@10 P@20

BM25 0.3008 0.6094 0.5779 0.5406

LM 0.2983 0.5919 0.551 0.5272

Kernel MAP P@5 P@10 P@20

Gaussian
0.3045*+ 0.6174*+ 0.5913* 0.5383

1.23%, 2.08% 1.31%, 4.31% 2.32%, 7.31% -0.43%, 2.11%

Uniform
0.2961 0.5906 0.5617 0.5191

-1.56%, -0.74% -3.09%, -0.22% -2.8%, 1.94% -3.98%, -1.54%

Triangle
0.3041*+ 0.6067+ 0.5805* 0.5356

1.1%, 1.94% -0.44%, 2.5% 0.45%, 5.35% -0.92%, 1.59%

Circle
0.3045*+ 0.6148*+ 0.5886* 0.5376

1.23%, 2.08% 0.89%, 3.87% 1.85%, 6.82% -0.55%, 1.97%

Cosine
0.3043*+ 0.6054+ 0.5812* 0.5383

1.16%, 2.01% -0.66%, 2.28% 0.57%, 5.48% -0.43%, 2.11%

Quartic
0.3043*+ 0.604+ 0.5812* 0.5393

1.16%, 2.01% -0.89%, 2.04% 0.57%, 5.48% -0.24%, 2.3%

Epanechnikov
0.3044*+ 0.6107*+ 0.5859* 0.5383

1.2%, 2.04% 0.21%, 3.18% 1.38%, 6.33% -0.43%, 2.11%

Triweight
0.3043*+ 0.6054+ 0.5805* 0.5379

1.16%, 2.01% -0.66%, 2.28% 0.45%, 5.35% -0.5%, 2.03%

Table 6.5: Results for Gov2, * and + denotes statistical significance over BM25 and
LM, respectively. The best result for each metric is in bold. The percentages below

each value is the % improvement over BM25 and LM, respectively

except for P@10. The Gaussian kernel function performs the best overall. Not all of the

kernel functions significantly improve BM25 in P@5. However, for the kernel functions

that do improve BM25 in P@5, the improvements are statistically significant.

We treat the Uniform kernel function as an outlier and ignore it. The MAP and P@10

performance of our model is consistently significantly better than BM25. The MAP ,

P@10, and P@20 performance of our model is fairly consistent. Our model also con-

sistently statistically significantly improves LM in MAP and P@5. There are large

differences between the highest % improvement over BM25 in P@5 (1.31%) and the

lowest (-0.89%). This can be due to the volatility of the P@5 metric. We analyze this

further in our robustness study in Chapter 6.2.

We choose two kernel functions that perform well across all collections, Gaussian and

Circle, to represent our model. We illustrate the % performance difference between those

kernel functions and the baseline weighting models in Figure 6.5.

The figure shows that the performance of our model is better than the baseline weighting

models in MAP , P@5, and P@10. The performance of our model is worse than BM25

50

MAP P@5 P@10 P@20

94

96

98

100

102

%
p

er
fo

rm
a
n
ce

BM25 LM Gaussian Circle

Figure 6.5: Gov2, % performance improvement

for documents 11 to 20. This is in contrast with the other collections that we use. The

performance of the Gaussian and the Circle kernel functions are almost equal overall.

6.1.6 Overall Effectiveness

The performance of our model is statistically significantly better than BM25 in MAP in

every collection and in P@5 and P@10 in most of the collections. The P@20 performance

of our model is better than BM25 in most of the collections, but the improvements are

only statistically significant in the WT2g and the disk4+5 collections. Our model also

performs statistically significantly better than LM in P@5 in all collections. Our model

performs better than LM in MAP , P@10, and P@20 in all collections but only some

of the improvements are statistically significant. Across all of the collections there is no

single kernel function that performs the best. However, the performance of the Uniform

kernel function is consistently the worst and is not significantly better than BM25 in

MAP , P@5, and P@10 in any of the collections. The Gaussian and the Circle kernel

function performs well across all of the collections.

The reason for the mixed results in the disk4+5 and the WT10g collections seems to be

because of poor performance of our model for either documents 1 to 5 or 6 to 10, but

not both at the same time. In the Gov2 collection our model also performs poorly for

51

documents 11 to 20. There seems to be no correlation between the nature of the docu-

ments and retrieval performance. For example, both WT2g and WT10g are collections

of web documents, yet the the performance of our model, especially in P@5 and P@10,

is vastly different. Overall there are large variances in only the P@5 metric. P@5 is the

most volatile metric, therefore this finding is unsurprising. We analyze this further in

our robustness study in Chapter 6.2.

6.2 Parameter Sensitivity

We want to assess the robustness of our model. The more robust a model is, the more

likely that it will perform well in an unknown collection without training data. This is

important in proving the practicality of a model. In this chapter, we analyze the per-

formance of our model with varying parameters. We have already shown the sensitivity

of our model to the collection used through experimentation. The performance of our

model is significantly better than BM25 in MAP in all collections and significantly bet-

ter than LM in MAP in most of the collections. The performance of our models is also

significantly better than BM25 and LM in P@5 and P@10 in most of the collections.

Therefore our model is somewhat robust.

We continue to assess the sensitivity of our model to the α, β, and γ parameters in this

study. We study the effect of that each parameter has on the performance of our model.

We do this by varying one parameter and fixing the other three parameters to the values

in the previous experiment. We choose two kernel functions that perform well across all

of the collections to represent our model, which are the Gaussian and the Circle kernel

functions.

6.2.1 The α Parameter

The α parameter controls the contribution of our model into the score of the documents,

where BM25 contributes (1− α)% and our model contributes α%. α has a range of [0,

1], where α = 0 means that the score of the documents is equivalent to BM25 and α = 1

means that BM25 does not contribute to the score of the documents. In this study we

vary α in the range of [0.1, 0.9] in steps of 0.1. We fix k1 = 1.2, k3 = 8, β = 3 and γ = 3.

We set b to the optimal value for each collection in Table 5.2.

52

6.2.1.1 WT2g

The sensitivity of our model to the α parameter in the WT2g collection is shown in

Figure 6.6.

0.2 0.4 0.6 0.8

0.3

0.31

0.32

α

M
A

P

WT2g, sensitivity of MAP to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.5

0.52

0.54

α
P

@
5

WT2g, sensitivity of P@5 to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8
0.42

0.44

0.46

0.48

α

P
@

1
0

WT2g, sensitivity of P@10 to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.36

0.37

0.38

0.39

α

P
@

2
0

WT2g, sensitivity of P@20 to α

BM25

Gaussian

Circle

Figure 6.6: WT2g, sensitivity to the α parameter

The figure shows that the performance of the two kernel functions react similarly to

changes in the value of α. The MAP performance of our model is the best at α = 0.4.

The MAP performance of our model is fairly consistent for α between [0.2, 0.4], but

worsens for α ≥ 0.5. The P@5 performance of our model is the best at α = 0.5 for

the Gaussian kernel function and at α = 0.7 for the Circle kernel function. This is

not unexpected because of the volatility of the P@5 metric. Our model seems to be

very precise in the top 5 documents in the WT2g collection since the Gaussian and the

Circle kernel functions out-performs BM25 by 7.0313% at α = 0.5 7.8125% at α = 0.7,

respectively. If we were to optimize our model for only P@5 performance then our model

can be very effective. However, P@5 performance comes at the cost of MAP , P@10,

53

and P@20 performance, as can be seen in the figure. The P@20 performance of our

model is much more sensitive to the α parameter. The P@20 performance of our model

is worse than BM25 when α > 0.4. Overall our model seems to be somewhat insensitive

to the α parameter in the WT2g collection. Although the performance may not be

optimal, it is better than BM25 in all metrics when α is between [0.1, 0.4]. Our model

is also better in the top 10 documents when α is between [0.1, 0.6].

6.2.1.2 disk4+5

The sensitivity of our model to the α parameter in the disk4+5 collection is shown in

Figure 6.7.

0.2 0.4 0.6 0.8

0.205

0.21

0.215

0.22

α

M
A

P

disk4+5, sensitivity of MAP to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.44

0.46

α

P
@

5

disk4+5, sensitivity of P@5 to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.38

0.4

0.42

α

P
@

1
0

disk4+5, sensitivity of P@10 to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.34

0.36

α

P
@

2
0

disk4+5, sensitivity of P@20 to α

BM25

Gaussian

Circle

Figure 6.7: disk4+5, sensitivity to the α parameter

The figure shows that the performance of the two kernel functions react similarly to

changes in the value of α. The MAP performance of our model is the best at α = 0.4.

The P@10 performance of our model is better than BM25 only if α = 0.1. The P@5

54

performance of our model is the best at α = 0.3. However, the P@5 performance of our

model is worse than BM25 for all values of α. From this study, it seems that our model

is generally ineffective in the top 10 documents in the disk4+5 collection. However,

it seems to be more effective and robust when the top 20 and more documents are

considered.

6.2.1.3 WT10g

The sensitivity of our model to the α parameter in the WT10g collection is shown in

Figure 6.8.

0.2 0.4 0.6 0.8

0.2

0.21

0.22

α

M
A

P

WT10g, sensitivity of MAP to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.36

0.38

0.4

α

P
@

5

WT10g, sensitivity of P@5 to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.31

0.32

0.33

0.34

α

P
@

1
0

WT10g, sensitivity of P@10 to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.26

0.28

α

P
@

2
0

WT10g, sensitivity of P@20 to α

BM25

Gaussian

Circle

Figure 6.8: WT10g, sensitivity to the α parameter

The performance of the two kernel functions are similarly affected by the α parameter.

The MAP performance of our model is the best at α = 0.3. The P@5 performance

of our model seems mixed. However, the P@5 performance of our model seems to be

at least equal to if not better than BM25 when α is between [0.3, 0.6]. The P@10

55

performance of our model is the best at α = 0.5. The P@10 performance of our model

at α = 0.2, which is the value which we use for our main experiment, is the worst for

α < 0.8. Our model performs better than BM25 when α is between [0.4, 0.5]. Overall

only the MAP performance of our model is somewhat insensitive to the α parameter in

the WT10g collection.

6.2.1.4 Blogs06

The sensitivity of our model to the α parameter in the Blogs06 collection is shown in

Figure 6.9.

0.2 0.4 0.6 0.8

0.29

0.3

0.31

0.32

α

M
A

P

Blogs06, sensitivity of MAP to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.64

0.66

0.68

α

P
@

5

Blogs06, sensitivity of P@5 to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.62

0.64

0.66

α

P
@

1
0

Blogs06, sensitivity of P@10 to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.59

0.6

0.61

0.62

α

P
@

2
0

Blogs06, sensitivity of P@20 to α

BM25

Gaussian

Circle

Figure 6.9: Blogs06, sensitivity to the α parameter

The figure shows that the performance of the two kernel functions are similar across all of

the metrics. Our model performs the best in MAP and P@5 when α = 2. However, the

P@5 performance of our model is the best when α is between [0.5, 0.6]. The Gaussian

and the Circle kernel functions out-perform BM25 by 7.5235% for α = 0.6 and 7.21%

56

for α = 0.5, respectively. This seems to indicate that our model is very well suited for

the top 5 documents in the Blogs06 collection. However, this come at the expense of

MAP , where our model performs worse than BM25 in MAP when α is between [0.5,

0.6]. Overall our model performs better than BM25 when α is between [0.1, 0.4]. Our

model also performs better than BM25 in at least the top 20 documents when α is

between [0.1, 0.5]. Therefore our model is somewhat insensitive to the α parameter in

the Blogs06 collection.

6.2.1.5 Gov2

The sensitivity of our model to the α parameter in the Gov2 collection is shown in Figure

6.10.

0.2 0.4 0.6 0.8

0.28

0.3

α

M
A

P

Gov2, sensitivity of MAP to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.56

0.58

0.6

0.62

α

P
@

5
Gov2, sensitivity of P@5 to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.54

0.56

0.58

α

P
@

1
0

Gov2, sensitivity of P@10 to α

BM25

Gaussian

Circle

0.2 0.4 0.6 0.8

0.5

0.52

0.54

α

P
@

2
0

Gov2, sensitivity of P@20 to α

BM25

Gaussian

Circle

Figure 6.10: Gov2, sensitivity to the α parameter

The figure shows that the performance of our model is better than BM25 in MAP for

α ≤ 0.4. The same is true for the P@5 and P@10 metrics except for the Gaussian kernel

57

function for α = 0.4. The performance of the Gaussian kernel function for α = 0.4 seems

to be an anomaly since it doesn’t follow the performance trend shown in the figure. We

will need to investigate whether the same dip in performance occurs when adjusting

the other parameters. Overall it seems that our model is well suited for the top 10

documents in the Gov2 collection when α is between [0.1, 0.3]. However, only the Circle

kernel function out-performs BM25 in P@20, and only for α = 0.3.

6.2.2 The β Parameter

The β parameter is a sentence length dependent parameter that controls the width of

the kernel functions. The effect of the β parameter is shown in Chapter 4.1.3. The lower

the value of β, the more terms that are given maximum reward. Particularly, if β ≤ 2

and γ = 0, then every term in the documents are given maximum reward. Therefore β

cannot be too low or our model would not be able to effectively discriminate between

the important and unimportant terms in the documents. β has no soft or hard upper

bound. As β is increased the number of terms that are given maximum reward in a

sentence is decreased. In this study we vary β in the range of [2, 9] in steps of 1. We fix

k1 = 1.2, k3 = 8, α = 0.2 and γ = 3. We set b to the optimal value for each collection

in Table 5.2.

6.2.2.1 WT2g

The sensitivity of our model to the β parameter in the WT2g collection is shown in

Figure 6.11.

The figure shows that the MAP , P@5, and P@10 performance of our model is the best

at β = 3. The MAP performance of our model seems to plateau for β ≥ 7. The P@20

performance of our model also plateaus for β ≥ 5. However, performance plateaus are

expected with the β parameter since the effect of the β parameter follows the law of

diminishing returns. The trend, with the exception of P@20, is that as β is increased

past 3, the performance of our model decreases until it eventually plateaus. The P@20

performance of our model is the best when β ≥ 5. This can be an anomaly with the

WT2g collection, we will investigate to see if similar performance curves are present in

58

2 4 6 8

0.318

0.32

0.322

0.324

β

M
A

P

WT2g, sensitivity of MAP to β

BM25

Gaussian

Circle

2 4 6 8

0.515

0.52

0.525

β

P
@

5

WT2g, sensitivity of P@5 to β

BM25

Gaussian

Circle

2 4 6 8

0.47

0.475

0.48

β

P
@

1
0

WT2g, sensitivity of P@10 to β

BM25

Gaussian

Circle

2 4 6 8

0.39

0.395

β

P
@

2
0

WT2g, sensitivity of P@20 to β

BM25

Gaussian

Circle

Figure 6.11: WT2g, sensitivity to the β parameter

the other collections. Overall it seems that for β ≥ 3, our model is very insensitive to

the β parameter in the WT2g collection.

6.2.2.2 disk4+5

The sensitivity of our model to the β parameter in the disk4+5 collection is shown in

Figure 6.12.

The figure shows that for both MAP and P@20, the performance of our model is the

generally the best at β = 2. This does not mean that no terms are rewards, since

γ = 3. Rather this means that if the number of terms being rewarded is affected by

the length of sentences, then performance starts to decrease. However, this is not true

in P@5, where the performance of our model is the best when β is between [0.7, 0.8].

The P@5 and P@10 performance of our model is consistently worse than BM25. It

59

2 4 6 8

0.218

0.219

0.22

β

M
A

P

disk4+5, sensitivity of MAP to β

BM25

Gaussian

Circle

2 4 6 8

0.462

0.464

0.466

0.468

β

P
@

5

disk4+5, sensitivity of P@5 to β

BM25

Gaussian

Circle

2 4 6 8

0.424

0.426

0.428

β

P
@

1
0

disk4+5, sensitivity of P@10 to β

BM25

Gaussian

Circle

2 4 6 8

0.362

0.364

0.366

0.368

β

P
@

2
0

disk4+5, sensitivity of P@20 to β

BM25

Gaussian

Circle

Figure 6.12: disk4+5, sensitivity to the β parameter

is fairly conclusive thus far that our model is not effective for the top 10 documents

in the disk4+5 collection. However, the MAP and P@20 performance of our model is

consistently better than BM25 despite the ineffectiveness of our model for the top 10

documents. Once again, it seems that our model is very insensitive to the β parameter

in the disk4+5 collection for β ≥ 3.

6.2.2.3 WT10g

The sensitivity of our model to the β parameter in the WT10g collection is shown in

Figure 6.13.

The MAP performance of our model is the best for β = 3 for the Circle kernel function

and for β = 4 for the Gaussian kernel function. The MAP performance of our model

seems to plateau at β ≥ 5. In P@5, our model performs the best for β = 4. The

60

2 4 6 8

0.214

0.216

0.218

0.22

β

M
A

P

WT10g, sensitivity of MAP to β

BM25

Gaussian

Circle

2 4 6 8

0.39

0.395

0.4

β

P
@

5

WT10g, sensitivity of P@5 to β

BM25

Gaussian

Circle

2 4 6 8

0.325

0.33

β

P
@

1
0

WT10g, sensitivity of P@10 to β

BM25

Gaussian

Circle

2 4 6 8

0.276

0.278

0.28

β

P
@

2
0

WT10g, sensitivity of P@20 to β

BM25

Gaussian

Circle

Figure 6.13: WT10g, sensitivity to the β parameter

P@5 performance plateaus at β ≥ 7. In P@10, the performance of our model is better

than BM25 only for β = 2. This means that for the top 10 documents in the WT10g

collection, our model is the most effective when the number of terms being rewarded

does not scale with the length of sentences that the terms are in. In P@20, our model

performs the best for β ≥ 7. The P@10 performance of our model is in contrast with the

P@5 and P@20 performance of our model, where the P@5 and P@20 performance of

our model is the worst for β = 2. From the figure it seems that our model is ineffective

for only documents 6-10 in the WT10g collection.

6.2.2.4 Blogs06

The sensitivity of our model to the β parameter in the Blogs06 collection is shown in

Figure 6.14.

61

2 4 6 8

0.32

0.322

0.324

β

M
A

P

Blogs06, sensitivity of MAP to β

BM25

Gaussian

Circle

2 4 6 8

0.64

0.66

0.68

β

P
@

5

Blogs06, sensitivity of P@5 to β

BM25

Gaussian

Circle

2 4 6 8
0.64

0.645

0.65

0.655

β

P
@

1
0

Blogs06, sensitivity of P@10 to β

BM25

Gaussian

Circle

2 4 6 8

0.61

0.615

0.62

β

P
@

2
0

Blogs06, sensitivity of P@20 to β

BM25

Gaussian

Circle

Figure 6.14: Blogs06, sensitivity to the β parameter

The trend in MAP , P@5, and P@20 is similar. The performance of our model is the

best or close to the best at β = 2, but plateaus as β is increased. However our model

outperforms BM25 for all values of β. The MAP and P@10 performance of our model

is the best for β = 3. The P@5 and P@20 of the Circle kernel function is the best for

β = 2. The P@5 and P@20 performance of the Gaussian kernel function is similar to

that of the Circle kernel function. Overall there is a clear trend where as β increases,

the performance of our model decreases. Our model seems to be robust in the Blogs06

collection for β ≤ 4.

6.2.2.5 Gov2

The sensitivity of our model to the β parameter in the Gov2 collection is shown in Figure

6.15.

62

2 4 6 8

0.302

0.304

β

M
A

P

Gov2, sensitivity of MAP to β

BM25

Gaussian

Circle

2 4 6 8

0.61

0.62

β

P
@

5

Gov2, sensitivity of P@5 to β

BM25

Gaussian

Circle

2 4 6 8

0.58

0.585

0.59

β

P
@

1
0

Gov2, sensitivity of P@10 to β

BM25

Gaussian

Circle

2 4 6 8
0.534

0.536

0.538

0.54

β

P
@

2
0

Gov2, sensitivity of P@20 to β

BM25

Gaussian

Circle

Figure 6.15: Gov2, sensitivity to the β parameter

The MAP performance of our model is the best for β = 3. However, the perfor-

mance difference between the best MAP performance (0.3048) and the worst MAP

performance of our model (0.3043) is only 0.0005. The P@5 performance of our model

increases as β is increased and is better than BM25 for β ≥ 3. The P@10 performance

of our model is the best for β = 2 and β = 3 for the Gaussian and the Circle kernel

functions, respectively. The P@10 performance of our model plateaus for β ≥ 5. The

P@20 performance of our model is worse than BM25 for all values of β. This seems to

indicate that our model is fairly robust for the top 10 documents in the Gov2 collection

and overall, given the MAP performance. However our model seems ineffective in at

least the top 20 documents, especially if the reward given to terms is scaled with the

length of sentences.

63

6.2.3 The γ Parameter

The γ parameter is a sentence length independent parameter that controls the width

of the kernel functions. The effect of the γ parameter is shown in Chapter 4.1.3. The

lower the value of γ, the more terms that are given maximum reward. γ has a soft upper

bound of UB = SL−1
2 . If γ = UB then the reward given to every term in the sentence

is calculated by the kernel function. If γ > UB then the previous still applies, but the

kernel function is wider, therefore every term in the sentence is given less reward. In

this study we vary γ in the range of [0, 9] in steps of 1. We fix k1 = 1.2, k3 = 8, α = 0.2

and β = 3. We set b to the optimal value for each collection in Table 5.2.

6.2.3.1 WT2g

The sensitivity of our model to the γ parameter in the WT2g collection is shown in

Figure 6.16.

The figure shows that the two kernel functions react similarly to changes in γ. The

MAP and P@5 performance of the Gaussian and the Circle kernel function is the best

at γ = 2 and γ = 3, respectively. The P@20 performance of our model increases as γ

is increased. Since we did not see a similar trend for β ≥ 3 in Figure 6.11, this means

that giving less reward to the terms in shorter sentences improves P@20 performance in

the WT2g collection. With the exception of the P@20 performance, the general trend is

that as γ increases, performance decreases. The performance of our model is the worst

or close to the worst for γ = 0 in all metrics and is worse than BM25 in some cases. This

shows that in the WT2g collection, our model is effective only if the terms in shorter

sentences are given less reward.

Overall the Gaussian kernel function is very insensitive to the γ parameter if γ ≥ 2. The

P@5 performance of our model can be due to the volatility of the metric.

6.2.3.2 disk4+5

The sensitivity of our model to the γ parameter in the disk4+5 collection is shown in

Figure 6.17.

64

0 2 4 6 8

0.318

0.32

0.322

0.324

γ

M
A

P

WT2g, sensitivity of MAP to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.51

0.52

0.53

γ

P
@

5

WT2g, sensitivity of P@5 to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.47

0.475

0.48

0.485

γ

P
@

1
0

WT2g, sensitivity of P@10 to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.385

0.39

0.395

γ

P
@

2
0

WT2g, sensitivity of P@20 to γ

BM25

Gaussian

Circle

Figure 6.16: WT2g, sensitivity to the γ parameter

The MAP and P@20 performance of our model peaks at γ = 2. The MAP performance

of our model plateaus at γ ≥ 3. The P@5 and P@10 performance of our model is the

best when γ = 0. This means that the performance of our model is better when the

reward given to terms are more proportional to the length of sentences that the terms are

in. It may be worthwhile to investigate negative values for γ in a future study, where we

give more reward to terms in shorter sentences. With the exception of documents 6-10,

our model seems very insensitive to the γ parameter. Our model performs consistently

worse than BM25 in P@5, but the performance is comparable for all values of γ.

6.2.3.3 WT10g

The sensitivity of our model to the γ parameter in the WT10g collection is shown in

Figure 6.18.

65

0 2 4 6 8

0.218

0.219

0.22

0.221

γ

M
A

P

disk4+5, sensitivity of MAP to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.462

0.464

0.466

0.468

γ

P
@

5

disk4+5, sensitivity of P@5 to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.42

0.425

0.43

γ

P
@

1
0

disk4+5, sensitivity of P@10 to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.362

0.364

0.366

γ

P
@

2
0

disk4+5, sensitivity of P@20 to γ

BM25

Gaussian

Circle

Figure 6.17: disk4+5, sensitivity to the γ parameter

The MAP performance of our model is the best at γ = 2 and γ = 3 for the Gaussian

and the Circle kernel functions, respectively. The P@5 performance of our model is very

sporadic, with a sharp dip for the Circle kernel function at γ = 6. However, P@5 is the

most volatile measure used in this experiment. The P@10 performance of our model is

the best at γ = 1 and drops sharply as γ is increased further. The P@20 performance of

our model increases as γ is increased and only outperforms BM25 for γ ≥ 5 and γ > 6

for the Gaussian and the Circle kernel functions, respectively. Overall only the MAP

parameter is insensitive to the γ parameter for γ ≥ 1. Our model only outperforms

BM25 in P@10 and P@20 for certain values of γ.

6.2.3.4 Blogs06

The sensitivity of our model to the γ parameter in the Blogs06 collection is shown in

Figure 6.19.

66

0 2 4 6 8

0.214

0.216

0.218

0.22

γ

M
A

P

WT10g, sensitivity of MAP to γ

BM25

Gaussian

Circle

0 2 4 6 8
0.38

0.385

0.39

0.395

0.4

γ

P
@

5

WT10g, sensitivity of P@5 to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.324

0.326

0.328

0.33

γ

P
@

1
0

WT10g, sensitivity of P@10 to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.276

0.278

γ

P
@

2
0

WT10g, sensitivity of P@20 to γ

BM25

Gaussian

Circle

Figure 6.18: WT10g, sensitivity to the γ parameter

The MAP performance of our model is the best at γ = 3 and plateaus for γ ≥ 4. The

P@5 performance of our model peaks at γ = 2 and γ = 3 for the Gaussian and the

Circle kernel functions. The P@5 performance of our model drops as γ is increased. A

similar trend can be seen in the P@20 performance of our model. However, our model

outperforms BM25 for all values of γ. Overall our model is insensitive to the γ parameter

in the Blogs06 collections. The performance of our model seems to be the best when γ

is within [1, 3]. However, there is a large difference between the best performance and

the worst performance of our model in both P@5 and P@20.

6.2.3.5 Gov2

The sensitivity of our model to the γ parameter in the Gov2 collection is shown in Figure

6.20.

67

0 2 4 6 8

0.32

0.322

0.324

γ

M
A

P

Blogs06, sensitivity of MAP to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.64

0.66

γ

P
@

5

Blogs06, sensitivity of P@5 to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.64

0.645

0.65

0.655

0.66

γ

P
@

1
0

Blogs06, sensitivity of P@10 to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.61

0.62

0.63

γ

P
@

2
0

Blogs06, sensitivity of P@20 to γ

BM25

Gaussian

Circle

Figure 6.19: Blogs06, sensitivity to the γ parameter

The MAP performance of our model is fairly consistent, where our model performs the

best for γ = 4. The P@5 performance of our model increases as γ is increased. In

P@10, there is a distinct peak in performance at γ = 3 and γ = 4 for the Gaussian

and the Circle kernel functions. Our model performs very sporadically in P@20 as γ is

changed. Overall our model performs the best when γ is within [3, 4]. Our model is

very insensitive to the γ parameter in MAP , but the performance of our model in the

other measures seem to rely on certain values of γ.

6.2.4 Summary

The sensitivity of our model to the α parameter varies from collection to collection and

from metric to metric. In MAP , the performance of our model is the best when α is

between [0.2, 0.3]. The performance of our models for the other metrics is generally the

best when α is between [0.4, 0.5]. Performance tends to be worse if α is increased past

68

0 2 4 6 8

0.302

0.304

γ

M
A

P

Gov2, sensitivity of MAP to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.6

0.61

0.62

0.63

γ

P
@

5

Gov2, sensitivity of P@5 to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.58

0.585

0.59

γ

P
@

1
0

Gov2, sensitivity of P@10 to γ

BM25

Gaussian

Circle

0 2 4 6 8

0.534

0.536

0.538

0.54

γ

P
@

2
0

Gov2, sensitivity of P@20 to γ

BM25

Gaussian

Circle

Figure 6.20: Gov2, sensitivity to the γ parameter

its optimal value. In some cases there is a trade-off between MAP and the precision of

the top documents. Our model is therefore somewhat sensitive to the α parameter. The

range that α can vary within without affecting performance significantly is 0.1, which is

small.

The effect of the β parameter decreases as it is increased. However, its effect is not

linear like the α parameter. Therefore our model should be and is more insensitive to

β than it is to α. The MAP performance of our model is the best when β ≥ 3. This

means that the maximum reward threshold has almost no effect on MAP past a certain

threshold of β. Particularly, with β = 9 and γ = 3 very few of the terms are given

maximum reward. In some collections the effect of β is also almost negligible on certain

kernel functions, such as the Circle kernel function in the Blogs06 collection. In general

however, β between [5, 6] is needed for our model to perform the best in P@5, P@10,

and P@20.

69

The effect of the γ parameter is only linear up to the soft upper bound, which varies

depending on the length of the sentence. It’s worthy to note that certain metrics in

some of the collections showed an upward trend as γ is increased and a neutral trend

as β is increased. This means that as the performance for some metrics improved as

the terms in shorter sentences are given less reward. However, this effect is not global,

and can be document-specific. In general, the performance of our model is the best

when γ is between [2, 4]. However, for certain cases, such as the P@10 performance

in the disk4+5 collection which prefers γ = 0, this is not true. It may be worthwhile

to investigate whether the upward trend continues past 0 into negative values of γ in a

future study. In general, our model is somewhat sensitive to the γ parameter, though a

range of [2, 4] should suffice in most cases.

70

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we use the SVO pattern of English sentences [27] to estimate the probability

that a term is a noun and important in the document. This is in order to replenish the

semantic relationships between the terms that is lost when the bag of words approach

is used. The SVO pattern means that the subject and the object are more often placed

near the beginning and the end of sentences, respectively [28]. The subjects and the

objects are comprised of nouns and noun-phrases, which are more effective in improving

IR than the other lexical classes [19, 26, 30–34]. In order to use the term location

information, we extend BM25 and reward the terms based on its location in sentences,

where a term is that is more likely to be a noun and important in the document is

given more reward. In doing this we hope to elevate the documents that the term is

more important in, in order to improve IR performance. We propose TEL, a kernel

function based model to estimate that probability based on the proximity of the term

to sentence-final punctuation. The reward given to terms also undergoes normalization

by the length of the sentence, based on the design of our model, and the length of the

query, based on our findings in the query term placement preliminary experiment in

Chapter 3.3.

Our assumptions are that the nouns and the important terms in the documents are

nearer to the beginning and the end of sentences. We confirm that our assumptions are

true in our preliminary experiments on the WT2g collection in Chapter 3.2 and 3.3. We

71

conduct our main experiment on five representative TREC collections that vary both in

size and in content. We fix the values of the parameters of our model to α = 0.2, β = 3,

and γ = 3 in order to show that it is robust. Experimental results in Chapter 6 show

that the performance of our model is significantly better than BM25 in MAP in every

collection. The P@5 and P@10 performance of our model is significantly better than

BM25 in almost most of the collections. The P@20 performance of our model is better

than BM25 in three of the collections, the improvements are significant in only two of

the collections.

We also conduct a robustness study to see the effect that the parameters have on the

performance of our model. Our model is somewhat sensitive to all of the parameters.

However, the effect of the parameters on MAP and P@20 is small in most of the cases.

As more documents are considered, our model becomes more robust. The maximum

reward threshold in Equation 4.13 seems to be largely ineffective in improving MAP , but

does have an effect on the precision of the top documents. Due to the sensitivity of our

model to the parameters, our model may be difficult to optimize. However, experimental

results have shows that the performance of our model is significantly better than BM25

in most of the cases even with fixed parameters.

7.2 Future Work

The α, β, and the γ parameters were fixed in our experiments. The results achieved by

our model could be even better if those parameters were optimized for each collection. It

may also be worthwhile to analyze the optimal value of the α, β, and the γ parameters

and the characteristics of the collections to see if a relationship exists. If there is, being

able to automatically set the optimal parameter values instead of fixed parameter values

would increase the robustness of our model and the feasibility of deploying our model

onto a live environment. Similarly, when optimizing the b, k1, and k3 parameters of

BM25 and the µ parameter of DirichletLM, more fine-grained optimization techniques,

such as looking in the neighborhood of the optimal values used, could be applied to

improve the performance of both the baselines and our model.

72

Another possible future extension is to investigate non-symmetric kernel functions and

kernel functions with negative values since we find in our query term placement pre-

liminary experiment in Chapter 3.3 that the placement of the terms near the beginning

of sentences is different than near the end of sentences. Non-symmetric kernel func-

tions should also alleviate the phrase normalization problem [64]. The MinDist and

the MaxDist measures [23] can also improve the performance of our model, since those

measures were found to be more effective than the average of the distances between

query terms in improving IR. Incorporating the proximity of the terms to periods in

order to find hypernymy and meronymy relationships in sentences is another possible

extension to our model.

In our experiments we only compared the performance of our model against BM25

and DirichletLM. The experiments showed that there were significant improvements

over the baseline models in all datasets. However, we would still need to compare the

performance of our model to current state of the art retrieval models in order to see if

the performance improvements are good enough. Lastly, this model could also be used

to extend a language IR model such as DirichletLM.

73

Bibliography

[1] Amit Singhal. Modern information retrieval: A brief overview. IEEE Data Eng. Bull., 24(4):35–43,

2001.

[2] Vannevar Bush. As we may think. 1945.

[3] Hans Peter Luhn. A statistical approach to mechanized encoding and searching of literary infor-

mation. IBM Journal of research and development, 1(4):309–317, 1957.

[4] Gerard Salton, Chung-Shu Yang, and CLEMENT T Yu. A theory of term importance in automatic

text analysis. Journal of the American society for Information Science, 26(1):33–44, 1975.

[5] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic indexing.

Communications of the ACM, 18(11):613–620, 1975.

[6] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval.

Information processing & management, 24(5):513–523, 1988.

[7] Stephen E Robertson and K Sparck Jones. Relevance weighting of search terms. Journal of the

American Society for Information science, 27(3):129–146, 1976.

[8] Jay M Ponte and W Bruce Croft. A language modeling approach to information retrieval. In

Proceedings of the 21st annual international ACM SIGIR conference on Research and development

in information retrieval, pages 275–281. ACM, 1998.

[9] John Lafferty and Chengxiang Zhai. Document language models, query models, and risk mini-

mization for information retrieval. In Proceedings of the 24th annual international ACM SIGIR

conference on Research and development in information retrieval, pages 111–119. ACM, 2001.

[10] Chengxiang Zhai and John Lafferty. A study of smoothing methods for language models applied to

ad hoc information retrieval. In Proceedings of the 24th annual international ACM SIGIR conference

on Research and development in information retrieval, pages 334–342. ACM, 2001.

[11] Stephen E Robertson and Steve Walker. Some simple effective approximations to the 2-poisson

model for probabilistic weighted retrieval. In Proceedings of the 17th annual international ACM

SIGIR conference on Research and development in information retrieval, pages 232–241. Springer-

Verlag New York, Inc., 1994.

74

[12] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford,

et al. Okapi at trec-3. NIST SPECIAL PUBLICATION SP, pages 109–109, 1995.

[13] Stephen E Robertson, Steve Walker, MM Beaulieu, Mike Gatford, and Alison Payne. Okapi at trec-

4. In Proceedings of the fourth text retrieval conference, pages 73–97. NIST Special Publication,

1996.

[14] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: BM25 and beyond.

Now Publishers Inc, 2009.

[15] Chengxiang Zhai and John Lafferty. A study of smoothing methods for language models applied

to information retrieval. ACM Transactions on Information Systems (TOIS), 22(2):179–214, 2004.

[16] Stephen Paul Harter. A probabilistic approach to automatic keyword indexing. PhD thesis, Univer-

sity of Chicago, 1974.

[17] Stephen E Robertson, CJ Van Rijsbergen, and Martin F Porter. Probabilistic models of indexing

and searching. In Proceedings of the 3rd annual ACM conference on Research and development in

information retrieval, pages 35–56. Butterworth & Co., 1980.

[18] Martin F Porter. An algorithm for suffix stripping. Program: electronic library and information

systems, 14(3):130–137, 1980.

[19] Mandar Mitra, Chris Buckley, Amit Singhal, Claire Cardie, et al. An analysis of statistical and

syntactic phrases. In RIAO, volume 97, pages 200–214, 1997.

[20] Yves Rasolofo and Jacques Savoy. Term proximity scoring for keyword-based retrieval systems. In

Advances in Information Retrieval, pages 207–218. Springer, 2003.

[21] Stefan Büttcher, Charles LA Clarke, and Brad Lushman. Term proximity scoring for ad-hoc re-

trieval on very large text collections. In Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information retrieval, pages 621–622. ACM, 2006.

[22] Desislava Petkova and W Bruce Croft. Proximity-based document representation for named en-

tity retrieval. In Proceedings of the sixteenth ACM conference on Conference on information and

knowledge management, pages 731–740. ACM, 2007.

[23] Tao Tao and ChengXiang Zhai. An exploration of proximity measures in information retrieval. In

Proceedings of the 30th annual international ACM SIGIR conference on Research and development

in information retrieval, pages 295–302. ACM, 2007.

[24] Jiashu Zhao, Jimmy Xiangji Huang, and Ben He. CRTER: using cross terms to enhance probabilistic

information retrieval. In Proceedings of the 34th international ACM SIGIR conference on Research

and development in Information Retrieval, pages 155–164. ACM, 2011.

[25] Yadong Zhu, Yuanhai Xue, Jiafeng Guo, Yanyan Lan, Xueqi Cheng, and Xiaoming Yu. Explor-

ing and exploiting proximity statistic for information retrieval model. In Information Retrieval

Technology, pages 1–13. Springer, 2012.

75

[26] Yufeng Jing and W Bruce Croft. An association thesaurus for information retrieval. In Proceedings

of RIAO, volume 94, pages 146–160. Citeseer, 1994.

[27] Charles F Meyer et al. Introducing English Linguistics International Student Edition. Cambridge

University Press, 2010.

[28] Hogue Ann. The essentials of english-a writer’s handbook, 2003.

[29] David Hawking and Paul Thistlewaite. Proximity operators-so near and yet so far. In Proceedings

of the 4th Text Retrieval Conference, pages 131–143, 1995.

[30] David A Evans and Chengxiang Zhai. Noun-phrase analysis in unrestricted text for information

retrieval. In Proceedings of the 34th annual meeting on Association for Computational Linguistics,

pages 17–24. Association for Computational Linguistics, 1996.

[31] Shuang Liu, Fang Liu, Clement Yu, and Weiyi Meng. An effective approach to document retrieval

via utilizing wordnet and recognizing phrases. In Proceedings of the 27th annual international

ACM SIGIR conference on Research and development in information retrieval, pages 266–272.

ACM, 2004.

[32] Hai-Tao Zheng, Bo-Yeong Kang, and Hong-Gee Kim. Exploiting noun phrases and semantic rela-

tionships for text document clustering. Information Sciences, 179(13):2249–2262, 2009.

[33] Ken Barker and Nadia Cornacchia. Using noun phrase heads to extract document keyphrases. In

Advances in Artificial Intelligence, pages 40–52. Springer, 2000.

[34] Joe Fagan. Automatic phrase indexing for document retrieval. In Proceedings of the 10th annual

international ACM SIGIR conference on Research and development in information retrieval, pages

91–101. ACM, 1987.

[35] Eric Brill. A simple rule-based part of speech tagger. In Proceedings of the workshop on Speech and

Natural Language, pages 112–116. Association for Computational Linguistics, 1992.

[36] Dan Yang, Christina Leber, Luis Tari, Aravind Chandramouli, Andrew Crapo, Richard Messmer,

and Steven Gustafson. A natural language processing and semantic-based system for contract

analysis. In Tools with Artificial Intelligence (ICTAI), 2013 IEEE 25th International Conference

on, pages 707–712. IEEE, 2013.

[37] K Liu, WW Chapman, G Savova, CG Chute, N Sioutos, and Rebecca S Crowley. Effectiveness

of lexico-syntactic pattern matching for ontology enrichment with clinical documents. Methods of

information in medicine, 50(5):397, 2011.

[38] Sheng-Hao Hung, Chia-Hung Lin, and Jen-Shin Hong. Web mining for event-based commonsense

knowledge using lexico-syntactic pattern matching and semantic role labeling. Expert Systems with

Applications, 37(1):341–347, 2010.

[39] Fidelia Ibekwe-SanJuan, Fernandez Silvia, Sanjuan Eric, and Charton Eric. Annotation of scientific

summaries for information retrieval. arXiv preprint arXiv:1110.5722, 2011.

76

[40] Andrew Trotman. Choosing document structure weights. Information Processing & Management,

41(2):243–264, 2005.

[41] Zhicheng Dou, Sha Hu, Yulong Luo, Ruihua Song, and Ji-Rong Wen. Finding dimensions for

queries. In Proceedings of the 20th ACM international conference on Information and knowledge

management, pages 1311–1320. ACM, 2011.

[42] Qinmin Hu, Jimmy Xiangji Huang, and Xiaohua Hu. Modeling and mining term association for

improving biomedical information retrieval performance. BMC bioinformatics, 13(9):1, 2012.

[43] Atanaz Babashzadeh, Jimmy Huang, and Mariam Daoud. Exploiting semantics for improving

clinical information retrieval. In Proceedings of the 36th international ACM SIGIR conference on

Research and development in information retrieval, pages 801–804. ACM, 2013.

[44] Cheng Hua Li and Jimmy Xiangji Huang. Spam filtering using semantic similarity approach and

adaptive bpnn. Neurocomputing, 92:88–97, 2012.

[45] Xiaofeng Zhou, Jimmy Xiangji Huang, and Ben He. Enhancing ad-hoc relevance weighting using

probability density estimation. In Proceedings of the 34th international ACM SIGIR conference on

Research and development in Information Retrieval, pages 175–184. ACM, 2011.

[46] Fanghong Jian, Jimmy Xiangji Huang, Jiashu Zhao, Tingting He, and Po Hu. A simple enhancement

for ad-hoc information retrieval via topic modelling. In Proceedings of the 39th International ACM

SIGIR conference on Research and Development in Information Retrieval, pages 733–736. ACM,

2016.

[47] Xinhui Tu, Jimmy Xiangji Huang, Jing Luo, and Tingting He. Exploiting semantic coherence

features for information retrieval. In Proceedings of the 39th International ACM SIGIR conference

on Research and Development in Information Retrieval, pages 837–840. ACM, 2016.

[48] Zheng Ye and Jimmy Xiangji Huang. A learning to rank approach for quality-aware pseudo-

relevance feedback. Journal of the Association for Information Science and Technology, 2015.

[49] Jun Miao, Jimmy Xiangji Huang, and Jiashu Zhao. TopPRF: A probabilistic framework for in-

tegrating topic space into pseudo relevance feedback. ACM Transactions on Information Systems

(TOIS), 34(4):22, 2016.

[50] Jiashu Zhao, Jimmy Xiangji Huang, and Shicheng Wu. Rewarding term location information to

enhance probabilistic information retrieval. In Proceedings of the 35th international ACM SIGIR

conference on Research and development in information retrieval, pages 1137–1138. ACM, 2012.

[51] Jangwon Seo and Jiwoon Jeon. High precision retrieval using relevance-flow graph. In Proceedings

of the 32nd international ACM SIGIR conference on Research and development in information

retrieval, pages 694–695. ACM, 2009.

[52] Andreas Broschart and Ralf Schenkel. Proximity-aware scoring for xml retrieval. In Proceedings of

the 31st annual international ACM SIGIR conference on Research and development in information

retrieval, pages 845–846. ACM, 2008.

77

[53] Jiashu Zhao and Jimmy Xiangji Huang. An enhanced context-sensitive proximity model for prob-

abilistic information retrieval. In Proceedings of the 37th international ACM SIGIR conference on

Research & development in information retrieval, pages 1131–1134. ACM, 2014.

[54] Jiashu Zhao, Jimmy Xiangji Huang, and Zheng Ye. Modeling term associations for probabilistic

information retrieval. ACM Transactions on Information Systems (TOIS), 32(2):7, 2014.

[55] Parvaz Mahdabi, Shima Gerani, Jimmy Xiangji Huang, and Fabio Crestani. Leveraging conceptual

lexicon: query disambiguation using proximity information for patent retrieval. In Proceedings of the

36th international ACM SIGIR conference on Research and development in information retrieval,

pages 113–122. ACM, 2013.

[56] Baiyan Liu, Xiangdong An, and Jimmy Xiangji Huang. Using term location information to enhance

probabilistic information retrieval. In Proceedings of the 38th International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 883–886. ACM, 2015.

[57] Ben He, Jimmy Xiangji Huang, and Xiaofeng Zhou. Modeling term proximity for probabilistic

information retrieval models. Information Sciences, 181(14):3017–3031, 2011.

[58] Ruihua Song, Michael J Taylor, Ji-Rong Wen, Hsiao-Wuen Hon, and Yong Yu. Viewing term prox-

imity from a different perspective. In Advances in Information Retrieval, pages 346–357. Springer,

2008.

[59] Bong-Hyun Cho, Changki Lee, and Gary Geunbae Lee. Exploring term dependences in probabilistic

information retrieval model. Information processing & management, 39(4):505–519, 2003.

[60] Jun Miao, Jimmy Xiangji Huang, and Zheng Ye. Proximity-based rocchio’s model for pseudo

relevance. In Proceedings of the 35th international ACM SIGIR conference on Research and devel-

opment in information retrieval, pages 535–544. ACM, 2012.

[61] Michel Beigbeder and Annabelle Mercier. An information retrieval model using the fuzzy proximity

degree of term occurences. In Proceedings of the 2005 ACM symposium on Applied computing, pages

1018–1022. ACM, 2005.

[62] Yuanhua Lv and ChengXiang Zhai. Positional language models for information retrieval. In Proceed-

ings of the 32nd international ACM SIGIR conference on Research and development in information

retrieval, pages 299–306. ACM, 2009.

[63] Huda Mohammed Barakat, Maizatul Akmar Ismail, and Sri Devi Ravana. Utilization of cross-terms

to enhance the language model for information retrieval. Malaysian Journal of Computer Science,

26(3), 2013.

[64] Seeger Fisher and Brian Roark. Query-focused summarization by supervised sentence ranking and

skewed word distributions. In Proceedings of the Document Understanding Conference, DUC-2006,

New York, USA, 2006.

[65] Hans Peter Luhn. The automatic creation of literature abstracts. IBM Journal of research and

development, 2(2):159–165, 1958.

78

[66] Jiaul H Paik. A novel tf-idf weighting scheme for effective ranking. In Proceedings of the 36th

international ACM SIGIR conference on Research and development in information retrieval, pages

343–352. ACM, 2013.

[67] Charles Dickens. Hard times by charles dickens, 1997. URL http://www.gutenberg.org/files/

786/786-0.txt. [Online; accessed 5-March-2014].

[68] The Stanford Natural Language Processing Group. Stanford log-linear part-of-speech tagger 3.3.1,

2015. URL http://nlp.stanford.edu/software/stanford-postagger-2014-01-04.zip. [Online;

accessed 20-June-2015].

[69] Iadh Ounis, Maarten de Rijke, Craig Macdonald, Gilad Mishne, and Ian Soboroff. Overview of the

trec-2006 blog track.

[70] Ellen M Voorhees and Donna Harman. Overview of the sixth text retrieval conference (trec-6).

Information Processing & Management, 36(1):3–35, 2000.

[71] Amanda Spink, Dietmar Wolfram, Major BJ Jansen, and Tefko Saracevic. Searching the web: The

public and their queries. Journal of the American society for information science and technology,

52(3):226–234, 2001.

[72] Bernard J Jansen, Amanda Spink, Judy Bateman, and Tefko Saracevic. Real life information

retrieval: A study of user queries on the web. In ACM SIGIR Forum, volume 32, pages 5–17.

ACM, 1998.

[73] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. Analysis of a very large

web search engine query log. In ACm SIGIR Forum, volume 33, pages 6–12. ACM, 1999.

[74] Iadh Ounis, Gianni Amati, Vassilis Plachouras, Ben He, Craig Macdonald, and Douglas John-

son. Terrier information retrieval platform. In Advances in Information Retrieval, pages 517–519.

Springer, 2005.

[75] The University of Pennsylvania. The university of pennsylvania (penn) treebank tag-set, 2009. URL

http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html. [Online; accessed 15-June-2015].

[76] H2 Database Engine. H2 database engine 1.3.174, 2015. URL http://repo2.maven.org/maven2/

com/h2database/h2/1.3.174/h2-1.3.174.jar. [Online; accessed 20-June-2015].

[77] Martin F Porter. Porter stemmer in java, 2007. URL http://tartarus.org/martin/

PorterStemmer/java.txt. [Online; accessed 15-June-2015].

[78] Terrier Team. Terrier ir platform 3.5, 2015. URL http://terrier.org/download/agree.shtml?

terrier-3.5.tar.gz. [Online; accessed 20-June-2015].

79

http://www.gutenberg.org/files/786/786-0.txt
http://www.gutenberg.org/files/786/786-0.txt
http://nlp.stanford.edu/software/stanford-postagger-2014-01-04.zip
http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html
http://repo2.maven.org/maven2/com/h2database/h2/1.3.174/h2-1.3.174.jar
http://repo2.maven.org/maven2/com/h2database/h2/1.3.174/h2-1.3.174.jar
http://tartarus.org/martin/PorterStemmer/java.txt
http://tartarus.org/martin/PorterStemmer/java.txt
http://terrier.org/download/agree.shtml?terrier-3.5.tar.gz
http://terrier.org/download/agree.shtml?terrier-3.5.tar.gz

Appendix A

Placement of Nouns in Sentences

Preliminary Experiment

A.1 Instructions

In order to run the Place of Nouns in Sentences preliminary experiment in Chapter 3.2,

you need to do the following:

1. Copy and paste the Noun Placement Parser code in Section A.2 into a file named

Parser.java.

2. Place the .jar file from Stanford Tagger 3.3.1 (stanford-postagger-3.3.1.jar) [68]

into the same directory as Parser.java.

3. Compile the Noun Placement Parser by entering ”javac -cp .:stanford-postagger-

3.3.1.jar Parser.java” into the command line.

4. Place the english-left3words-distsim.tagger file from Stanford Tagger 3.3.1 [68] into

the same directory as Parser.java.

5. Place the collection directory into the same directory as Parser.java. Rename the

collection directory according to the collection as follows: WT2g to wt2g, disk4+5

to disk4+5, WT10g to wt10g, Blogs06 to blogs06, Gov2 to gov2.

6. Run the Noun Placement Parser by entering ”java -cp .:standford-postagger-3.3.1.jar

Parser [Data] [PoS]” into the command line. Both the [Data] and [PoS] parameters

80

are mandatory. [Data] is the name of the collection directory, ex. wt2g. [PoS] is

the part-of-speech to find (ex. NN for nouns, see [75] for the full set of part-of-

speech tags). For example, to find the nouns in the WT2G collection, enter ”java

-cp .:stanford-postagger-3.3.1.jar Parser wt2g NN” into the command line.

The Noun Placement Parser only supports the collections outlined in Section 5.1. Other

collections are not guaranteed to work.

A.2 Noun Placement Parser

1 // javac -cp .:stanford -postagger -3.3.1. jar Parser.java

2 // java -cp .:stanford -postagger -3.3.1. jar Parser data pos

3

4 import java.io.BufferedReader;

5 import java.io.File;

6 import java.io.FileReader;

7 import java.io.IOException;

8 import java.util.Arrays;

9 import java.util.ArrayList;

10 import java.util.HashMap;

11 import java.util.HashSet;

12 import java.util.regex.Matcher;

13 import java.util.regex.Pattern;

14 import edu.stanford.nlp.tagger.maxent.MaxentTagger;

15

16 public class Parser

17 {

18 private static double noun_sum = 0d, noun_sum_l = 0d, noun_sum_r = 0d;

19 private static long sen_sum = 0L, noun_count = 0L, noun_count_l = 0L,

noun_count_r = 0L, sen_count = 0L;

20

21 private static final int min_sen_length = 7, max_sen_length = 20,

min_sen_thresh = min_sen_length - 1, max_sen_thresh = max_sen_length

+ 1, min_line_thresh = min_sen_length * 2 - 2, max_line_thresh =

max_sen_length * 100 + 1;

22

23 public static void main (String [] args)

24 {

81

25 MaxentTagger tagger = new

MaxentTagger("english -left3words -distsim.tagger");

26

27 Matcher matcher;

28 // Parse output from tagger

29 Pattern pattern_tag = Pattern.compile("([^ -\\s_]+)_([a-zA-Z\\.]+)");

30

31 // Delimiters for text in documents

32 HashMap <String , String > delims = new HashMap <>();

33 String [] dir;

34 String line , start , end;

35 boolean read = false;

36

37 delims.put("wt2g_start", " </DOCHDR >");

38 delims.put("wt2g_end", " </DOC >");

39 delims.put("disk4 +5 _start", "<TEXT >");

40 delims.put("disk4 +5_end", " </TEXT >");

41 delims.put("wt10g_start", " </DOCHDR >");

42 delims.put("wt10g_end", " </DOC >");

43 delims.put("blogs06_start", " </DOCHDR >");

44 delims.put("blogs06_end", " </DOC >");

45 delims.put("gov2_start", " </DOCHDR >");

46 delims.put("gov2_end", " </DOC >");

47

48 start = delims.get(args [0] + "_start");

49 end = delims.get(args [0] + "_end");

50

51 try

52 {

53 dir = (new File(args [0])).list();

54 Arrays.sort(dir);

55 for (String d1 : dir)

56 {

57

58 dir = (new File(args [0] + "/" + d1)).list();

59 Arrays.sort(dir);

60 for (String d2 : dir)

61 {

62 System.out.println(d1 + "/" + d2);

63

82

64 try (BufferedReader r = new BufferedReader(new

FileReader(args [0] + "/" + d1 + "/" + d2)))

65 {

66 while ((line = r.readLine ()) != null)

67 {

68 if (read && !line.contains(end))

69 {

70 // Define end of line as end of sentence and parse

71 line =

line.replaceAll(" <[^>]*>|[^\u0020 -\u002F\u003A -\u007F]", "") + " ! ";

72 if (line.length () > min_line_thresh && line.length () <

max_line_thresh)

73 {

74 ParseLine(pattern_tag.matcher(tagger.tagString(line)),

args [1]);

75 }

76 }

77 else if (read)

78 {

79 read = false;

80 }

81 else if (line.contains(start))

82 {

83 read = true;

84 }

85 }

86 }

87

88 System.out.println("\nAvg dist: " + (noun_sum / noun_count) +

"\nAvg dist left: " + (noun_sum_l / noun_count_l) + "\nAvg dist

right: " + (Math.abs(noun_sum_r) / noun_count_r) + "\nNouns: " +

noun_count + "\nNouns left: " + noun_count_l + "\nNouns right: " +

noun_count_r + "\nAvg sen length: " + ((sen_sum + 0d) / sen_count) +

"\nSentences: " + sen_count + "\n");

89 }

90 }

91 }

92 catch (IOException e)

93 {

94 e.printStackTrace ();

95 }

83

96 }

97

98 // Parse a line

99 private static void ParseLine(Matcher matcher , String pos)

100 {

101 ArrayList <String > sentence = new ArrayList <>();

102

103 while (matcher.find())

104 {

105 if (! matcher.group (2).equals("."))

106 {

107 sentence.add(matcher.group (2));

108 }

109 else

110 {

111 Collect(sentence , pos);

112 }

113 }

114 Collect(sentence , pos);

115 }

116

117 // Determine placement of terms and collect statistics

118 private static void Collect(ArrayList <String > sentence , String pos)

119 {

120 double mid , dist , sum = 0d, sum_l = 0d, sum_r = 0d;

121 int sen_length = sentence.size(), count = 0, count_l = 0, count_r =

0;

122

123 if (sen_length > min_sen_thresh && sen_length < max_sen_thresh)

124 {

125 mid = (sen_length - 1d) / 2d;

126 for (int i = 0; i < sen_length; i++)

127 {

128 // NN - noun , VB - verb , JJ - adjective

129 if (sentence.get(i).contains(pos))

130 {

131 dist = (mid - i) / mid;

132 // i > mid means the term is on the right half

133 if (dist < 0)

134 {

135 sum_r += dist;

84

136 count_r ++;

137 }

138 else if (dist > 0)

139 {

140 sum_l += dist;

141 count_l ++;

142 }

143

144 sum += Math.abs(dist);

145 count ++;

146 }

147 }

148

149 // Skip sentences with all the same pos

150 if (count != sen_length)

151 {

152 noun_sum += sum;

153 noun_sum_l += sum_l;

154 noun_sum_r += sum_r;

155 noun_count += count;

156 noun_count_l += count_l;

157 noun_count_r += count_r;

158 sen_sum += sen_length;

159 sen_count ++;

160 }

161 }

162 sentence.clear ();

163 }

164 }

85

Appendix B

Placement of Important Terms in

Sentences Preliminary

Experiment

B.1 Instructions

In order to run the Placement of Important Terms in Sentences preliminary experiment

in Chapter 3.3, you need to do the following:

1. Copy and paste the Query Term Placement Parser code in Section B.2 into a file

named RelParser.java.

2. Place the .jar file from Stanford Tagger 3.3.1 (stanford-postagger-3.3.1.jar) [68]

into the same directory as RelParser.java.

3. Place the .jar file from H2 Database 1.3.174 (h2 -1.3.174.jar) [76] into the same

directory as RelParser.java.

4. Copy the code of the Java implementation of the Porter Stemmer from [77] into

RelParser.java.

5. Copmile the Query Term Placement Perser by entering ”javac - cp .: stanford -

postagger -3.3.1. jar : h2 -1.3.174. jar RelParser . java” into the command line.

86

6. Place the stopword list.txt file from Terrier 3.5 [78] into the same directory as

RelParser.java. Rename the file to stopwords.txt.

7. Place the english-left3words-distsim.tagger file from Stanford Tagger 3.3.1 [68] into

the same directory as RelParser.java.

8. Place the collection directory into the same directory as RelParser.java. Rename

the collection directory according to the collection as follows: WT2g to wt2g,

disk4+5 to disk4+5, WT10g to wt10g, Blogs06 to blogs06, Gov2 to gov2.

9. Extract the archives in the collection in place. The contents of each archive should

be extracted into the directory that contained the archive and the archive should be

deleted. For example, if there is an archive B01.gz in the directory wt2g/WT01, af-

ter the extraction the directory wt2g/WT01 should contain the contents of B01.gz,

B01, but not B01.gz.

10. Take all of the topics of the collection as defined in Section 5.1 and concatenate

them into a single file named according to the collection. For example, topics.wt10g

should contain the topics 451-550 for the WT10g collection. Place this file in the

same directory as RelParser.java.

11. Take all of the query relevance files (.qrels) of the topics and concatenate them into

a single file named according to the collection. For example, qrels.wt10g should

contain the query relevance information for the topics 451-550 for the WT10g

collection. Place this file in the same directory as RelParser.java.

12. Copy the properties specified in Appendix E into the terrier.properties file in the

terrier-3.5/etc directory.

13. Generate the primary index as specified in Appendix F.

14. Enter ”bin/trec terrier.sh -r -Dtrec.model=BM25 -Dtrec.topics=collections/topics.[Data]

-k1 1.2 -c [c]” into the command line. The [Data] and [c] parameters are manda-

tory. [Data] is the name of the collection directory, ex. wt2g. [c] is a tuning

parameter for BM25. The values of [c] used in these experiments are as fol-

lows, WT2g = 0.2, WT10g = 0.3, disk4+5 = 0.3, Blogs06 = 0.2, Gov2 = 0.4.

For example, for the WT10g, enter ”bin/trec terrier.sh -r -Dtrec.model=BM25

-Dtrec.topics=collections/topics.wt10g -k1 1.2 -c 0.3” into the command line.

87

15. Copy the .res file in the terrier-3.5/results directory into the same directory as

RelParser.java. Rename the .res file according to the collection, ex. wt10g.res.

16. Run the Query Term Placement Parser by entering ”java -cp .:stanford-postagger-

3.3.1.jar:h2-1.3.174.jar RelParser [Data] [QL]” into the command line. Both the

[Data] and [QL] parameters are mandatory. [Data] is the name of the collection

directory, ex. wt2g. [QL] is a filter for the length of the query, only queries with

length equal to [QL] will be parsed. [QL] = -1 means that all queries will be parsed.

For example, to analyze the queries in the topics 451-550 with only 3 terms on

the WT10g collection, enter ”java -cp .:stanford-postagger-3.3.1.jar:h2-1.3.174.jar

RelParser wt10g 3” into the command line.

The Query Term Placement Parser only supports the collections outlined in Section 5.1.

Other collections are not guaranteed to work.

B.2 Query Term Placement Parser

1 // javac -cp .:stanford -postagger -3.3.1. jar:h2 -1.3.174. jar RelParser.java

2 // java -cp .:stanford -postagger -3.3.1. jar:h2 -1.3.174. jar RelParser data

[query_length] [-i]

3

4 import java.io.BufferedReader;

5 import java.io.File;

6 import java.io.FileReader;

7 import java.io.IOException;

8 import java.sql.Connection;

9 import java.sql.DriverManager;

10 import java.sql.ResultSet;

11 import java.sql.SQLException;

12 import java.sql.Statement;

13 import java.util.ArrayList;

14 import java.util.HashMap;

15 import java.util.HashSet;

16 import java.util.regex.Matcher;

17 import java.util.regex.Pattern;

18 import edu.stanford.nlp.tagger.maxent.MaxentTagger;

19 import org.h2.Driver;

20

88

21 public class RelParser

22 {

23 private static MaxentTagger tagger = new

MaxentTagger("english -left3words -distsim.tagger");

24 private static Statement statement = null;

25 private static Stemmer stemmer = new Stemmer ();

26

27 // Parse output from tagger

28 private static Pattern pattern_tag =

Pattern.compile("([^ -\\s_]+)_([a-zA -Z\\.]+)");

29 private static HashSet <String > stopwords = new HashSet <>();

30

31 private static double r_term_sum = 0d, r_term_sum_l = 0d, r_term_sum_r

= 0d, r_pos_norm = 0d, r_pos_norm_l = 0d, r_pos_norm_r = 0d,

r_pos_log = 0d, r_pos_log_l = 0d, r_pos_log_r = 0d, r_score = 0d,

r_score_l = 0d, r_score_r = 0d, r_sen_norm_sum = 0d, r_sen_log_sum =

0d, nr_term_sum = 0d, nr_term_sum_l = 0d, nr_term_sum_r = 0d,

nr_pos_norm = 0d, nr_pos_norm_l = 0d, nr_pos_norm_r = 0d, nr_pos_log

= 0d, nr_pos_log_l = 0d, nr_pos_log_r = 0d, nr_score = 0d, nr_score_l

= 0d, nr_score_r = 0d, nr_sen_norm_sum = 0d, nr_sen_log_sum = 0d;

32 private static int r_term_count = 0, r_term_count_l = 0,

r_term_count_r = 0, r_pos = 0, r_pos_l = 0, r_pos_r = 0, r_sen_sum =

0, r_sen_count = 0, nr_term_count = 0, nr_term_count_l = 0,

nr_term_count_r = 0, nr_pos = 0, nr_pos_l = 0, nr_pos_r = 0,

nr_sen_sum = 0, nr_sen_count = 0;

33 private static final double ln2 = Math.log (2);

34 private static boolean index;

35

36 private static final int min_sen_length = 7, max_sen_length = 20,

min_sen_thresh = min_sen_length - 1, max_sen_thresh = max_sen_length

+ 1, min_line_thresh = min_sen_length * 2 - 2, max_line_thresh =

max_sen_length * 100 + 1;

37

38 public static void main (String [] args)

39 {

40 Connection conn = null;

41

42 Matcher matcher;

43 // Extract topic query terms

44 Pattern pattern_topic =

Pattern.compile("<num >\\s*Number :\\s*([0 -9]+) [^<]*(</num >)?" +

89

45 "[^<]*<title >\\s*([^ <]+)(</title >|<desc >)");

46 // Extract document ids from documents

47 Pattern pattern_id = Pattern.compile("<DOCNO >([^ <]+) </DOCNO >");

48

49 HashMap <String , HashSet <String >> qrels = new HashMap <>(), topics =

new HashMap <>();

50 // Map document ids to files

51 HashMap <String , String > paths = new HashMap <>();

52 // Delimiters for text in documents

53 HashMap <String , String > delims = new HashMap <>();

54

55 String [] split , pathSplit;

56 String file , path , text = "", line;

57 int query_length = (args.length > 1 ? Integer.parseInt(args [1]) :

-1), rel = 0, nonrel = 0, files = 0, docs = 0;

58 boolean compilePath = args [0]. equals("disk4 +5");

59

60 delims.put("wt2g_start", " </DOCHDR >");

61 delims.put("wt2g_end", " </DOC >");

62 delims.put("disk4 +5 _start", "<TEXT >");

63 delims.put("disk4 +5_end", " </TEXT >");

64 delims.put("wt10g_start", " </DOCHDR >");

65 delims.put("wt10g_end", " </DOC >");

66 delims.put("blogs06_start", " </DOCHDR >");

67 delims.put("blogs06_end", " </DOC >");

68 delims.put("gov2_start", " </DOCHDR >");

69 delims.put("gov2_end", " </DOC >");

70

71 index = args.length > 2 && args [2]. equals("-i");

72

73 try

74 {

75 try (BufferedReader r = new BufferedReader(new

FileReader("stopwords")))

76 {

77 while ((line = r.readLine ()) != null)

78 {

79 stopwords.add(line);

80 }

81 }

82

90

83 // Read each file , map document ids to files

84 if (compilePath)

85 {

86 for (String d1 : (new File(args [0])).list())

87 {

88 for (String d2 : (new File(args [0] + "/" + d1)).list())

89 {

90 file = args [0] + "/" + d1 + "/" + d2;

91 try (BufferedReader r = new BufferedReader(new

FileReader(file)))

92 {

93 while ((line = r.readLine ()) != null)

94 {

95 if (line.contains("<DOCNO >"))

96 {

97 matcher = pattern_id.matcher(line);

98 if (matcher.find())

99 {

100 paths.put(matcher.group (1).trim(), file);

101 docs ++;

102 }

103 }

104 }

105 }

106 System.out.println("Files: " + ++files + " Docs: " + docs);

107 }

108 }

109 }

110

111 try (BufferedReader r = new BufferedReader(new

FileReader("topics." + args [0])))

112 {

113 while ((line = r.readLine ()) != null)

114 {

115 text += line;

116 }

117 }

118

119 matcher = pattern_topic.matcher(text);

120 while (matcher.find())

121 {

91

122 if (! topics.containsKey(matcher.group (1)))

123 {

124 topics.put(matcher.group (1), new HashSet <>());

125 }

126 // Remove stopwords and stem query terms

127 for (String s : matcher.group (3).toLowerCase ().split("[^a-z]"))

128 {

129 if (s.length () > 1 && !stopwords.contains(s))

130 {

131 stemmer.add(s.toCharArray (), s.length ());

132 stemmer.stem();

133 topics.get(matcher.group (1)).add(stemmer.toString ());

134 }

135 }

136 }

137

138 try (BufferedReader r = new BufferedReader(new FileReader("qrels."

+ args [0])))

139 {

140 while ((line = r.readLine ()) != null)

141 {

142 split = line.split("\\s");

143 // Add relevant documents to hashset

144 if (! split [3]. equals("0"))

145 {

146 if (!qrels.containsKey(split [0]))

147 {

148 qrels.put(split[0], new HashSet <>());

149 }

150 qrels.get(split [0]).add(split [2]);

151 }

152 }

153 }

154

155 if (index)

156 {

157 conn = DriverManager.getConnection("jdbc:h2:" + args [0]);

158 statement = conn.createStatement ();

92

159 statement.execute("CREATE TABLE IF NOT EXISTS temp (term

VARCHAR (20), pos_l INT , pos_r INT , sen_length INT);" + "TRUNCATE

TABLE temp;" + "CREATE INDEX IF NOT EXISTS temp_index ON temp(term);"

+ "CREATE TABLE IF NOT EXISTS index (doc VARCHAR (30), term

VARCHAR (20), pos_l DOUBLE , pos_r DOUBLE , sen_length DOUBLE , PRIMARY

KEY HASH (doc , term));" + "TRUNCATE TABLE index");

160 }

161

162 try (BufferedReader r = new BufferedReader(new FileReader(args [0]

+ ".res")))

163 {

164 while ((line = r.readLine ()) != null)

165 {

166 split = line.split("\\s");

167

168 if (qrels.containsKey(split [0]) && (query_length == -1 ||

query_length == topics.get(split [0]).size()))

169 {

170 if (compilePath)

171 {

172 path = paths.get(split [2]);

173 }

174 else

175 {

176 pathSplit = split [2]. split("-");

177 if (args [0]. equals("blogs06"))

178 {

179 path = args [0] + "/" + pathSplit [1] + "/permalinks -" +

pathSplit [2];

180 }

181 else

182 {

183 path = args [0] + "/" + pathSplit [0] + "/" + pathSplit [1];

184 }

185 }

186

187 // A document is relevant if it’s in qrels hashset

188 if (qrels.get(split [0]).contains(split [2]))

189 {

190 ReadDocument(path , split[2], delims.get(args [0] +

"_start"), delims.get(args [0] + "_end"), topics.get(split [0]), true);

93

191 rel++;

192 }

193 else

194 {

195 ReadDocument(path , split[2], delims.get(args [0] +

"_start"), delims.get(args [0] + "_end"), topics.get(split [0]), false);

196 nonrel ++;

197 }

198

199 if (index)

200 {

201 statement.execute("MERGE INTO index (SELECT ’" + split [2]

+ "’, term , AVG (0.0 + pos_l), AVG (0.0 + pos_r), AVG (0.0 + sen_length)

FROM temp GROUP BY term);" + "TRUNCATE TABLE temp");

202 }

203

204 System.out.println("\nRelevant docs: " + rel + "\nAvg dist:

" + (r_term_sum / r_term_count) + "\nAvg dist left: " + (r_term_sum_l

/ r_term_count_l) + "\nAvg dist right: " + (Math.abs(r_term_sum_r) /

r_term_count_r) + "\nAvg pos: " + ((r_pos + 0d) / r_term_count) +

"\nAvg pos left: " + ((r_pos_l + 0d) / r_term_count_l) + "\nAvg pos

right: " + ((r_pos_r + 0d) / r_term_count_r) + "\nAvg pos norm: " +

(r_pos_norm / r_term_count) + "\nAvg pos norm left: " + (r_pos_norm_l

/ r_term_count_l) + "\nAvg pos norm right: " + (r_pos_norm_r /

r_term_count_r) + "\nAvg pos log: " + (r_pos_log / r_term_count) +

"\nAvg pos log left: " + (r_pos_log_l / r_term_count_l) + "\nAvg pos

log right: " + (r_pos_log_r / r_term_count_r) + "\nScore: " +

(r_score / r_term_count) + "\nScore left: " + (r_score_l /

r_term_count_l) + "\nScore right: " + (r_score_r / r_term_count_r) +

"\nTerms: " + r_term_count + "\nTerms left: " + r_term_count_l +

"\nTerms right: " + r_term_count_r + "\nAvg sen length: " +

((r_sen_sum + 0d) / r_sen_count) + "\nAvg sen norm length: " +

(r_sen_norm_sum / r_sen_count) + "\nAvg sen log length: " +

(r_sen_log_sum / r_sen_count) + "\nSentences: " + r_sen_count + "\n");

94

205 System.out.println("Non -relevant docs: " + nonrel + "\nAvg

dist: " + (nr_term_sum / nr_term_count) + "\nAvg dist left: " +

(nr_term_sum_l / nr_term_count_l) + "\nAvg dist right: " +

(Math.abs(nr_term_sum_r) / nr_term_count_r) + "\nAvg pos: " +

((nr_pos + 0d) / nr_term_count) + "\nAvg pos left: " + ((nr_pos_l +

0d) / nr_term_count_l) + "\nAvg pos right: " + ((nr_pos_r + 0d) /

nr_term_count_r) + "\nAvg pos norm: " + (nr_pos_norm / nr_term_count)

+ "\nAvg pos norm left: " + (nr_pos_norm_l / nr_term_count_l) +

"\nAvg pos norm right: " + (nr_pos_norm_r / nr_term_count_r) + "\nAvg

pos log: " + (nr_pos_log / nr_term_count) + "\nAvg pos log left: " +

(nr_pos_log_l / nr_term_count_l) + "\nAvg pos log right: " +

(nr_pos_log_r / nr_term_count_r) + "\nScore: " + (nr_score /

nr_term_count) + "\nScore left: " + (nr_score_l / nr_term_count_l) +

"\nScore right: " + (nr_score_r / nr_term_count_r) + "\nTerms: " +

nr_term_count + "\nTerms left: " + nr_term_count_l + "\nTerms right:

" + nr_term_count_r + "\nAvg sen length: " + ((nr_sen_sum + 0d) /

nr_sen_count) + "\nAvg sen norm length: " + (nr_sen_norm_sum /

nr_sen_count) + "\nAvg sen log length: " + (nr_sen_log_sum /

nr_sen_count) + "\nSentences: " + nr_sen_count + "\n");

206 }

207 }

208 }

209

210 if (index)

211 {

212 statement.execute("DROP TABLE temp");

213 statement.close();

214 conn.close();

215 }

216 }

217 catch (IOException | SQLException e)

218 {

219 e.printStackTrace ();

220 }

221 }

222

223 // Return text from document

224 private static void ReadDocument(String path , String id, String start ,

String end , HashSet <String > topic , boolean rel) throws SQLException

225 {

226 String line;

95

227 // Document ID found

228 boolean found = false;

229 // Start of document reached

230 boolean read = false;

231 // End of document reached

232 boolean stop = false;

233

234 try (BufferedReader r = new BufferedReader(new FileReader(path)))

235 {

236 while ((line = r.readLine ()) != null && !stop)

237 {

238 if (read && !line.contains(end))

239 {

240 // Define end of line as end of sentence and parse

241 line =

line.replaceAll(" <[^>]*>|[^\u0020 -\u002F\u003A -\u007F]", "") + " ! ";

242 if (line.length () > min_line_thresh && line.length () <

max_line_thresh)

243 {

244 ParseLine(pattern_tag.matcher(tagger.tagString(line)),

topic , rel);

245 }

246 }

247 else if (read)

248 {

249 stop = true;

250 }

251 else if (found && line.contains(start))

252 {

253 read = true;

254 }

255 else if (line.contains(id))

256 {

257 found = true;

258 }

259 }

260 }

261 catch (IOException e)

262 {

263 e.printStackTrace ();

264 }

96

265 }

266

267 // Parse a line

268 private static void ParseLine(Matcher matcher , HashSet <String > topic ,

boolean rel) throws SQLException

269 {

270 ArrayList <String > sentence = new ArrayList <>();

271 String term;

272

273 while (matcher.find())

274 {

275 if (! matcher.group (2).equals("."))

276 {

277 term = matcher.group (1).toLowerCase ();

278 sentence.add(term);

279 }

280

281 else

282 {

283 Collect(sentence , topic , rel);

284 }

285 }

286 Collect(sentence , topic , rel);

287 }

288

289 // Determine placement of terms and collect statistics

290 private static void Collect(ArrayList <String > sentence ,

HashSet <String > topic , boolean rel) throws SQLException

291 {

292 String term;

293 double mid , dist , sum = 0d, sum_l = 0d, sum_r = 0d, pos_norm = 0d,

pos_norm_l = 0d, pos_norm_r = 0d, pos_log = 0d, pos_log_l = 0d,

pos_log_r = 0d, score = 0d, score_l = 0d, score_r = 0d;

294 int sen_length = sentence.size(), dist_end , pos = 0, pos_l = 0,

pos_r = 0, count = 0, count_l = 0, count_r = 0;

295

296 if (sen_length > min_sen_thresh && sen_length < max_sen_thresh)

297 {

298 mid = (sen_length - 1d) / 2d;

299 for (int i = 0; i < sen_length; i++)

300 {

97

301 stemmer.add(sentence.get(i).toCharArray (),

sentence.get(i).length ());

302 stemmer.stem();

303 term = stemmer.toString ();

304 // If stemmed term matches a query term

305 if (topic.contains(term))

306 {

307 dist = (mid - i) / mid;

308

309 // i > mid means the term is on the right half

310 if (dist < 0)

311 {

312 dist_end = sen_length - 1 - i;

313 sum_r += dist;

314 pos_r += dist_end;

315 pos_norm_r += norm(dist_end);

316 pos_log_r += log(dist_end);

317 score_r += weight(mid - dist_end , sen_length , mid);

318 count_r ++;

319

320 if (index)

321 {

322 statement.execute("INSERT INTO temp VALUES(’" + term +

"’,NULL ," + dist_end + "," + sen_length + ")");

323 }

324 }

325 else if (dist > 0)

326 {

327 sum_l += dist;

328 pos_l += i;

329 pos_norm_l += norm(i);

330 pos_log_l += log(i);

331 score_l += weight(mid - i, sen_length , mid);

332 count_l ++;

333

334 if (index)

335 {

336 statement.execute("INSERT INTO temp VALUES(’" + term +

"’," + i + ",NULL ," + sen_length + ")");

337 }

338 }

98

339

340 sum += Math.abs(dist);

341 pos += i;

342 pos_norm += norm(i);

343 pos_log += log(i);

344 score += weight(Math.abs(mid - i), sen_length , mid);

345 count ++;

346 }

347 }

348

349 // Skip sentences with no query terms

350 if (count != 0)

351 {

352 if (rel)

353 {

354 r_term_sum += sum;

355 r_term_sum_l += sum_l;

356 r_term_sum_r += sum_r;

357 r_pos += pos;

358 r_pos_l += pos_l;

359 r_pos_r += pos_r;

360 r_pos_norm += pos_norm;

361 r_pos_norm_l += pos_norm_l;

362 r_pos_norm_r += pos_norm_r;

363 r_pos_log += pos_log;

364 r_pos_log_l += pos_log_l;

365 r_pos_log_r += pos_log_r;

366 r_score += score;

367 r_score_l += score_l;

368 r_score_r += score_r;

369 r_term_count += count;

370 r_term_count_l += count_l;

371 r_term_count_r += count_r;

372 r_sen_sum += sen_length;

373 r_sen_norm_sum += norm(sen_length);

374 r_sen_log_sum += log(sen_length);

375 r_sen_count ++;

376 }

377 else

378 {

379 nr_term_sum += sum;

99

380 nr_term_sum_l += sum_l;

381 nr_term_sum_r += sum_r;

382 nr_pos += pos;

383 nr_pos_l += pos_l;

384 nr_pos_r += pos_r;

385 nr_pos_norm += pos_norm;

386 nr_pos_norm_l += pos_norm_l;

387 nr_pos_norm_r += pos_norm_r;

388 nr_pos_log += pos_log;

389 nr_pos_log_l += pos_log_l;

390 nr_pos_log_r += pos_log_r;

391 nr_score += score;

392 nr_score_l += score_l;

393 nr_score_r += score_r;

394 nr_term_count += count;

395 nr_term_count_l += count_l;

396 nr_term_count_r += count_r;

397 nr_sen_sum += sen_length;

398 nr_sen_norm_sum += norm(sen_length);

399 nr_sen_log_sum += log(sen_length);

400 nr_sen_count ++;

401 }

402 }

403 }

404 sentence.clear ();

405 }

406

407 // Normalize the value

408 private static double norm(int value)

409 {

410 return value / (1d + value);

411 }

412

413 // Calculate the base 2 log of a value

414 private static double log(double value)

415 {

416 return Math.log(1d + value) / ln2;

417 }

418

419 private static double weight(double dist , int sen_length , double mid)

420 {

100

421 double thresh = mid - sen_length / 3d + 2d;

422 return (dist >= thresh ? 1d : 1d - Math.exp(Math.pow(dist , 2) / (-2d

* Math.pow(thresh , 2))));

423 }

424 }

101

Appendix C

Effectiveness of Proposed

Weighting Method Preliminary

Experiment

C.1 Instructions

In order to run the Effectiveness of Proposed Weighting Method preliminary experiment

in Chapter 3.4, you need to do the following:

1. Copy and paste the Weighting Method Parser code in Section C.2 into a file named

TextParser.java.

2. Place the .jar file from Stanford Tagger 3.3.1 (stanford-postagger-3.3.1.jar) [68]

into the same directory as TextParser.java.

3. Copy the code of the Java implementation of the Porter Stemmer from [77] into

TextParser.java.

4. Compile the Noun Placement Parser by entering ”javac -cp .:stanford-postagger-

3.3.1.jar TextParser.java” into the command line.

5. Place the english-left3words-distsim.tagger file from Stanford Tagger 3.3.1 [68] into

the same directory as TextParser.java.

102

6. Place the plain text document to analyze into the same directory as TextParser.java.

7. Run the Weighting Method Parser by entering ”java -cp .:stanford-postagger-

3.3.1.jar TextParser [Doc] [Denom] -compact” into the command line. The [Doc]

and [Denom] parameters are mandatory. [Doc] is the name of the plain text doc-

ument to analyze. [Denom] controls the width of the sentence segments, where a

larger [Denom] means the middle sentence segment will be larger. [Denom] should

be adjusted such that Balance is as close to 0 as possible. The Weighting Method

Parser will print Balance out to the console to facilitate this. For example, to an-

alyze a file named ”hardtimes.txt”, enter ”java -cp .:stanford-postagger-3.3.1.jar

TextParser hardtimes.txt 3” into the command line.

C.2 Weighting Method Parser

1 // javac -cp .:stanford -postagger -3.3.1. jar TextParser.java

2 // java -cp .:stanford -postagger -3.3.1. jar TextParser doc denom

[-compact] [-table columns (default: 4) score_thresh (default: 5)]

3

4 import java.io.BufferedReader;

5 import java.io.FileReader;

6 import java.io.IOException;

7 import java.io.PrintWriter;

8 import java.util.ArrayList;

9 import java.util.Comparator;

10 import java.util.HashMap;

11 import java.util.HashSet;

12 import java.util.Map;

13 import java.util.regex.Matcher;

14 import java.util.regex.Pattern;

15 import java.util.TreeMap;

16 import edu.stanford.nlp.tagger.maxent.MaxentTagger;

17

18 public class TextParser

19 {

20 private static Stemmer stemmer = new Stemmer ();

21

22 private static HashMap <String , Integer > results = new HashMap <>();

23 private static TreeMap <String , Integer > results_sorted = new

TreeMap <>(new ValueComparator(results));

103

24 private static HashSet <String > stopwords = new HashSet <>();

25

26 private static final int min_sen_length = 7, max_sen_length = 20,

min_sen_thresh = min_sen_length - 1, max_sen_thresh = max_sen_length

+ 1, min_line_thresh = min_sen_length * 2 - 2, max_line_thresh =

max_sen_length * 100 + 1;

27

28 public static void main (String [] args)

29 {

30 MaxentTagger tagger = new

MaxentTagger("english -left3words -distsim.tagger");

31 // Parse output from tagger

32 Pattern pattern_tag = Pattern.compile("([^ -\\s_]+)_([a-zA-Z\\.]+)");

33

34 String line;

35 // The denominator for splitting the sentence

36 double denom = Double.parseDouble(args [1]);

37 int columns = 3, score_thresh = 4, balance = 0, i = 0;

38 boolean compact = false , table = false;

39

40 for (i = 2; i < args.length; i++)

41 {

42 switch (args[i])

43 {

44 // Print only nouns and non -stopwords

45 case "-compact":

46 compact = true;

47 break;

48 // Print results in the format of a multi -columned latex table

49 case "-table":

50 table = true;

51 if (args.length > ++i)

52 {

53 columns = Integer.parseInt(args[i]) - 1;

54 }

55 if (args.length > ++i)

56 {

57 score_thresh = Integer.parseInt(args[i]) - 1;

58 }

59 break;

60 }

104

61 }

62

63 try

64 {

65 try (BufferedReader r = new BufferedReader(new

FileReader("stopwords")))

66 {

67 while ((line = r.readLine ()) != null)

68 {

69 stopwords.add(line);

70 }

71 }

72

73 try (BufferedReader r = new BufferedReader(new

FileReader(args [0])))

74 {

75 while ((line = r.readLine ()) != null)

76 {

77 // Define end of line as end of sentence and parse

78 line = line.replace("[^\u0020 -\u002F\u003A -\u007F]", "") + " !

";

79 ParseLine(pattern_tag.matcher(tagger.tagString(line)), denom ,

compact);

80 }

81 }

82

83 results_sorted.putAll(results);

84 try (PrintWriter w = new PrintWriter("out", "UTF -8"))

85 {

86 if (table)

87 {

88 i = 0;

89 //For outputting results in Latex table format

90 for (Map.Entry <String , Integer > e : results_sorted.entrySet ())

91 {

92 if (Math.abs(e.getValue ()) > score_thresh)

93 {

94 w.write(e.getKey () + " & " + e.getValue ());

95 if (i != columns)

96 {

97 w.write(" & ");

105

98 i++;

99 }

100 else

101 {

102 w.write(" \\\\ \\ hline\n");

103 i = 0;

104 }

105 }

106 }

107 }

108

109 else

110 {

111 for (Map.Entry <String , Integer > e : results_sorted.entrySet ())

112 {

113 balance += e.getValue ();

114 w.write(e.getKey () + " - " + e.getValue () + "\n");

115 }

116 w.write("\nBalance: " + balance + "\n");

117 System.out.println("Balance: " + balance);

118 }

119 }

120 }

121 catch (IOException e)

122 {

123 e.printStackTrace ();

124 }

125 }

126

127 // Parse a line

128 private static void ParseLine(Matcher matcher , double denom , boolean

compact)

129 {

130 ArrayList <String > sentence = new ArrayList <>(), sentence_pos = new

ArrayList <>();

131 String pos;

132

133 while (matcher.find())

134 {

135 pos = matcher.group (2);

136 if (!pos.equals("."))

106

137 {

138 sentence.add(matcher.group (1).toLowerCase ());

139 sentence_pos.add(pos);

140 }

141 else

142 {

143 Collect(sentence , sentence_pos , denom , compact);

144 }

145 }

146 Collect(sentence , sentence_pos , denom , compact);

147 }

148

149 // Determine placement of terms and assign scores

150 private static void Collect(ArrayList <String > sentence ,

ArrayList <String > sentence_pos , double denom , boolean compact)

151 {

152 String term;

153 double dist_max;

154 int sen_length = sentence.size(), score;

155

156 if (sen_length > min_sen_thresh && sen_length < max_sen_thresh)

157 {

158 dist_max = sen_length / denom;

159 for (int i = 0; i < sen_length; i++)

160 {

161 term = sentence.get(i);

162 if (! compact || (sentence_pos.get(i).contains("NN") &&

!stopwords.contains(term)))

163 {

164 stemmer.add(term.toCharArray (), term.length ());

165 stemmer.stem();

166 term = stemmer.toString ();

167

168 // Score is 1 if term is in the first or last part of the

sentence

169 score = (i < dist_max || i > sen_length - dist_max - 1 ? 1 :

-1);

170 if (results.containsKey(term))

171 {

172 score += results.get(term);

173 }

107

174 results.put(term , score);

175 }

176 }

177 }

178 sentence.clear ();

179 sentence_pos.clear();

180 }

181 }

182

183 // For sorting results by descending score

184 class ValueComparator implements Comparator <String >

185 {

186 HashMap <String , Integer > base;

187

188 public ValueComparator(HashMap <String , Integer > base)

189 {

190 this.base = base;

191 }

192

193 public int compare(String a, String b)

194 {

195 return (base.get(a) >= base.get(b) ? -1 : 1);

196 }

197 }

C.3 Complete Results

The complete results from the Effectiveness of Proposed Weighting Method preliminary

experiment in Chapter 3.4 is listed below. A noun n is shown if |Score(n)| ≥ 5:

Term Score Term Score Term Score Term Score

mr. 86 louisa 43 mrs. 31 gradgrind 27

tom 23 bounderbi 22 father 18 slackbridg 15

wai 15 miss 15 coketown 13 ma’am 13

man 12 friend 11 manner 11 wi 11

ti 11 stephen 11 sissi 11 thoma 9

creatur 9 morn 9 face 9 rachael 9

Continued on next page

108

Term Score Term Score Term Score Term Score

daughter 8 death 8 chanc 8 wind 8

purpos 8 jame 8 women 8 machineri 7

action 7 sofa 7 child 7 ’em 7

work 7 dai 7 fellow 7 anim 7

room 7 associ 6 consequ 6 hope 6

combin 6 merryleg 6 minut 6 faith 6

‘’ 6 town 6 lodg 6 influenc 6

term 6 part 6 night 6 fortun 6

afternoon 5 mistak 5 number 5 retreat 5

ith 5 materi 5 bottom 5 pride 5

hour 5 natur 5 walk 5 o’clock 5

degre 5 contrari 5 justic 5 board 5

girl 5 new 5 famili 5 fairi 5

staircas 5 convers 5 pound 5 compani 5

dread 5 cheek 5 rope 5 weather -5

sight -5 idea -5 world -5 parti -5

sundai -5 shop -5 fire -5 heart -5

advantag -5 wish -5 nowt -5 porter -5

visit -5 nod -5 principl -5 uth -5

babi -5 journei -5 spirit -5 half -5

children -6 silenc -6 horth -6 deal -6

letter -6 master -6 home -6 pit -6

fit -6 whole -6 men -6 length -6

build -6 husband -6 distanc -6 tip -6

case -7 system -7 church -7 chair -7

hat -7 effect -7 shake -7 door -7

blackpool -8 reason -8 period -8 side -9

corner -9 whelp -9 sleari -9 voic -9

window -9 mind -9 gentleman -10 peopl -10

moment -10 mean -11 boi -13 sparsit -13

ey -13 bank -13 time -16 countri -16

hand -16 ladi -17 head -24

109

Appendix D

Modifying Terrier

D.1 Instructions

Terrier 3.5 [78] was used in the experiments in Chapter 6. The code changes to terrier

are listed in Section D.2. The code changes are obtained by running the diff command

on Ubuntu 12.04 x86 between the modified and unmodified Terrier 3.5 directories. In

order for the changes to take effect, Terrier needs to be recompiled. This can be done

by entering ”ant” in the command line in the terrier-3.5 directory.

D.2 Code Changes

terrier-3.5/src/core/org/terrier/applications/desktop/DesktopTerrier.java

1 1002 c1002

2 < queryingManager.runMatching(srq);

3 ---

4 > queryingManager.runMatching(srq , null , null , 1.2, 0, 0, 0, 0, 0);

terrier-3.5/src/core/org/terrier/applications/InteractiveQuerying.java

1 144 c144

2 < queryingManager.runMatching(srq);

3 ---

4 > queryingManager.runMatching(srq , null , null , 1.2, 0, 0, 0, 0, 0);

terrier-3.5/src/core/org/terrier/applications/TRECQueryingExpansion.java

110

1 87c87

2 < queryingManager.runMatching(srq);

3 ---

4 > queryingManager.runMatching(srq , null , null , 1.2, 0, 0, 0, 0, 0);

terrier-3.5/src/core/org/terrier/applications/TRECQuerying.java

1 38a39 ,42

2 > import java.sql.Connection;

3 > import java.sql.DriverManager;

4 > import java.sql.SQLException;

5 > import java.sql.Statement;

6 156c160 ,163

7 <

8 ---

9 >

10 > Connection conn = null , conn1 = null;

11 > Statement statement = null , statement1 = null;

12 >

13 624 c631

14 < return processQuery(queryId , query , 1.0, false);

15 ---

16 > return processQuery(queryId , query , 1.0, false , 1.2, 0, 0, 0, 0,

0);

17 640 c647

18 < return processQuery(queryId , query , cParameter , true);

19 ---

20 > return processQuery(queryId , query , cParameter , true , 1.2, 0, 0,

0, 0, 0);

21 658 ,659c665 ,666

22 < double cParameter , boolean c_set) {

23 < SearchRequest srq = processQuery(queryId , query , cParameter ,

c_set);

24 ---

25 > double cParameter , boolean c_set , double k_1 , double d, double

e, double f, double a, int kernel) {

26 > SearchRequest srq = processQuery(queryId , query , cParameter ,

c_set , k_1 , d, e, f, a, kernel);

27 694 c701

28 < double cParameter , boolean c_set) {

29 ---

111

30 > double cParameter , boolean c_set , double k_1 , double d, double

e, double f, double a, int kernel) {

31 724 c731

32 <

33 ---

34 >

35 735 c742

36 < queryingManager.runMatching(srq);

37 ---

38 > queryingManager.runMatching(srq , statement , statement1 , k_1 , d, e,

f, a, kernel);

39 760 c767

40 < return processQueries (1.0d, false);

41 ---

42 > return processQueries (1.0d, false , 1.2, 0, 0, 0, 0, 0, 0);

43 776 c783

44 < return processQueries(c, true);

45 ---

46 > return processQueries(c, true , 1.2, 0, 0, 0, 0, 0, 0);

47 827 c834

48 < public String processQueries(double c, boolean c_set) {

49 ---

50 > public String processQueries(double c, boolean c_set , double k_1 ,

double d, double e, double f, double a, int kernel , int fold) {

51 837a845 ,869

52 > try

53 > {

54 > Class.forName("org.h2.Driver");

55 > }

56 > catch (ClassNotFoundException ex)

57 > {

58 > ex.printStackTrace ();

59 > }

60 >

61 > try

62 > {

63 > conn = DriverManager.getConnection("jdbc:h2:./ var/index/index");

64 > statement = conn.createStatement ();

65 >

66 > /*conn1 = DriverManager.getConnection ("jdbc:h2:var/index/cache ");

67 > statement1 = conn1.createStatement ();

112

68 >

69 > statement1.execute (" create table if not exists index (doc

varchar (15), term varchar (20), dist double , length double , avg_length

double , primary key hash (doc , " +

70 > "" + "term));" + "truncate table index ");*/

71 > }

72 > catch (SQLException ex)

73 > {

74 > ex.printStackTrace ();

75 > }

76 >

77 842 ,850c874 ,885

78 < // process the query

79 < long processingStart = System.currentTimeMillis ();

80 < processQueryAndWrite(qid , query , c, c_set);

81 < long processingEnd = System.currentTimeMillis ();

82 < if (logger.isInfoEnabled ())

83 < logger

84 < .info("Time to process query: "

85 < + ((processingEnd - processingStart) / 1000.0D));

86 < doneSomeTopics = true;

87 ---

88 >

89 > if (fold == 0 || Integer.parseInt(qid) % 2 == fold % 2) {

90 > // process the query

91 > long processingStart = System.currentTimeMillis ();

92 > processQueryAndWrite(qid , query , c, c_set , k_1 , d, e, f, a,

kernel);

93 > long processingEnd = System.currentTimeMillis ();

94 > if (logger.isInfoEnabled ())

95 > logger

96 > .info("Time to process query: "

97 > + ((processingEnd - processingStart) /

1000.0D));

98 > doneSomeTopics = true;

99 > }

100 869a905 ,918

101 >

102 > try

103 > {

104 > statement.close ();

113

105 > conn.close ();

106 >

107 > /* statement1.close ();

108 > conn1.close ();*/

109 > }

110 > catch (SQLException ex)

111 > {

112 > ex.printStackTrace ();

113 > }

114 >

115 1089 a1139 ,1149

116 > }

117 > }

118 >

119 > public class Term

120 > {

121 > byte pos , length;

122 >

123 > public Term(int pos , int length)

124 > {

125 > this.pos = (byte)pos;

126 > this.length = (byte)length;

terrier-3.5/src/core/org/terrier/applications/TrecTerrier.java

1 159a160 ,161

2 > protected double k_1 = 1.2, d = 0, e = 0, f = 0, a = 0;

3 > protected int kernel , fold;

4 317a320 ,333

5 > else if (args[pos]. startsWith("-k1"))

6 > k_1 = Double.parseDouble(args [++ pos]);

7 > else if (args[pos]. startsWith("-dd"))

8 > d = Double.parseDouble(args [++ pos]);

9 > else if (args[pos]. startsWith("-ee"))

10 > e = Double.parseDouble(args [++ pos]);

11 > else if (args[pos]. startsWith("-ff"))

12 > f = Double.parseDouble(args [++ pos]);

13 > else if (args[pos]. startsWith("-aa"))

14 > a = Double.parseDouble(args [++ pos]);

15 > else if (args[pos]. startsWith("-kk"))

16 > kernel = Integer.parseInt(args [++ pos]);

17 > else if (args[pos]. startsWith("-fold"))

114

18 > fold = Integer.parseInt(args [++ pos]);

19 394 c410

20 < trecQuerying.processQueries(c, isParameterValueSpecified);

21 ---

22 > trecQuerying.processQueries(c, isParameterValueSpecified , k_1 ,

d, e, f, a, kernel , fold);

terrier-3.5/src/core/org/terrier/indexing/BasicIndexer.java

1 30a31 ,35

2 > import java.sql.Connection;

3 > import java.sql.DriverManager;

4 > import java.sql.SQLException;

5 > import java.sql.Statement;

6 > import java.util.ArrayList;

7 85c90

8 < public void processTerm(String term)

9 ---

10 > public void processTerm(String term , Statement statement , int pos ,

int length)

11 91c96

12 < termsInDocument.insert(term);

13 ---

14 > termsInDocument.insert(term , null , 0, 0);

15 109 c114

16 < public void processTerm(String term)

17 ---

18 > public void processTerm(String term , Statement statement , int pos ,

int length)

19 193 ,194c198 ,211

20 < * @param collections Collection [] the collections to be indexed.

21 < */

22 ---

23 > */

24 >

25 > void ProcessSentence(ArrayList <String > sentence , Statement statement)

26 > {

27 > int length = sentence.size();

28 > for (int i = 0; i < length; i++)

29 > {

30 > // termFields = doc.getFields ();

31 > /* pass term into TermPipeline (stop , stem etc) */

115

32 > pipeline_first.processTerm(sentence.get(i), statement , i,

length);

33 > /* the term pipeline will eventually add the term to this

object. */

34 > }

35 > sentence.clear ();

36 > }

37 213c230 ,247

38 <

39 ---

40 >

41 > /* Connection conn = null;

42 > Statement statement = null;

43 > try

44 > {

45 > conn = DriverManager.getConnection ("jdbc:h2:var/index/index ");

46 > statement = conn.createStatement ();

47 > statement.execute (" create table temp (term varchar (20), dist

double , length int);" + "create index temp_index on temp(term);" +

"create table index (doc varchar (15), " +

48 > "" + "term varchar (20), dist double , length double ,

primary key hash (doc , term));" + "create table meta (doc varchar (15)

primary key hash , avg_length double)");

49 > }

50 > catch (SQLException e)

51 > {

52 > e.printStackTrace ();

53 > }

54 >

55 > ArrayList <String > sentence = new ArrayList <String >();

56 > String docno;*/

57 >

58 235 c269

59 <

60 ---

61 >

62 241c275 ,279

63 <

64 ---

65 >

66 > /*docno = "";

116

67 > for (String s : doc.getProperty ("docno ").split ("-"))

68 > docno += s.trim();*/

69 >

70 244 ,249c282 ,287

71 < if ((term = doc.getNextTerm ())!=null && !term.equals("")) {

72 < termFields = doc.getFields ();

73 < /* pass term into TermPipeline (stop , stem etc) */

74 < pipeline_first.processTerm(term);

75 < /* the term pipeline will eventually add the term to this

object. */

76 < }

77 ---

78 > if ((term = doc.getNextTerm ()) != null)

79 > pipeline_first.processTerm(term , null , 0, 0);

80 > /*if (term.equals (""))

81 > ProcessSentence(sentence , statement);

82 > else

83 > sentence.add(term);*/

84 253a292 ,295

85 >

86 > /*if (sentence.size() > 0)

87 > ProcessSentence(sentence , statement);*/

88 >

89 258a301 ,310

90 > /*try

91 > {

92 > statement.execute (" insert into index (select ’" + docno +

"’, term , avg(dist), avg(length) from temp group by term);" + "insert

into meta (select ’" + docno + "’, " +

93 > "" + "avg(length) from temp);" + "truncate table

temp");

94 > }

95 > catch (SQLException e)

96 > {

97 > e.printStackTrace ();

98 > }*/

99 >

100 362a415 ,424

101 > /*try

102 > {

103 > statement.execute ("drop table temp");

117

104 > statement.close ();

105 > conn.close ();

106 > }

107 > catch (SQLException e)

108 > {

109 > e.printStackTrace ();

110 > }*/

terrier-3.5/src/core/org/terrier/indexing/BasicSinglePassIndexer.java

1 216 c216

2 < pipeline_first.processTerm(term);

3 ---

4 > pipeline_first.processTerm(term , null , 0, 0);

terrier-3.5/src/core/org/terrier/indexing/BlockIndexer.java

1 32a33

2 > import java.sql.Statement;

3 92c93

4 < public void processTerm(String t) {

5 ---

6 > public void processTerm(String t, Statement statement , int pos ,

int length) {

7 118 c119

8 < public void processTerm(String t) {

9 ---

10 > public void processTerm(String t, Statement statement , int pos ,

int length) {

11 168 c169

12 < public void processTerm(String t) {

13 ---

14 > public void processTerm(String t, Statement statement , int pos ,

int length) {

15 213 c214

16 < public void processTerm(String t) {

17 ---

18 > public void processTerm(String t, Statement statement , int pos ,

int length) {

19 375 c376

20 < pipeline_first.processTerm(term);

21 ---

22 > pipeline_first.processTerm(term , null , 0, 0);

118

terrier-3.5/src/core/org/terrier/indexing/BlockSinglePassIndexer.java

1 35a36

2 > import java.sql.Statement;

3 67c68

4 < public void processTerm(String t) {

5 ---

6 > public void processTerm(String t, Statement statement , int pos ,

int length) {

7 93c94

8 < public void processTerm(String t) {

9 ---

10 > public void processTerm(String t, Statement statement , int pos ,

int length) {

11 143 c144

12 < public void processTerm(String t) {

13 ---

14 > public void processTerm(String t, Statement statement , int pos ,

int length) {

15 188 c189

16 < public void processTerm(String t) {

17 ---

18 > public void processTerm(String t, Statement statement , int pos ,

int length) {

terrier-3.5/src/core/org/terrier/indexing/ExtensibleSinglePassIndexer.java

1 153 c153

2 < pipeline_first.processTerm(term);

3 ---

4 > pipeline_first.processTerm(term , null , 0, 0);

terrier-3.5/src/core/org/terrier/indexing/tokenisation/EnglishTokeniser.java

1 79a80

2 > boolean skip = false;

3 97c98 ,101

4 < ch = this.br.read();

5 ---

6 > /*if (!skip)

7 > {

119

8 > ch = this.br.read();

9 > }*/

10 101 ,102 c105

11 < while (ch != -1 && (ch < ’A’ || ch > ’Z’) && (ch < ’a’ || ch

> ’z’)

12 < && (ch < ’0’ || ch > ’9’)

13 ---

14 > while (ch != -1 && (ch < ’A’ || ch > ’Z’) && (ch < ’a’ || ch

> ’z’) && (ch < ’0’ || ch > ’9’) //ch != ’!’ && ch != ’?’ && ch !=

’.’ && ch != ’;’ && ch != ’\n’ && ch != ’\r’ &&

15 110 ,114c113 ,114

16 < //now accept all alphanumeric charaters

17 < while (ch != -1 && (

18 < ((ch >= ’A’) && (ch <= ’Z’))

19 < || ((ch >= ’a’) && (ch <= ’z’))

20 < || ((ch >= ’0’) && (ch <= ’9’))))

21 ---

22 >

23 > if (ch == ’!’ || ch == ’?’ || ch == ’.’ || ch == ’;’)// ||

ch == ’\n’ || ch == ’\r ’)

24 116 ,123c116 ,119

25 < /* add character to word so far */

26 < sw.append ((char)ch);

27 < ch = br.read();

28 < counter ++;

29 < }

30 < if (sw.length () > MAX_TERM_LENGTH)

31 < if (DROP_LONG_TOKENS)

32 < return null;

33 ---

34 > /*if (skip)

35 > {

36 > skip = false;

37 > }

38 125 ,128c121 ,150

39 < sw.setLength(MAX_TERM_LENGTH);

40 < String s = check(sw.toString ());

41 < if (s.length () > 0)

42 < return s;

43 ---

44 > {*/

120

45 > counter ++;

46 > //}

47 > return "";

48 > }

49 > else

50 > {

51 > //now accept all alphanumeric charaters

52 > while (ch != -1 && ((ch >= ’A’) && (ch <= ’Z’)) || ((ch >=

’a’) && (ch <= ’z’)) || ((ch >= ’0’) && (ch <= ’9’)))

53 > {

54 > /* add character to word so far */

55 > sw.append ((char)ch);

56 > ch = br.read();

57 > counter ++;

58 > }

59 >

60 > /*if (ch == ’!’ || ch == ’?’ || ch == ’.’ || ch == ’;’ ||

ch == ’\n’ || ch == ’\r ’)

61 > {

62 > skip = true;

63 > }*/

64 >

65 > if (sw.length () > MAX_TERM_LENGTH)

66 > if (DROP_LONG_TOKENS)

67 > return null;

68 > else

69 > sw.setLength(MAX_TERM_LENGTH);

70 > String s = check(sw.toString ());

71 > if (s.length () > 0)

72 > return s;

73 > }

terrier-3.5/src/core/org/terrier/indexing/TRECFullTokenizer.java

1 455 ,460c455 ,462

2 < (! hasWhitelist || (hasWhitelist && inTagToProcess)) &&

3 < !inTagToSkip)

4 < {

5 < if (!stk.empty () && exactTagSet.isTagToProcess(stk.peek()))

6 < return lowercase ? s.toLowerCase () : s;

7 < //}

8 ---

121

9 > (! hasWhitelist || (hasWhitelist && inTagToProcess)) &&

10 > !inTagToSkip)

11 > {

12 > if (!stk.empty () && tagSet.isIdTag(stk.peek()))

13 > return s;

14 > if (!stk.empty () && exactTagSet.isTagToProcess(stk.peek()))

15 > return lowercase ? s.toLowerCase () : s;

16 > //}

terrier-3.5/src/core/org/terrier/matching/AccumulatorResultSet.java

1 126a127 ,137

2 > public void Sort()

3 > {

4 > this.docids = scoresMap.keys();

5 > this.scores = scoresMap.getValues ();

6 > this.occurrences = occurrencesMap.getValues ();

7 >

8 > this.arraysInitialised = true;

9 >

10 > HeapSort.descendingHeapSort(this.getScores (), this.getDocids (),

this.getOccurrences (), this.docids.length);

11 > }

12 >

terrier-3.5/src/core/org/terrier/matching/BaseMatching.java

1 30a31

2 > import java.sql.Statement;

3 35d35

4 <

5 37d36

6 <

7 49d47

8 <

9 322c320 ,321

10 < public abstract ResultSet match(String queryNumber ,

MatchingQueryTerms queryTerms) throws IOException;

11 ---

12 > public abstract ResultSet match(String queryNumber ,

MatchingQueryTerms queryTerms , Statement statement , Statement

statement1 , double k_1 , double d, double e, double f, double a,

13 > int kernel) throws IOException;

122

terrier-3.5/src/core/org/terrier/matching/daat/Full.java

1 33a34

2 > import java.sql.Statement;

3 77c78 ,79

4 < public ResultSet match(String queryNumber , MatchingQueryTerms

queryTerms) throws IOException

5 ---

6 > public ResultSet match(String queryNumber , MatchingQueryTerms

queryTerms , Statement statement , Statement statement1 , double k_1 ,

double d, double e, double f, double a,

7 > int kernel) throws IOException

8 81c83

9 < plm = new PostingListManager(index , super.collectionStatistics ,

queryTerms);

10 ---

11 > plm = new PostingListManager(index , super.collectionStatistics ,

queryTerms , true);

12 167 c169

13 < cc.updateScore(plm.score(i));

14 ---

15 > cc.updateScore(plm.score(i, 1.2));

terrier-3.5/src/core/org/terrier/matching/daat/FullNoPLM.java

1 33a34

2 > import java.sql.Statement;

3 68c69 ,70

4 < public ResultSet match(String queryNumber , MatchingQueryTerms

queryTerms) throws IOException

5 ---

6 > public ResultSet match(String queryNumber , MatchingQueryTerms

queryTerms , Statement statement , Statement statement1 , double k_1 ,

double d, double e, double f, double a,

7 > int kernel) throws IOException

terrier-3.5/src/core/org/terrier/matching/dsms/DependenceScoreModifier.java

1 144 c144

2 < PostingListManager plm = new PostingListManager(index ,

index.getCollectionStatistics (), terms);

123

3 ---

4 > PostingListManager plm = new PostingListManager(index ,

index.getCollectionStatistics (), terms , true);

terrier-3.5/src/core/org/terrier/matching/Matching.java

1 29a30

2 > import java.sql.Statement;

3 48c49 ,50

4 < ResultSet match(String queryNumber , MatchingQueryTerms queryTerms)

throws IOException;

5 ---

6 > ResultSet match(String queryNumber , MatchingQueryTerms queryTerms ,

Statement statement , Statement statement1 , double k_1 , double d,

double e, double f, double a,

7 > int kernel) throws IOException;

terrier-3.5/src/core/org/terrier/matching/models/BB2.java

1 28a29 ,31

2 >

3 > import java.sql.Statement;

4 >

5 122a126 ,131

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

11 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/BM25.java

1 28a29 ,31

2 >

3 > import java.sql .*;

4 >

5 36c39

6 < */

7 ---

8 > */

9 38c41 ,230

124

10 < private static final long serialVersionUID = 1L;

11 ---

12 > private static final long serialVersionUID = 1L;

13 >

14 > /** The constant k_3.*/

15 > private double k_3=8d;

16 >

17 > /** The parameter b.*/

18 > private double b;

19 >

20 > /** A default constructor.*/

21 > public BM25() {

22 > super ();

23 > k_1 = 1.2d;

24 > b=0.75d;

25 > }

26 > /**

27 > * Returns the name of the model.

28 > * @return the name of the model

29 > */

30 > public final String getInfo () {

31 > return "BM25b"+b;

32 > }

33 > /**

34 > * Uses BM25 to compute a weight for a term in a document.

35 > * @param tf The term frequency in the document

36 > * @param docLength the document ’s length

37 > * @return the score assigned to a document with the given

38 > * tf and docLength , and other preset parameters

39 > */

40 > public double score(double tf, double docLength) {

41 > double K = k_1 * ((1 - b) + b * docLength / averageDocumentLength)

+ tf;

42 > return (tf * (k_3 + 1d) * keyFrequency / ((k_3 + keyFrequency) *

K))

43 > * Idf.log((numberOfDocuments - documentFrequency + 0.5d) /

(documentFrequency + 0.5d));

44 > }

45 >

46 > // Second score function used in the second pass of retrieval

125

47 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

48 > ResultSet rs;

49 > double pos_l , pos_r , dist_l = -1, dist_r = -1, sen_len , mid , ptf =

0d;

50 >

51 > try

52 > {

53 > rs = statement.executeQuery("select pos_l , pos_r , sen_length

from index where doc=’" + docno + "’ and term=’" + term + "’");

54 >

55 > if (rs.next())

56 > {

57 > sen_len = rs.getDouble("sen_length");

58 > mid = (sen_len - 1d) / 2d;

59 >

60 > pos_l = rs.getDouble("pos_l");

61 > if (rs.wasNull ())

62 > {

63 > pos_l = -1;

64 > }

65 > else

66 > {

67 > dist_l = mid - pos_l;

68 > }

69 >

70 > pos_r = rs.getDouble("pos_r");

71 > if (rs.wasNull ())

72 > {

73 > pos_r = -1;

74 > }

75 > else

76 > {

77 > dist_r = mid - pos_r;

78 > }

79 >

80 > //ptf = Idf.log(1d + Weight(pos_l , pos_r , dist_l , dist_r ,

sen_len , mid));

81 > ptf = Weight(pos_l , pos_r , dist_l , dist_r , sen_len , mid);

82 > }

83 > rs.close ();

126

84 > }

85 > catch (SQLException e)

86 > {

87 > e.printStackTrace ();

88 > }

89 >

90 > double K = k_1 * ((1 - b) + b * docLength / averageDocumentLength)

+ ptf * tf;

91 > double bm25 = (ptf * tf * (k_3 + 1d) * keyFrequency / ((k_3 +

keyFrequency) * K));

92 > double idf = Idf.log((numberOfDocuments - documentFrequency +

0.5d) / (documentFrequency + 0.5d));

93 >

94 > // double ritf = Idf.log(1d + tf) / Idf.log(1d + docLength /

numberOfUniqueTerms);

95 > // double lrtf = tf * Idf.log(1d + averageDocumentLength /

docLength);

96 > // double qlf = 2d / (1d + Idf.log(1d + keyCount));

97 > double qlf = 1d - Math.pow (0.5d / (0.5d + keyCount), 2d / 3d);

98 >

99 > return ((1d - qlf) * bm25 + qlf) * idf;

100 > }

101 >

102 > double Weight(double pos_l , double pos_r , double dist_l , double

dist_r , double sen_len , double mid)

103 > {

104 > double thresh = mid - sen_len / d + e;

105 >

106 > return Idf.log(1d + sen_len) / Idf.log (11.5d) * (Kernel(dist_l ,

thresh) + Kernel(dist_r , thresh)) / (pos_l == -1 || pos_r == -1 ? 1d

: 2d);

107 > }

108 >

109 > double Kernel(double dist , double thresh)

110 > {

111 > if (dist != -1)

112 > {

113 > if (dist >= thresh)

114 > {

115 > return 1d;

116 > }

127

117 > else

118 > {

119 > if (kernel == 0) return Gaussian(dist , thresh);

120 > else if (kernel == 1) return Uniform(dist , thresh);

121 > else if (kernel == 2) return Triangle(dist , thresh);

122 > else if (kernel == 3) return Circle(dist , thresh);

123 > else if (kernel == 4) return Cosine(dist , thresh);

124 > else if (kernel == 5) return Quartic(dist , thresh);

125 > else if (kernel == 6) return Epanechnikov(dist , thresh);

126 > else if (kernel == 7) return Triweight(dist , thresh);

127 > }

128 > }

129 >

130 > return 0d;

131 > }

132 >

133 > double Gaussian(double q, double m)

134 > {

135 > return 1d - Math.exp(Math.pow(q, 2) / (-2d * Math.pow(m, 2)));

136 > }

137 >

138 > double Uniform(double q, double m)

139 > {

140 > return 0d;

141 > }

142 >

143 > double Triangle(double q, double m)

144 > {

145 > return q / m;

146 > }

147 >

148 > double Circle(double q, double m)

149 > {

150 > return 1d - Math.sqrt(1d - Math.pow(q / m, 2));

151 > }

152 >

153 > double Cosine(double q, double m)

154 > {

155 > return 1d - (1d + Math.cos(q * Math.PI / m)) / 2d;

156 > }

157 >

128

158 > double Quartic(double q, double m)

159 > {

160 > return 1d - Math.pow(1d - Math.pow(q / m, 2), 2);

161 > }

162 >

163 > double Epanechnikov(double q, double m)

164 > {

165 > return Math.pow(q / m, 2);

166 > }

167 >

168 > double Triweight(double q, double m)

169 > {

170 > return 1d - Math.pow(1d - Math.pow(q / m, 2), 3);

171 > }

172 >

173 > /**

174 > * Uses BM25 to compute a weight for a term in a document.

175 > * @param tf The term frequency in the document

176 > * @param docLength the document ’s length

177 > * @param n_t The document frequency of the term

178 > * @param F_t the term frequency in the collection

179 > * @param keyFrequency the term frequency in the query

180 > * @return the score assigned by the weighting model BM25.

181 > */

182 > public double score(

183 > double tf,

184 > double docLength ,

185 > double n_t ,

186 > double F_t ,

187 > double keyFrequency) {

188 > double K = k_1 * ((1 - b) + b * docLength / averageDocumentLength)

+ tf;

189 > return Idf.log((numberOfDocuments - n_t + 0.5d) / (n_t+ 0.5d)) *

190 > ((k_1 + 1d) * tf / (K + tf)) *

191 > ((k_3 +1)*keyFrequency /(k_3+keyFrequency));

192 > }

193 >

194 > /**

195 > * Sets the b parameter to BM25 ranking formula

196 > * @param _b the b parameter value to use.

197 > */

129

198 > public void setParameter(double _b) {

199 > this.b = _b;

200 > }

201 >

202 40,109c232 ,237

203 < /** The constant k_1.*/

204 < private double k_1 = 1.2d;

205 <

206 < /** The constant k_3.*/

207 < private double k_3 = 8d;

208 <

209 < /** The parameter b.*/

210 < private double b;

211 <

212 < /** A default constructor.*/

213 < public BM25() {

214 < super ();

215 < b=0.75d;

216 < }

217 < /**

218 < * Returns the name of the model.

219 < * @return the name of the model

220 < */

221 < public final String getInfo () {

222 < return "BM25b"+b;

223 < }

224 < /**

225 < * Uses BM25 to compute a weight for a term in a document.

226 < * @param tf The term frequency in the document

227 < * @param docLength the document ’s length

228 < * @return the score assigned to a document with the given

229 < * tf and docLength , and other preset parameters

230 < */

231 < public double score(double tf, double docLength) {

232 < double K = k_1 * ((1 - b) + b * docLength /

averageDocumentLength) + tf;

233 < return (tf * (k_3 + 1d) * keyFrequency / ((k_3 + keyFrequency) *

K))

234 < * Idf.log((numberOfDocuments - documentFrequency + 0.5d)

/ (documentFrequency + 0.5d));

235 < }

130

236 < /**

237 < * Uses BM25 to compute a weight for a term in a document.

238 < * @param tf The term frequency in the document

239 < * @param docLength the document ’s length

240 < * @param n_t The document frequency of the term

241 < * @param F_t the term frequency in the collection

242 < * @param keyFrequency the term frequency in the query

243 < * @return the score assigned by the weighting model BM25.

244 < */

245 < public double score(

246 < double tf,

247 < double docLength ,

248 < double n_t ,

249 < double F_t ,

250 < double keyFrequency) {

251 < double K = k_1 * ((1 - b) + b * docLength /

averageDocumentLength) + tf;

252 < return Idf.log((numberOfDocuments - n_t + 0.5d) / (n_t+ 0.5d)) *

253 < ((k_1 + 1d) * tf / (K + tf)) *

254 < ((k_3 +1)*keyFrequency /(k_3+keyFrequency));

255 < }

256 <

257 < /**

258 < * Sets the b parameter to BM25 ranking formula

259 < * @param _b the b parameter value to use.

260 < */

261 < public void setParameter(double _b) {

262 < this.b = _b;

263 < }

264 <

265 <

266 < /**

267 < * Returns the b parameter to the BM25 ranking formula as set by

setParameter ()

268 < */

269 < public double getParameter () {

270 < return this.b;

271 < }

272 <

273 ---

274 > /**

131

275 > * Returns the b parameter to the BM25 ranking formula as set by

setParameter ()

276 > */

277 > public double getParameter () {

278 > return this.b;

279 > }

terrier-3.5/src/core/org/terrier/matching/models/DFI0.java

1 29a30 ,31

2 > import java.sql.Statement;

3 >

4 58a61 ,66

5 > }

6 >

7 > \@Override

8 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

9 > // TODO Auto -generated method stub

10 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/DFR BM25.java

1 26a27 ,29

2 >

3 > import java.sql.Statement;

4 >

5 99a103 ,108

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

11 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/DFRee.java

1 26a27 ,29

2 >

3 > import java.sql.Statement;

4 >

5 125a129 ,134

132

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

11 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/DFRWeightingModel.java

1 28c28

2 < import org.apache.log4j.Logger;

3 ---

4 > import java.sql.Statement;

5 29a30

6 > import org.apache.log4j.Logger;

7 284a286 ,291

8 > }

9 >

10 > @Override

11 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

12 > // TODO Auto -generated method stub

13 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/DirichletLM.java

1 26a27 ,28

2 > import java.sql.Statement;

3 >

4 65a68 ,73

5 > }

6 >

7 > @Override

8 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

9 > // TODO Auto -generated method stub

10 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/DLH13.java

1 28a29 ,31

2 >

133

3 > import java.sql.Statement;

4 >

5 97a101 ,106

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

11 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/DLH.java

1 28a29 ,31

2 >

3 > import java.sql.Statement;

4 >

5 96a100 ,105

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

11 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/DPH.java

1 28a29 ,31

2 >

3 > import java.sql.Statement;

4 >

5 104a108 ,113

6 >

7 > @Override

8 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

9 > // TODO Auto -generated method stub

10 > return 0;

11 > }

terrier-3.5/src/core/org/terrier/matching/models/Hiemstra LM.java

134

1 26a27 ,28

2 > import java.sql.Statement;

3 >

4 113a116 ,121

5 > }

6 >

7 > @Override

8 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

9 > // TODO Auto -generated method stub

10 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/IFB2.java

1 28a29 ,31

2 >

3 > import java.sql.Statement;

4 >

5 93a97 ,102

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

11 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/InB2.java

1 28a29 ,31

2 >

3 > import java.sql.Statement;

4 >

5 91a95 ,100

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

11 > return 0;

135

terrier-3.5/src/core/org/terrier/matching/models/In expB2.java

1 28a29 ,31

2 >

3 > import java.sql.Statement;

4 >

5 96a100 ,105

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

11 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/In expC2.java

1 28a29 ,31

2 >

3 > import java.sql.Statement;

4 >

5 94a98 ,103

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

11 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/InL2.java

1 28a29 ,31

2 >

3 > import java.sql.Statement;

4 >

5 90a94 ,99

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

136

11 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/Js KLs.java

1 26a27 ,29

2 >

3 > import java.sql.Statement;

4 >

5 113a117 ,122

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

11 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/LemurTF IDF.java

1 28a29 ,31

2 >

3 > import java.sql.Statement;

4 >

5 86a90 ,95

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

11 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/LGD.java

1 26a27 ,29

2 >

3 > import java.sql.Statement;

4 >

5 101a105 ,110

6 > }

7 >

8 > @Override

137

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

11 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/MDL2.java

1 28a29 ,30

2 > import java.sql.Statement;

3 >

4 159a162 ,167

5 > return 0;

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

terrier-3.5/src/core/org/terrier/matching/models/ML2.java

1 28a29 ,30

2 > import java.sql.Statement;

3 >

4 151a154 ,159

5 > return 0;

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

terrier-3.5/src/core/org/terrier/matching/models/PerFieldNormWeightingModel.java

1 27a28 ,29

2 > import java.sql.Statement;

3 >

4 181a184 ,188

5 > return 0;

6 > }

7 > @Override

138

8 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

9 > // TODO Auto -generated method stub

terrier-3.5/src/core/org/terrier/matching/models/PL2.java

1 29a30 ,31

2 > import java.sql.Statement;

3 >

4 103a106 ,110

5 > }

6 > @Override

7 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

8 > // TODO Auto -generated method stub

9 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/TF IDF.java

1 28a29 ,31

2 >

3 > import java.sql.Statement;

4 >

5 117a121 ,125

6 > }

7 > @Override

8 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

9 > // TODO Auto -generated method stub

10 > return 0;

terrier-3.5/src/core/org/terrier/matching/models/WeightingModel.java

1 29a30

2 > import java.sql.Statement;

3 48a50

4 > protected int keyCount;

5 68a71 ,74

6 >

7 > public double k_1 , d, e, f;

8 > public int kernel;

9 >

10 121a128 ,133

139

11 > public double score(Posting p, Statement statement , Statement

statement1 , String term , String docno)

12 > {

13 > return this.score(p.getFrequency (), p.getDocumentLength (),

statement ,

14 > statement1 , term , docno);

15 > }

16 >

17 159 a172

18 > public abstract double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno);

19 215c228 ,231

20 <

21 ---

22 > public void setKeyCount(int count)

23 > {

24 > keyCount = count;

25 > }

terrier-3.5/src/core/org/terrier/matching/models/XSqrA M.java

1 26a27 ,29

2 >

3 > import java.sql.Statement;

4 >

5 108a112 ,117

6 >

7 > @Override

8 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

9 > // TODO Auto -generated method stub

10 > return 0;

11 > }

terrier-3.5/src/core/org/terrier/matching/OldBasicMatching.java

1 28a29

2 > import java.sql.Statement;

3 32d32

4 <

5 260c260 ,261

6 < public ResultSet match(String queryNumber , MatchingQueryTerms

queryTerms) throws IOException {

140

7 ---

8 > public ResultSet match(String queryNumber , MatchingQueryTerms

queryTerms , Statement statement , Statement statement1 , double k_1 ,

double d, double e, double f, double a,

9 > int kernel) throws IOException {

terrier-3.5/src/core/org/terrier/matching/PostingListManager.java

1 31a32

2 > import java.sql.Statement;

3 154 c155

4 < public PostingListManager(Index _index , CollectionStatistics _cs ,

MatchingQueryTerms mqt) throws IOException

5 ---

6 > public PostingListManager(Index _index , CollectionStatistics _cs ,

MatchingQueryTerms mqt , boolean log) throws IOException

7 170 a172

8 > mqt.length (),

9 179c181 ,186

10 < logger.info("Query " + mqt.getQueryId () + " with "+

mqt.getTerms ().length +" terms has " + termPostings.size() + "

posting lists");

11 ---

12 >

13 > if (log)

14 > {

15 > logger.info("Query " + mqt.getQueryId () + " with "+

mqt.getTerms ().length +" terms has " + termPostings.size() + "

posting lists");

16 > }

17 >

18 193 c200

19 < public void addSingleTerm(String queryTerm , double weight ,

EntryStatistics entryStats , WeightingModel [] wmodels) throws

IOException

20 ---

21 > public void addSingleTerm(String queryTerm , double weight , int

length , EntryStatistics entryStats , WeightingModel [] wmodels) throws

IOException

22 216 a224

23 > w.setKeyCount(length);

24 352 c360

141

25 < public double score(int i)

26 ---

27 > public double score(int i, double k_1)

28 358c366 ,367

29 < for (WeightingModel w : termModels.get(i))

30 ---

31 > for (WeightingModel w : termModels.get(i)) {

32 > w.k_1 = k_1;

33 359a369 ,389

34 > }

35 > return score;

36 > }

37 >

38 > throw new IllegalArgumentException("Looking for posting list " + i

+ " out of " + (numTerms) + " posting lists.");

39 > }

40 >

41 > public double score(int i, Statement statement , Statement

statement1 , String docno , double k_1 , double d, double e, double f,

int kernel)

42 > {

43 > if (i >= 0)

44 > if (i < numTerms)

45 > {

46 > double score = 0.0d;

47 > for (WeightingModel w : termModels.get(i)) {

48 > w.k_1 = k_1;

49 > w.d = d;

50 > w.e = e;

51 > w.f = f;

52 > w.kernel = kernel;

53 > score += w.score(termPostings.get(i), statement , statement1 ,

termStrings.get(i), docno);

54 > }

terrier-3.5/src/core/org/terrier/matching/taat/Full.java

1 30a31 ,32

2 > import java.sql.Statement;

3 > import java.util.Arrays;

4 49a52

5 >

142

6 68c71 ,72

7 < public ResultSet match(String queryNumber , MatchingQueryTerms

queryTerms) throws IOException

8 ---

9 > public ResultSet match(String queryNumber , MatchingQueryTerms

queryTerms , Statement statement , Statement statement1 , double k_1 ,

double d, double e, double f, double a,

10 > int kernel) throws IOException

11 71a76

12 > int[] docs;

13 73c78 ,79

14 < plm = new PostingListManager(index , super.collectionStatistics ,

queryTerms);

15 ---

16 > plm = new PostingListManager(index , super.collectionStatistics ,

queryTerms , true);

17 >

18 87c93

19 < assignScores(i, (AccumulatorResultSet) resultSet ,

plm.getPosting(i));

20 ---

21 > assignScores(i, (AccumulatorResultSet) resultSet ,

plm.getPosting(i), statement , statement1 , null , k_1 , d, e, f, a,

kernel);

22 89c95 ,107

23 <

24 ---

25 >

26 > ((AccumulatorResultSet)resultSet).Sort();

27 > docs =

Arrays.copyOfRange (((AccumulatorResultSet)resultSet).docids , 0, 1000);

28 > Arrays.sort(docs);

29 >

30 > plm = new PostingListManager(index , super.collectionStatistics ,

queryTerms , false);

31 > plm.prepare(false);

32 >

33 > for(int i=0; i< plm.size(); i++)

34 > {

143

35 > assignScores(i, (AccumulatorResultSet) resultSet ,

plm.getPosting(i), statement , statement1 , docs , k_1 , d, e, f, a,

kernel);

36 > }

37 >

38 98c116 ,117

39 < protected void assignScores(int i, AccumulatorResultSet rs, final

IterablePosting postings) throws IOException

40 ---

41 > protected void assignScores(int i, AccumulatorResultSet rs, final

IterablePosting postings , Statement statement , Statement statement1 ,

int[] docs , double k_1 , double d, double e, double f,

42 > double a, int kernel) throws IOException

43 106 c125

44 <

45 ---

46 >

47 109 d127

48 < score = plm.score(i);

49 111c129 ,136

50 < // logger.info("Docid =" + docid + " score =" + score);

51 ---

52 > if (docs != null)

53 > if (a != 0 && Arrays.binarySearch(docs , docid) >= 0)

54 > score = a * plm.score(i, statement , statement1 ,

index.getMetaIndex ().getItem("docno", docid), k_1 , d, e, f, kernel);

55 > else

56 > score = 0;

57 > else

58 > score = (1 - a) * plm.score(i, k_1);

59 >

terrier-3.5/src/core/org/terrier/matching/taat/FullNoPLM.java

1 30a31

2 > import java.sql.Statement;

3 35d35

4 <

5 74c74 ,75

6 < public ResultSet match(String queryNumber , MatchingQueryTerms

queryTerms) throws IOException

7 ---

144

8 > public ResultSet match(String queryNumber , MatchingQueryTerms

queryTerms , Statement statement , Statement statement1 , double k_1 ,

double d, double e, double f, double a,

9 > int kernel) throws IOException

terrier-3.5/src/core/org/terrier/matching/TRECResultsMatching.java

1 31a32

2 > import java.sql.Statement;

3 222 c223

4 < public ResultSet match(String _qid , MatchingQueryTerms mqt) throws

IOException {

5 ---

6 > public ResultSet match(String _qid , MatchingQueryTerms mqt ,

Statement statement , Statement statement1 , double k_1 , double d,

double e, double f, double a, int kernel) throws IOException {

terrier-3.5/src/core/org/terrier/matching/tsms/RequiredTermModifier.java

1 27a28

2 > import java.sql.Statement;

3 125a127 ,132

4 > // TODO Auto -generated method stub

5 > return 0;

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

terrier-3.5/src/core/org/terrier/matching/tsms/TermInFieldModifier.java

1 26a27 ,29

2 >

3 > import java.sql.Statement;

4 >

5 206a210 ,215

6 > }

7 >

8 > @Override

9 > public double score(double tf, double docLength , Statement

statement , Statement statement1 , String term , String docno) {

10 > // TODO Auto -generated method stub

145

11 > return 0;

terrier-3.5/src/core/org/terrier/querying/Decorate.java

1 32a33

2 > import java.sql.Statement;

terrier-3.5/src/core/org/terrier/querying/Manager.java

1 30a31

2 > import java.sql.Statement;

3 40d40

4 <

5 617 c617

6 < public void runMatching(SearchRequest srq)

7 ---

8 > public void runMatching(SearchRequest srq , Statement statement ,

Statement statement1 , double k_1 , double d, double e, double f,

double a, int kernel)

9 624 d623

10 <

11 676 c675

12 < ResultSet outRs = matching.match(rq.getQueryID (), mqt);

13 ---

14 > ResultSet outRs = matching.match(rq.getQueryID (), mqt ,

statement , statement1 , k_1 , d, e, f, a, kernel);

terrier-3.5/src/core/org/terrier/querying/Process.java

1 27a28 ,30

2 >

3 > import java.sql.Statement;

4 >

terrier-3.5/src/core/org/terrier/querying/QueryExpansion.java

1 30a31

2 > import java.sql.Statement;

3 35d35

4 <

5 134 c134

6 < double totalDocumentLength = 0;

7 ---

146

8 > double totalDocumentLength = 0;

9 329 c329

10 < manager.runMatching(q);

11 ---

12 > manager.runMatching(q, null , null , 1.2, 0, 0, 0, 0, 0);

terrier-3.5/src/core/org/terrier/structures/indexing/DocumentPostingList.java

1 33a34 ,37

2 > import java.io.PrintWriter;

3 > import java.sql.SQLException;

4 > import java.sql.Statement;

5 > import java.sql.ResultSet;

6 102a107 ,121

7 > }

8 >

9 > public void insert(final String term , final Statement statement ,

final int pos , final int length)

10 > {

11 > occurrences.adjustOrPutValue(term ,1,1);

12 > documentLength ++;

13 >

14 > /*try

15 > {

16 > statement.execute (" insert into temp values(’" + term + "’," +

Math.abs (((length - 1d) / 2 - pos)) + "," + length + ")");

17 > }

18 > catch (SQLException e)

19 > {

20 > System.out.println(e.getMessage ());

21 > }*/

terrier-3.5/src/core/org/terrier/structures/TRECQuery.java

1 127 ,138c127 ,140

2 <

3 < if (queryTokenizer.inDocnoTag ()) {

4 < //The tokenizer is constructed from the trimmed version

of the contents

5 < //of the query number tag , so that the last token

extracted from it , is

6 < // always the query number , and not an empty string

7 < StringTokenizer docnoTokens =

147

8 < new StringTokenizer(token.trim(), " ");

9 < while (docnoTokens.hasMoreTokens ())

10 < docnoToken = docnoTokens.nextToken ().trim();

11 < } else if (queryTokenizer.inTagToProcess ()) {

12 < // Removed the code that checks if "description" and

13 < // "narrative" appear in "desc" and "narr", respective.

14 ---

15 > if (queryTokenizer.inDocnoTag ()) {

16 > //The tokenizer is constructed from the trimmed version

of the contents

17 > //of the query number tag , ignoring the token Number:

18 > StringTokenizer docnoTokens =

19 > new StringTokenizer(token.trim(), " ");

20 > while (docnoTokens.hasMoreTokens ())

21 > {

22 > String tok = docnoTokens.nextToken ().trim();

23 > if (! tok.equalsIgnoreCase("number"))

24 > docnoToken = tok;

25 > }

26 > } else if (queryTokenizer.inTagToProcess ()) {

27 > // Removed the code that checks if "description" and

28 > // "narrative" appear in "desc" and "narr", respective.

29 144 ,146c146 ,147

30 < .toUpperCase ()

31 < .equals("DESC")

32 < && token.toUpperCase ().equals("DESCRIPTION"))

33 ---

34 > .equalsIgnoreCase("DESC")

35 > && token.equalsIgnoreCase("DESCRIPTION"))

36 150 ,152c151 ,152

37 < .toUpperCase ()

38 < .equals("NARR")

39 < && token.toUpperCase ().equals("NARRATIVE"))

40 ---

41 > .equalsIgnoreCase("NARR")

42 > && token.equalsIgnoreCase("NARRATIVE"))

43 163c163 ,165

44 < vecStringIds.add(docnoToken.trim());

45 ---

46 > if (docnoToken == null)

47 > throw new IOException("No id tag found for this query");

148

48 > vecStringIds.add(docnoToken);

terrier-3.5/src/core/org/terrier/terms/BaseTermPipelineAccessor.java

1 27a28 ,29

2 > import java.sql.Statement;

3 >

4 88c90

5 < public void processTerm(String t)

6 ---

7 > public void processTerm(String t, Statement statement , int pos , int

length)

8 103 c105

9 < pipeline_first.processTerm(t);

10 ---

11 > pipeline_first.processTerm(t, null , 0, 0);

terrier-3.5/src/core/org/terrier/terms/CropTerm.java

1 27a28 ,30

2 >

3 > import java.sql.Statement;

4 >

5 56c59

6 < public void processTerm(String t)

7 ---

8 > public void processTerm(String t, Statement statement , int pos , int

length)

9 62c65

10 < next.processTerm(t);

11 ---

12 > next.processTerm(t, statement , pos , length);

terrier-3.5/src/core/org/terrier/terms/DumpTerm.java

1 28a29 ,30

2 > import java.sql.Statement;

3 >

4 45c47

5 < public void processTerm(String t)

6 ---

7 > public void processTerm(String t, Statement statement , int pos , int

length)

149

8 50c52

9 < next.processTerm(t);

10 ---

11 > next.processTerm(t, statement , pos , length);

terrier-3.5/src/core/org/terrier/terms/NoOp.java

1 28a29 ,30

2 > import java.sql.Statement;

3 >

4 54c56

5 < public final void processTerm(final String t)

6 ---

7 > public final void processTerm(final String t, final Statement

statement , final int pos , final int length)

8 58c60

9 < next.processTerm(t);

10 ---

11 > next.processTerm(t, statement , pos , length);

terrier-3.5/src/core/org/terrier/terms/SkipTermPipeline.java

1 29a30 ,31

2 > import java.sql.Statement;

3 >

4 30a33

5 >

6 89c92

7 < public void processTerm(String term) {

8 ---

9 > public void processTerm(String term , Statement statement , int pos ,

int length) {

10 94c97

11 < last.processTerm(term);

12 ---

13 > last.processTerm(term , statement , pos , length);

14 99c102

15 < next.processTerm(term);

16 ---

17 > next.processTerm(term , statement , pos , length);

terrier-3.5/src/core/org/terrier/terms/StemmerTermPipeline.java

150

1 29a30 ,31

2 > import java.sql.Statement;

3 >

4 55c57

5 < public void processTerm(String t)

6 ---

7 > public void processTerm(String t, Statement statement , int pos , int

length)

8 59c61

9 < next.processTerm(stem(t));

10 ---

11 > next.processTerm(stem(t), statement , pos , length);

terrier-3.5/src/core/org/terrier/terms/Stopwords.java

1 29a32

2 > import java.sql.Statement;

3 172 c175

4 < public void processTerm(final String t)

5 ---

6 > public void processTerm(final String t, final Statement statement ,

final int pos , final int length)

7 176 c179

8 < next.processTerm(t);

9 ---

10 > next.processTerm(t, statement , pos , length);

terrier-3.5/src/core/org/terrier/terms/TermPipeline.java

1 26a27 ,28

2 >

3 > import java.sql.Statement;

4 41c43

5 < void processTerm(String t);

6 ---

7 > void processTerm(String t, Statement statement , int pos , int length);

151

Appendix E

Terrier Properties Files

In order for Terrier to index and run retrieval, it needs a properties file. This file is

located in the terrier-3.5/etc directory and is named terrier.properties. The properties

file determines Terrier run-time properties such as which tags in a document to process

and ignore. When working with a collection, Terrier needs the specific properties for

that collection in order to perform optimally. The properties used in these experiments

for each of the collections are as follows:

WT2g, WT10g, Gov2

1 #default controls for query expansion

2 querying.postprocesses.order=QueryExpansion

3 querying.postprocesses.controls=qe:QueryExpansion

4

5 #default and allowed controls

6 querying.default.controls=

7 querying.allowed.controls=qe,start ,end ,qemodel

8

9 #document tags specification

10 #for processing the contents of

11 #the documents , ignoring DOCHDR

12 TrecDocTags.doctag=DOC

13 TrecDocTags.idtag=DOCNO

14 TrecDocTags.skip=DOCHDR

15

16 #query tags specification

17 TrecQueryTags.doctag=TOP

18 TrecQueryTags.idtag=NUM

152

19 TrecQueryTags.process=TOP ,NUM ,TITLE

20 TrecQueryTags.skip=DESC ,NARR

21

22 #stop -words file

23 stopwords.filename=stopword -list.txt

24

25 #the processing stages a term goes through

26 termpipelines=Stopwords ,PorterStemmer

disk4+5

1 #default controls for query expansion

2 querying.postprocesses.order=QueryExpansion

3 querying.postprocesses.controls=qe:QueryExpansion

4

5 #default and allowed controls

6 querying.default.controls=

7 querying.allowed.controls=qe,start ,end ,qemodel

8

9 #document tags specification

10 #for processing the contents of

11 #the documents , ignoring DOCHDR

12 TrecDocTags.doctag=DOC

13 TrecDocTags.idtag=DOCNO

14 TrecDocTags.skip=DOCHDR

15 TrecDocTags.process=TEXT ,H3,DOCTITLE ,HEADLINE ,TTL

16

17 #query tags specification

18 TrecQueryTags.doctag=TOP

19 TrecQueryTags.idtag=NUM

20 TrecQueryTags.process=TOP ,NUM ,TITLE

21 TrecQueryTags.skip=DESC ,NARR

22

23 #stop -words file

24 stopwords.filename=stopword -list.txt

25

26 #the processing stages a term goes through

27 termpipelines=Stopwords ,PorterStemmer

Blogs06

1 #default controls for query expansion

2 querying.postprocesses.order=QueryExpansion

153

3 querying.postprocesses.controls=qe:QueryExpansion

4

5 #default and allowed controls

6 querying.default.controls=

7 querying.allowed.controls=qe,start ,end ,qemodel

8

9 #document tags specification

10 #for processing the contents of

11 #the documents , ignoring DOCHDR

12 TrecDocTags.doctag=DOC

13 TrecDocTags.idtag=DOCNO

14 TrecDocTags.skip=DOCHDR ,FEEDNO ,FEEDURL ,BLOGHPNO ,BLOGHPURL ,PERMALINK ,DATE_XML

15

16 indexing.singlepass.max.postings.memory =500000000

17 indexer.meta.forward.keys=docno

18 indexer.meta.forward.keylens =31

19 indexer.meta.reverse.keys=docno

20

21 #query tags specification

22 TrecQueryTags.doctag=TOP

23 TrecQueryTags.idtag=NUM

24 TrecQueryTags.process=TOP ,NUM ,TITLE

25 TrecQueryTags.skip=DESC ,NARR

26

27 #stop -words file

28 stopwords.filename=stopword -list.txt

29

30 #the processing stages a term goes through

31 termpipelines=Stopwords ,PorterStemmer

154

Appendix F

Generating the Primary Index

1. Copy the properties specified in Appendix E into the terrier.properties file in the

terrier-3.5/etc directory.

2. Place the collection to index in the terrier-3.5/collections directory.

3. Enter ”./trec terrier.sh -i” in command line in the terrier-3.5/bin directory.

155

Appendix G

Generating the Secondary Index

1. Setup the Query Term Placement Parser by running through the steps 1 to 15 in

Appendix B.1.

2. Enter ”java -cp .:stanford-postagger-3.3.1.jar:h2-1.3.174.jar RelParser [Data] -1 -i”

into the command line. The [Data] parameter is mandatory. [Data] is the name of

the collection directory, ex. wt2g. For example, to generate the secondary index for

the WT10g collection, enter ”java -cp .:stanford-postagger-3.3.1.jar:h2-1.3.174.jar

RelParser wt10g -1 -i” into the command line.

3. Copy the index.h2.db generated by the Query Term Placement Parser into the

terrier-3.5/var directory.

156

Appendix H

Running Retrieval on Terrier

1. Modify Terrier 3.5 as specified in Appendix D.

2. Copy the properties specified in Appendix E into the terrier.properties file in the

terrier-3.5/etc directory.

3. Generate the primary and secondary indexes as specified in Appendix F and Ap-

pendix G.

4. Take all of the topics of the collection as defined in Section 5.1 and concatenate

them into a single file named according to the collection. For example, topics.wt10g

should contain the topics 451-550 for the WT10g collection. Place this file in the

terrier-3.5/collections directory.

5. Enter ”bin/trec terrier.sh -r -Dtrec.model=BM25 -Dtrec.topics=collections/topics.[Data]

-k1 1.2 -dd 2 -ee 3 -aa 0.2 -kk [Kernel] -fold 0 -c [c]” into the command line. The

[Data], [Kernel], and [c] parameters are mandatory. [Data] is the name of the

collection directory, ex. wt2g. [Kernel] is the kernel function to use for the re-

trieval. The options for [Kernel] are as follows: Baseline (Unmodified Terrier) =

-1, Gaussian = 0, Uniform = 1, Triangle = 2, Circle = 3, Cosine = 4, Quartic = 5,

Epanechikov = 6, Triweight = 7. [c] is a tuning parameter for BM25. The values

of [c] used in these experiments are as follows, WT2g = 0.2, WT10g = 0.3, disk4+5

= 0.3, Blogs06 = 0.2, Gov2 = 0.4. For example, to run retrieval on WT10g using

157

the Gaussian kernel function, enter ”bin/trec terrier.sh -r -Dtrec.model=BM25 -

Dtrec.topics=collections/topics.wt10g -k1 1.2 -dd 2 -ee 3 -aa 0.2 -kk 0 -fold 0 -c

0.3” into the command line.

158

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 History of Information Retrieval
	1.2 Information Retrieval Models
	1.2.1 The Boolean Model
	1.2.2 The Vector Space Model
	1.2.3 Probabilistic Models
	1.2.3.1 The Language Model
	1.2.3.2 The BM25 Model

	1.3 Natural Language Processing
	1.3.1 Statistical Phrases
	1.3.2 Syntactic Phrases

	1.4 Sentence Patterns
	1.5 Term Proximity

	2 Related Work
	2.1 Syntactic Nouns and Noun-Phrases
	2.2 Syntactic Patterns
	2.3 Other Patterns in Documents
	2.4 Term Proximity
	2.4.1 Kernel Functions
	2.4.2 Sentence-based Summarization

	3 Preliminary Experiments
	3.1 Experimental Settings
	3.2 Placement of Nouns in Sentences
	3.2.1 Design
	3.2.2 Results

	3.3 Placement of Important Terms in Sentences
	3.3.1 Design
	3.3.2 Results
	3.3.3 Query Length Analysis

	3.4 Effectiveness of Proposed Weighting Method
	3.4.1 Design
	3.4.2 Results

	4 Integration of Term Location into BM25
	4.1 Design of the Reward Formula
	4.1.1 Term Location
	4.1.2 Kernel Functions
	4.1.3 Effect of the β and γ Parameters
	4.1.4 Sentence Length Normalization

	4.2 Merge into BM25
	4.3 Query Length Normalization
	4.4 Design Decisions

	5 Experimental Settings
	5.1 Collections
	5.2 Evaluation Metrics
	5.3 Terrier Settings
	5.4 Baselines
	5.5 System Settings
	5.6 Secondary Index Settings
	5.7 Retrieval and Evaluation

	6 Experimental Results
	6.1 Effectiveness of Our Model
	6.1.1 WT2g
	6.1.2 disk4+5
	6.1.3 WT10g
	6.1.4 Blogs06
	6.1.5 Gov2
	6.1.6 Overall Effectiveness

	6.2 Parameter Sensitivity
	6.2.1 The α Parameter
	6.2.1.1 WT2g
	6.2.1.2 disk4+5
	6.2.1.3 WT10g
	6.2.1.4 Blogs06
	6.2.1.5 Gov2

	6.2.2 The β Parameter
	6.2.2.1 WT2g
	6.2.2.2 disk4+5
	6.2.2.3 WT10g
	6.2.2.4 Blogs06
	6.2.2.5 Gov2

	6.2.3 The γ Parameter
	6.2.3.1 WT2g
	6.2.3.2 disk4+5
	6.2.3.3 WT10g
	6.2.3.4 Blogs06
	6.2.3.5 Gov2

	6.2.4 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	Appendix A Placement of Nouns in Sentences Preliminary Experiment
	A.1 Instructions
	A.2 Noun Placement Parser

	Appendix B Placement of Important Terms in Sentences Preliminary Experiment
	B.1 Instructions
	B.2 Query Term Placement Parser

	Appendix C Effectiveness of Proposed Weighting Method Preliminary Experiment
	C.1 Instructions
	C.2 Weighting Method Parser
	C.3 Complete Results

	Appendix D Modifying Terrier
	D.1 Instructions
	D.2 Code Changes

	Appendix E Terrier Properties Files
	Appendix F Generating the Primary Index
	Appendix G Generating the Secondary Index
	Appendix H Running Retrieval on Terrier

